未验证 提交 8deaf352 编写于 作者: Y YixinKristy 提交者: GitHub

Merge branch 'PaddlePaddle:release/2.4' into release/2.4

......@@ -17,3 +17,4 @@ EvalDataset:
TestDataset:
!ImageFolder
anno_path: annotations/instances_val2017.json
dataset_dir: dataset/coco
......@@ -17,3 +17,4 @@ EvalDataset:
TestDataset:
!ImageFolder
anno_path: annotations/instances_val2017.json
dataset_dir: dataset/coco
......@@ -17,3 +17,4 @@ EvalDataset:
TestDataset:
!ImageFolder
anno_path: trainval_split/s2anet_trainval_paddle_coco.json
dataset_dir: dataset/DOTA_1024_s2anet/
......@@ -17,6 +17,7 @@ EvalDataset:
TestDataset:
!ImageFolder
dataset_dir: dataset/mot/MOT17
anno_path: annotations/val_half.json
......
......@@ -17,6 +17,7 @@ EvalDataset:
TestDataset:
!ImageFolder
dataset_dir: dataset/mot/MOT17
anno_path: annotations/val_half.json
......
此差异已折叠。
......@@ -35,6 +35,9 @@ class Result(object):
return self.res_dict[name]
return None
def clear(self, name):
self.res_dict[name].clear()
class DataCollector(object):
"""
......@@ -80,7 +83,6 @@ class DataCollector(object):
ids = int(mot_item[0])
if ids not in self.collector:
self.collector[ids] = copy.deepcopy(self.mots)
self.collector[ids]["frames"].append(frameid)
self.collector[ids]["rects"].append([mot_item[2:]])
if attr_res:
......
......@@ -297,10 +297,9 @@ def distill_idfeat(mot_res):
feature_new = feature_list
#if available frames number is more than 200, take one frame data per 20 frames
if len(qualities_new) > 200:
skipf = 20
else:
skipf = max(10, len(qualities_new) // 10)
skipf = 1
if len(qualities_new) > 20:
skipf = 2
quality_skip = np.array(qualities_new[::skipf])
feature_skip = np.array(feature_new[::skipf])
......
......@@ -587,7 +587,7 @@ class PipePredictor(object):
if self.cfg['visual']:
self.action_visual_helper.update(action_res)
if self.with_mtmct:
if self.with_mtmct and frame_id % 10 == 0:
crop_input, img_qualities, rects = self.reid_predictor.crop_image_with_mot(
frame, mot_res)
if frame_id > self.warmup_frame:
......@@ -603,6 +603,8 @@ class PipePredictor(object):
"rects": rects
}
self.pipeline_res.update(reid_res_dict, 'reid')
else:
self.pipeline_res.clear('reid')
self.collector.append(frame_id, self.pipeline_res)
......
......@@ -231,7 +231,7 @@ class Detector(object):
self.det_times.preprocess_time_s.end()
# model prediction
result = self.predict(repeats=repeats) # warmup
result = self.predict(repeats=50) # warmup
self.det_times.inference_time_s.start()
result = self.predict(repeats=repeats)
self.det_times.inference_time_s.end(repeats=repeats)
......@@ -296,7 +296,7 @@ class Detector(object):
if not os.path.exists(self.output_dir):
os.makedirs(self.output_dir)
out_path = os.path.join(self.output_dir, video_out_name)
fourcc = cv2.VideoWriter_fourcc(* 'mp4v')
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
index = 1
while (1):
......@@ -790,7 +790,7 @@ def main():
if FLAGS.image_dir is None and FLAGS.image_file is not None:
assert FLAGS.batch_size == 1, "batch_size should be 1, when image_file is not None"
img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
detector.predict_image(img_list, FLAGS.run_benchmark, repeats=10)
detector.predict_image(img_list, FLAGS.run_benchmark, repeats=100)
if not FLAGS.run_benchmark:
detector.det_times.info(average=True)
else:
......
......@@ -39,6 +39,11 @@ def get_categories(metric_type, anno_file=None, arch=None):
if arch == 'keypoint_arch':
return (None, {'id': 'keypoint'})
if anno_file == None or (not os.path.isfile(anno_file)):
logger.warning("anno_file '{}' is None or not set or not exist, "
"please recheck TrainDataset/EvalDataset/TestDataset.anno_path, "
"otherwise the default categories will be used by metric_type.".format(anno_file))
if metric_type.lower() == 'coco' or metric_type.lower(
) == 'rbox' or metric_type.lower() == 'snipercoco':
if anno_file and os.path.isfile(anno_file):
......@@ -55,8 +60,9 @@ def get_categories(metric_type, anno_file=None, arch=None):
# anno file not exist, load default categories of COCO17
else:
if metric_type.lower() == 'rbox':
logger.warning("metric_type: {}, load default categories of DOTA.".format(metric_type))
return _dota_category()
logger.warning("metric_type: {}, load default categories of COCO.".format(metric_type))
return _coco17_category()
elif metric_type.lower() == 'voc':
......@@ -77,6 +83,7 @@ def get_categories(metric_type, anno_file=None, arch=None):
# anno file not exist, load default categories of
# VOC all 20 categories
else:
logger.warning("metric_type: {}, load default categories of VOC.".format(metric_type))
return _vocall_category()
elif metric_type.lower() == 'oid':
......@@ -104,6 +111,7 @@ def get_categories(metric_type, anno_file=None, arch=None):
return clsid2catid, catid2name
# anno file not exist, load default category 'pedestrian'.
else:
logger.warning("metric_type: {}, load default categories of pedestrian MOT.".format(metric_type))
return _mot_category(category='pedestrian')
elif metric_type.lower() in ['kitti', 'bdd100kmot']:
......@@ -122,6 +130,7 @@ def get_categories(metric_type, anno_file=None, arch=None):
return clsid2catid, catid2name
# anno file not exist, load default categories of visdrone all 10 categories
else:
logger.warning("metric_type: {}, load default categories of VisDrone.".format(metric_type))
return _visdrone_category()
else:
......
......@@ -26,8 +26,6 @@ from motmetrics.math_util import quiet_divide
import numpy as np
import pandas as pd
import paddle
import paddle.nn.functional as F
from .metrics import Metric
import motmetrics as mm
import openpyxl
......@@ -311,6 +309,8 @@ class MCMOTEvaluator(object):
self.gt_filename = os.path.join(self.data_root, '../',
'sequences',
'{}.txt'.format(self.seq_name))
if not os.path.exists(self.gt_filename):
logger.warning("gt_filename '{}' of MCMOTEvaluator is not exist, so the MOTA will be -inf.")
def reset_accumulator(self):
import motmetrics as mm
......
......@@ -22,8 +22,7 @@ import sys
import math
from collections import defaultdict
import numpy as np
import paddle
import paddle.nn.functional as F
from ppdet.modeling.bbox_utils import bbox_iou_np_expand
from .map_utils import ap_per_class
from .metrics import Metric
......@@ -36,8 +35,10 @@ __all__ = ['MOTEvaluator', 'MOTMetric', 'JDEDetMetric', 'KITTIMOTMetric']
def read_mot_results(filename, is_gt=False, is_ignore=False):
valid_labels = {1}
ignore_labels = {2, 7, 8, 12} # only in motchallenge datasets like 'MOT16'
valid_label = [1]
ignore_labels = [2, 7, 8, 12] # only in motchallenge datasets like 'MOT16'
logger.info("In MOT16/17 dataset the valid_label of ground truth is '{}', "
"in other dataset it should be '0' for single classs MOT.".format(valid_label[0]))
results_dict = dict()
if os.path.isfile(filename):
with open(filename, 'r') as f:
......@@ -50,12 +51,10 @@ def read_mot_results(filename, is_gt=False, is_ignore=False):
continue
results_dict.setdefault(fid, list())
box_size = float(linelist[4]) * float(linelist[5])
if is_gt:
label = int(float(linelist[7]))
mark = int(float(linelist[6]))
if mark == 0 or label not in valid_labels:
if mark == 0 or label not in valid_label:
continue
score = 1
elif is_ignore:
......@@ -118,6 +117,8 @@ class MOTEvaluator(object):
assert self.data_type == 'mot'
gt_filename = os.path.join(self.data_root, self.seq_name, 'gt',
'gt.txt')
if not os.path.exists(gt_filename):
logger.warning("gt_filename '{}' of MOTEvaluator is not exist, so the MOTA will be -inf.")
self.gt_frame_dict = read_mot_results(gt_filename, is_gt=True)
self.gt_ignore_frame_dict = read_mot_results(
gt_filename, is_ignore=True)
......
......@@ -22,22 +22,23 @@ class BaseArch(nn.Layer):
self.fuse_norm = False
def load_meanstd(self, cfg_transform):
self.scale = 1.
self.mean = paddle.to_tensor([0.485, 0.456, 0.406]).reshape(
(1, 3, 1, 1))
self.std = paddle.to_tensor([0.229, 0.224, 0.225]).reshape((1, 3, 1, 1))
scale = 1.
mean = np.array([0.485, 0.456, 0.406], dtype=np.float32)
std = np.array([0.229, 0.224, 0.225], dtype=np.float32)
for item in cfg_transform:
if 'NormalizeImage' in item:
self.mean = paddle.to_tensor(item['NormalizeImage'][
'mean']).reshape((1, 3, 1, 1))
self.std = paddle.to_tensor(item['NormalizeImage'][
'std']).reshape((1, 3, 1, 1))
mean = np.array(
item['NormalizeImage']['mean'], dtype=np.float32)
std = np.array(item['NormalizeImage']['std'], dtype=np.float32)
if item['NormalizeImage'].get('is_scale', True):
self.scale = 1. / 255.
scale = 1. / 255.
break
if self.data_format == 'NHWC':
self.mean = self.mean.reshape(1, 1, 1, 3)
self.std = self.std.reshape(1, 1, 1, 3)
self.scale = paddle.to_tensor(scale / std).reshape((1, 1, 1, 3))
self.bias = paddle.to_tensor(-mean / std).reshape((1, 1, 1, 3))
else:
self.scale = paddle.to_tensor(scale / std).reshape((1, 3, 1, 1))
self.bias = paddle.to_tensor(-mean / std).reshape((1, 3, 1, 1))
def forward(self, inputs):
if self.data_format == 'NHWC':
......@@ -46,7 +47,7 @@ class BaseArch(nn.Layer):
if self.fuse_norm:
image = inputs['image']
self.inputs['image'] = (image * self.scale - self.mean) / self.std
self.inputs['image'] = image * self.scale + self.bias
self.inputs['im_shape'] = inputs['im_shape']
self.inputs['scale_factor'] = inputs['scale_factor']
else:
......@@ -66,8 +67,7 @@ class BaseArch(nn.Layer):
outs = []
for inp in inputs_list:
if self.fuse_norm:
self.inputs['image'] = (
inp['image'] * self.scale - self.mean) / self.std
self.inputs['image'] = inp['image'] * self.scale + self.bias
self.inputs['im_shape'] = inp['im_shape']
self.inputs['scale_factor'] = inp['scale_factor']
else:
......@@ -75,7 +75,7 @@ class BaseArch(nn.Layer):
outs.append(self.get_pred())
# multi-scale test
if len(outs)>1:
if len(outs) > 1:
out = self.merge_multi_scale_predictions(outs)
else:
out = outs[0]
......@@ -92,7 +92,9 @@ class BaseArch(nn.Layer):
keep_top_k = self.bbox_post_process.nms.keep_top_k
nms_threshold = self.bbox_post_process.nms.nms_threshold
else:
raise Exception("Multi scale test only supports CascadeRCNN, FasterRCNN and MaskRCNN for now")
raise Exception(
"Multi scale test only supports CascadeRCNN, FasterRCNN and MaskRCNN for now"
)
final_boxes = []
all_scale_outs = paddle.concat([o['bbox'] for o in outs]).numpy()
......@@ -101,9 +103,11 @@ class BaseArch(nn.Layer):
if np.count_nonzero(idxs) == 0:
continue
r = nms(all_scale_outs[idxs, 1:], nms_threshold)
final_boxes.append(np.concatenate([np.full((r.shape[0], 1), c), r], 1))
final_boxes.append(
np.concatenate([np.full((r.shape[0], 1), c), r], 1))
out = np.concatenate(final_boxes)
out = np.concatenate(sorted(out, key=lambda e: e[1])[-keep_top_k:]).reshape((-1, 6))
out = np.concatenate(sorted(
out, key=lambda e: e[1])[-keep_top_k:]).reshape((-1, 6))
out = {
'bbox': paddle.to_tensor(out),
'bbox_num': paddle.to_tensor(np.array([out.shape[0], ]))
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册