diff --git a/test/ppdet_params.txt b/test/ppdet_params.txt index 5a02a269d639a6c67793b56d8b7055802e69eec6..86ec25ea5bbd3cddaf7c59e284d7686f9634ae04 100644 --- a/test/ppdet_params.txt +++ b/test/ppdet_params.txt @@ -1,21 +1,21 @@ ===========================train_params=========================== model_name:yolov3_darknet53_270e_coco python:python3.7 -gpu_list:0|0,1 -Global.use_gpu:True|True -Global.auto_cast:False -Global.epoch_num:lite_train_infer=2|whole_train_infer=300 -Global.save_model_dir:./output/ -Train.loader.batch_size_per_card:lite_train_infer=2|whole_train_infer=4 -Global.pretrained_model:null -train_model_name:latest -train_infer_img_dir:./dataset/coco_ce/ +gpu_list:0 +use_gpu:True +auto_cast:null +epoch:lite_train_infer=1|whole_train_infer=12 +save_dir:./output/ +TrainReader.batch_size:lite_train_infer=2|whole_train_infer=4 +weights:null +train_model_name:yolov3_darknet53_270e_coco/model_final.pdparams +train_infer_img_dir:./demo1/ null:null ## -trainer:norm_train|pact_train +trainer:norm_train|fpgm_train|pact_train norm_train:tools/train.py -c configs/yolov3/yolov3_darknet53_270e_coco.yml -o -pact_train:null -fpgm_train:null +pact_train:tools/train.py -c configs/yolov3/yolov3_darknet53_270e_coco.yml --slim_config configs/slim/quant/yolov3_darknet_qat.yml -o +fpgm_train:tools/train.py -c configs/yolov3/yolov3_darknet53_270e_coco.yml --slim_config configs/slim/prune/yolov3_darknet_prune_fpgm.yml -o distill_train:null null:null null:null @@ -25,8 +25,8 @@ eval:tools/eval.py -c configs/yolov3/yolov3_darknet53_270e_coco.yml -o null:null ## ===========================infer_params=========================== -Global.save_inference_dir:./output/ -Global.pretrained_model: +--output_dir:./output/ +weights: norm_export:tools/export_model.py -c configs/yolov3/yolov3_darknet53_270e_coco.yml -o quant_export:deploy/slim/quantization/export_model.py -c configs/yolov3/yolov3_darknet53_270e_coco.yml -o fpgm_export:deploy/slim/prune/export_prune_model.py @@ -35,13 +35,13 @@ null:null null:null ## inference:deploy/python/infer.py ---device:cpu|gpu +--device:gpu --enable_mkldnn:False|True --cpu_threads:1|4 --batch_size:1|2 --use_tensorrt:null --run_mode:fluid ---model_dir:./output_inference/yolov3_darknet53_270e_coco/ +--model_dir:tests/output/norm_train_gpus_0_autocast_null/yolov3_darknet53_270e_coco/ --image_dir:./demo1/ --save_log_path:null --run_benchmark:True diff --git a/test/prepare.sh b/test/prepare.sh new file mode 100644 index 0000000000000000000000000000000000000000..ae6b48ad5eb78e4813f51dd5e0185f908a5b960b --- /dev/null +++ b/test/prepare.sh @@ -0,0 +1,23 @@ +#!/bin/bash +FILENAME=$1 + +# MODE be one of ['lite_train_infer' 'whole_infer' 'whole_train_infer'] +MODE=$2 + +# prepare dataset +if [ ${MODE} = "lite_train_infer" ];then + # pretrain lite train data + cd dataset/coco + wget https://paddledet.bj.bcebos.com/data/coco_ce.tar + tar -xvf coco_ce.tar + mv coco_ce/* . + rm -rf coco_ce* +else + # pretrain lite train data + cd dataset/coco + wget https://paddledet.bj.bcebos.com/data/coco_ce.tar + tar -xvf coco_ce.tar + mv coco_ce/* . + rm -rf coco_ce* +fi + diff --git a/test/test.sh b/test/test.sh index b5e92980d2d1bed2e676f57ab464ab4b7e56a2a9..d36f54e2c2ead36acf8d09e7ebfa838252b3c9db 100644 --- a/test/test.sh +++ b/test/test.sh @@ -170,9 +170,10 @@ function func_inference(){ set_cpu_threads=$(func_set_params "${cpu_threads_key}" "${threads}") set_model_dir=$(func_set_params "${infer_model_key}" "${_model_dir}") set_infer_params1=$(func_set_params "${infer_key1}" "${infer_value1}") - command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${use_mkldnn_key}=${use_mkldnn} ${set_cpu_threads} ${set_model_dir} ${set_batchsize} ${set_infer_data} ${set_benchmark} ${set_infer_params1} 2>&1 | tee ${_save_log_path} " + #command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${use_mkldnn_key}=${use_mkldnn} ${set_cpu_threads} ${set_model_dir} ${set_batchsize} ${set_infer_data} ${set_benchmark} ${set_infer_params1} 2>&1 | tee ${_save_log_path} " + command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${use_mkldnn_key}=${use_mkldnn} ${set_cpu_threads} ${set_model_dir} ${set_batchsize} ${set_infer_data} ${set_benchmark} ${set_infer_params1} > ${_save_log_path} " echo $command - #eval $command + eval $command #status_check $? "${command}" "${status_log}" done done @@ -294,6 +295,7 @@ else fi # run train eval "unset CUDA_VISIBLE_DEVICES" + echo $cmd eval $cmd status_check $? "${cmd}" "${status_log}" @@ -314,13 +316,17 @@ else # run export model save_infer_path="${save_log}" export_cmd="${python} ${run_export} ${export_weight}=${save_log}/${train_model_name} ${save_infer_key}=${save_infer_path}" + echo $export_cmd + sleep 2 eval $export_cmd status_check $? "${export_cmd}" "${status_log}" #run inference eval $env save_infer_path="${save_log}" - func_inference "${python}" "${inference_py}" "${save_infer_path}" "${LOG_PATH}" "${train_infer_img_dir}" "${flag_quant}" + echo "start infer" + #sleep 1000 + func_inference "${python}" "${inference_py}" "${infer_model}" "${LOG_PATH}" "${train_infer_img_dir}" "${flag_quant}" eval "unset CUDA_VISIBLE_DEVICES" fi done # done with: for trainer in ${trainer_list[*]}; do