From 8b9e678ddfa9b001a824850cecc6ca248b34c71a Mon Sep 17 00:00:00 2001 From: caoying03 Date: Wed, 26 Jul 2017 17:51:50 +0800 Subject: [PATCH] fix dropout and clipping setttings in layer helpers. --- python/paddle/trainer_config_helpers/attrs.py | 2 +- .../paddle/trainer_config_helpers/layers.py | 31 +++++++------------ 2 files changed, 12 insertions(+), 21 deletions(-) diff --git a/python/paddle/trainer_config_helpers/attrs.py b/python/paddle/trainer_config_helpers/attrs.py index 9b9f979bb..ecba87191 100644 --- a/python/paddle/trainer_config_helpers/attrs.py +++ b/python/paddle/trainer_config_helpers/attrs.py @@ -272,7 +272,7 @@ class ExtraLayerAttribute(object): for key in self.attr: if not hasattr(self, 'can_%s' % key) or \ not getattr(self, 'can_%s' % key): - raise NotImplementedError("Layer %s cannot support %s" % + raise NotImplementedError("Layer %s does not support %s" % (layer_name, key)) @staticmethod diff --git a/python/paddle/trainer_config_helpers/layers.py b/python/paddle/trainer_config_helpers/layers.py index 21eba7152..14f072fc5 100755 --- a/python/paddle/trainer_config_helpers/layers.py +++ b/python/paddle/trainer_config_helpers/layers.py @@ -865,7 +865,7 @@ def data_layer(name, size, height=None, width=None, layer_attr=None): @wrap_name_default("embedding") @wrap_param_attr_default() -@layer_support(ERROR_CLIPPING) +@layer_support(ERROR_CLIPPING, DROPOUT) def embedding_layer(input, size, name=None, param_attr=None, layer_attr=None): """ Define a embedding Layer. @@ -1320,7 +1320,7 @@ def pooling_layer(input, @wrap_act_default(param_names=['gate_act'], act=SigmoidActivation()) @wrap_act_default(param_names=["act", 'state_act'], act=TanhActivation()) @wrap_name_default("lstmemory") -@layer_support(DROPOUT) +@layer_support() def lstmemory(input, name=None, size=None, @@ -1429,7 +1429,7 @@ def lstmemory(input, @wrap_act_default(param_names=['gate_act'], act=SigmoidActivation()) @wrap_act_default(param_names=["act"], act=TanhActivation()) @wrap_name_default("gru") -@layer_support(DROPOUT) +@layer_support() def grumemory(input, size=None, name=None, @@ -1793,7 +1793,7 @@ def repeat_layer(input, @wrap_name_default("seqreshape") @wrap_act_default(act=IdentityActivation()) @wrap_bias_attr_default(has_bias=False) -@layer_support() +@layer_support(ERROR_CLIPPING, DROPOUT) def seq_reshape_layer(input, reshape_size, act=None, @@ -2703,7 +2703,7 @@ def img_cmrnorm_layer(input, default_factory=lambda _: ParamAttr(initial_mean=1.0, initial_std=0.)) @wrap_act_default(act=ReluActivation()) @wrap_name_default("batch_norm") -@layer_support(DROPOUT) +@layer_support(DROPOUT, ERROR_CLIPPING) def batch_norm_layer(input, act=None, name=None, @@ -2783,15 +2783,6 @@ def batch_norm_layer(input, :return: LayerOutput object. :rtype: LayerOutput """ - if not isinstance(act, ReluActivation): - logger.log(logging.WARN, - "%s is not recommend for batch normalization's activation, " - "maybe the relu is better" % act.name) - - if not isinstance(input.activation, LinearActivation): - logger.log(logging.WARN, - "The activation should be inside batch normalization, the " - "previous layer's activation may be Linear") if num_channels is None: if input.num_filters is not None: @@ -2861,7 +2852,7 @@ def sum_to_one_norm_layer(input, name=None, layer_attr=None): @wrap_name_default("addto") @wrap_act_default(act=LinearActivation()) @wrap_bias_attr_default(has_bias=False) -@layer_support(DROPOUT) +@layer_support(DROPOUT, ERROR_CLIPPING) def addto_layer(input, act=None, name=None, bias_attr=None, layer_attr=None): """ AddtoLayer. @@ -2940,7 +2931,7 @@ def addto_layer(input, act=None, name=None, bias_attr=None, layer_attr=None): @wrap_act_default(act=IdentityActivation()) @wrap_name_default("concat") -@layer_support() +@layer_support(DROPOUT, ERROR_CLIPPING) def concat_layer(input, act=None, name=None, layer_attr=None, bias_attr=None): """ Concat all input vector into one huge vector. @@ -3024,7 +3015,7 @@ def concat_layer(input, act=None, name=None, layer_attr=None, bias_attr=None): @wrap_name_default("seqconcat") @wrap_act_default(act=IdentityActivation()) @wrap_bias_attr_default(has_bias=False) -@layer_support() +@layer_support(DROPOUT, ERROR_CLIPPING) def seq_concat_layer(a, b, act=None, name=None, layer_attr=None, bias_attr=None): """ @@ -3177,7 +3168,7 @@ def memory(name, @wrap_act_default(param_names=['state_act'], act=TanhActivation()) @wrap_act_default(act=TanhActivation()) @wrap_name_default('lstm_step') -@layer_support(ERROR_CLIPPING, DROPOUT) +@layer_support() def lstm_step_layer(input, state, size=None, @@ -4480,7 +4471,7 @@ def tensor_layer(a, @wrap_param_attr_default() @wrap_bias_attr_default() @wrap_act_default() -@layer_support() +@layer_support(DROPOUT, ERROR_CLIPPING) def selective_fc_layer(input, size, select=None, @@ -5974,7 +5965,7 @@ def crop_layer(input, offset, axis=2, shape=None, name=None, layer_attr=None): """ The crop layer crops images by offset and shape. User can set crop shape by args 'shape' explicitly or by reference input layer. - + The example usage is: .. code-block:: python -- GitLab