Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
8a33b794
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
8a33b794
编写于
6月 07, 2021
作者:
X
xiaoting
提交者:
GitHub
6月 07, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
cherry-pick for blazeface modified (#3301)
上级
1adb26ef
变更
12
显示空白变更内容
内联
并排
Showing
12 changed file
with
427 addition
and
20 deletion
+427
-20
configs/face_detection/README.md
configs/face_detection/README.md
+19
-1
configs/face_detection/_base_/blazeface.yml
configs/face_detection/_base_/blazeface.yml
+10
-4
configs/face_detection/_base_/blazeface_fpn.yml
configs/face_detection/_base_/blazeface_fpn.yml
+45
-0
configs/face_detection/blazeface_fpn_ssh_1000e.yml
configs/face_detection/blazeface_fpn_ssh_1000e.yml
+9
-0
deploy/python/infer.py
deploy/python/infer.py
+1
-8
ppdet/engine/trainer.py
ppdet/engine/trainer.py
+0
-1
ppdet/modeling/architectures/__init__.py
ppdet/modeling/architectures/__init__.py
+1
-0
ppdet/modeling/architectures/blazeface.py
ppdet/modeling/architectures/blazeface.py
+91
-0
ppdet/modeling/backbones/blazenet.py
ppdet/modeling/backbones/blazenet.py
+17
-3
ppdet/modeling/heads/face_head.py
ppdet/modeling/heads/face_head.py
+3
-3
ppdet/modeling/necks/__init__.py
ppdet/modeling/necks/__init__.py
+1
-0
ppdet/modeling/necks/blazeface_fpn.py
ppdet/modeling/necks/blazeface_fpn.py
+230
-0
未找到文件。
configs/face_detection/README.md
浏览文件 @
8a33b794
...
...
@@ -11,7 +11,8 @@
| 网络结构 | 输入尺寸 | 图片个数/GPU | 学习率策略 | Easy/Medium/Hard Set | 预测时延(SD855)| 模型大小(MB) | 下载 | 配置文件 |
|:------------:|:--------:|:----:|:-------:|:-------:|:---------:|:----------:|:---------:|:--------:|
| BlazeFace | 640 | 8 | 1000e | 0.885 / 0.855 / 0.731 | - | 0.472 |
[
下载链接
](
https://paddledet.bj.bcebos.com/models/blazeface_1000e.pdparams
)
|
[
配置文件
](
https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/face_detection/blazeface_1000e.yml
)
|
| BlazeFace | 640 | 8 | 1000e | 0.885 / 0.855 / 0.731 | - | 0.472 |
[
下载链接
](
https://paddledet.bj.bcebos.com/models/blazeface_1000e.pdparams
)
|
[
配置文件
](
https://github.com/PaddlePaddle/PaddleDetection/tree/release/develop/configs/face_detection/blazeface_1000e.yml
)
|
| BlazeFace-FPN-SSH | 640 | 8 | 1000e | 0.907 / 0.883 / 0.793 | - | 0.479 |
[
下载链接
](
https://paddledet.bj.bcebos.com/models/blazeface_fpn_ssh_1000e.pdparams
)
|
[
配置文件
](
https://github.com/PaddlePaddle/PaddleDetection/tree/release/develop/configs/face_detection/blazeface_fpn_ssh_1000e.yml
)
|
**注意:**
-
我们使用多尺度评估策略得到
`Easy/Medium/Hard Set`
里的mAP。具体细节请参考
[
在WIDER-FACE数据集上评估
](
#在WIDER-FACE数据集上评估
)
。
...
...
@@ -52,6 +53,23 @@
cd dataset/wider_face && ./download_wider_face.sh
```
### 参数配置
基础模型的配置可以参考
`configs/face_detection/_base_/blazeface.yml`
;
改进模型增加FPN和SSH的neck结构,配置文件可以参考
`configs/face_detection/_base_/blazeface_fpn.yml`
,可以根据需求配置FPN和SSH,具体如下:
```
yaml
BlazeNet
:
blaze_filters
:
[[
24
,
24
],
[
24
,
24
],
[
24
,
48
,
2
],
[
48
,
48
],
[
48
,
48
]]
double_blaze_filters
:
[[
48
,
24
,
96
,
2
],
[
96
,
24
,
96
],
[
96
,
24
,
96
],
[
96
,
24
,
96
,
2
],
[
96
,
24
,
96
],
[
96
,
24
,
96
]]
act
:
hard_swish
#配置backbone中BlazeBlock的激活函数,基础模型为relu,增加FPN和SSH时需使用hard_swish
BlazeNeck
:
neck_type
:
fpn_ssh
#可选only_fpn、only_ssh和fpn_ssh
in_channel
:
[
96
,
96
]
```
### 训练与评估
训练流程与评估流程方法与其他算法一致,请参考
[
GETTING_STARTED_cn.md
](
../../docs/tutorials/GETTING_STARTED_cn.md
)
。
**注意:**
人脸检测模型目前不支持边训练边评估。
...
...
configs/face_detection/_base_/blazeface.yml
浏览文件 @
8a33b794
architecture
:
SSD
architecture
:
BlazeFace
SSD
:
BlazeFace
:
backbone
:
BlazeNet
ssd_head
:
FaceHead
neck
:
BlazeNeck
blaze_head
:
FaceHead
post_process
:
BBoxPostProcess
BlazeNet
:
blaze_filters
:
[[
24
,
24
],
[
24
,
24
],
[
24
,
48
,
2
],
[
48
,
48
],
[
48
,
48
]]
double_blaze_filters
:
[[
48
,
24
,
96
,
2
],
[
96
,
24
,
96
],
[
96
,
24
,
96
],
[
96
,
24
,
96
,
2
],
[
96
,
24
,
96
],
[
96
,
24
,
96
]]
act
:
relu
BlazeNeck
:
neck_type
:
None
in_channel
:
[
96
,
96
]
FaceHead
:
in_channels
:
[
96
,
96
]
in_channels
:
[
96
,
96
]
anchor_generator
:
AnchorGeneratorSSD
loss
:
SSDLoss
...
...
configs/face_detection/_base_/blazeface_fpn.yml
0 → 100644
浏览文件 @
8a33b794
architecture
:
BlazeFace
BlazeFace
:
backbone
:
BlazeNet
neck
:
BlazeNeck
blaze_head
:
FaceHead
post_process
:
BBoxPostProcess
BlazeNet
:
blaze_filters
:
[[
24
,
24
],
[
24
,
24
],
[
24
,
48
,
2
],
[
48
,
48
],
[
48
,
48
]]
double_blaze_filters
:
[[
48
,
24
,
96
,
2
],
[
96
,
24
,
96
],
[
96
,
24
,
96
],
[
96
,
24
,
96
,
2
],
[
96
,
24
,
96
],
[
96
,
24
,
96
]]
act
:
hard_swish
BlazeNeck
:
neck_type
:
fpn_ssh
in_channel
:
[
96
,
96
]
FaceHead
:
in_channels
:
[
48
,
48
]
anchor_generator
:
AnchorGeneratorSSD
loss
:
SSDLoss
SSDLoss
:
overlap_threshold
:
0.35
AnchorGeneratorSSD
:
steps
:
[
8.
,
16.
]
aspect_ratios
:
[[
1.
],
[
1.
]]
min_sizes
:
[[
16.
,
24.
],
[
32.
,
48.
,
64.
,
80.
,
96.
,
128.
]]
max_sizes
:
[[],
[]]
offset
:
0.5
flip
:
False
min_max_aspect_ratios_order
:
false
BBoxPostProcess
:
decode
:
name
:
SSDBox
nms
:
name
:
MultiClassNMS
keep_top_k
:
750
score_threshold
:
0.01
nms_threshold
:
0.3
nms_top_k
:
5000
nms_eta
:
1.0
configs/face_detection/blazeface_fpn_ssh_1000e.yml
0 → 100644
浏览文件 @
8a33b794
_BASE_
:
[
'
../datasets/wider_face.yml'
,
'
../runtime.yml'
,
'
_base_/optimizer_1000e.yml'
,
'
_base_/blazeface_fpn.yml'
,
'
_base_/face_reader.yml'
,
]
weights
:
output/blazeface_fpn_ssh_1000e/model_final
multi_scale_eval
:
True
deploy/python/infer.py
浏览文件 @
8a33b794
...
...
@@ -36,6 +36,7 @@ SUPPORT_MODELS = {
'YOLO'
,
'RCNN'
,
'SSD'
,
'Face'
,
'FCOS'
,
'SOLOv2'
,
'TTFNet'
,
...
...
@@ -111,14 +112,6 @@ class Detector(object):
threshold
=
0.5
):
# postprocess output of predictor
results
=
{}
if
self
.
pred_config
.
arch
in
[
'Face'
]:
h
,
w
=
inputs
[
'im_shape'
]
scale_y
,
scale_x
=
inputs
[
'scale_factor'
]
w
,
h
=
float
(
h
)
/
scale_y
,
float
(
w
)
/
scale_x
np_boxes
[:,
2
]
*=
h
np_boxes
[:,
3
]
*=
w
np_boxes
[:,
4
]
*=
h
np_boxes
[:,
5
]
*=
w
results
[
'boxes'
]
=
np_boxes
results
[
'boxes_num'
]
=
np_boxes_num
if
np_masks
is
not
None
:
...
...
ppdet/engine/trainer.py
浏览文件 @
8a33b794
...
...
@@ -433,7 +433,6 @@ class Trainer(object):
if
'segm'
in
batch_res
else
None
keypoint_res
=
batch_res
[
'keypoint'
][
start
:
end
]
\
if
'keypoint'
in
batch_res
else
None
image
=
visualize_results
(
image
,
bbox_res
,
mask_res
,
segm_res
,
keypoint_res
,
int
(
im_id
),
catid2name
,
draw_threshold
)
...
...
ppdet/modeling/architectures/__init__.py
浏览文件 @
8a33b794
...
...
@@ -38,3 +38,4 @@ from .jde import *
from
.deepsort
import
*
from
.fairmot
import
*
from
.centernet
import
*
from
.blazeface
import
*
ppdet/modeling/architectures/blazeface.py
0 → 100644
浏览文件 @
8a33b794
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
from
ppdet.core.workspace
import
register
,
create
from
.meta_arch
import
BaseArch
__all__
=
[
'BlazeFace'
]
@
register
class
BlazeFace
(
BaseArch
):
"""
BlazeFace: Sub-millisecond Neural Face Detection on Mobile GPUs,
see https://arxiv.org/abs/1907.05047
Args:
backbone (nn.Layer): backbone instance
neck (nn.Layer): neck instance
blaze_head (nn.Layer): `blazeHead` instance
post_process (object): `BBoxPostProcess` instance
"""
__category__
=
'architecture'
__inject__
=
[
'post_process'
]
def
__init__
(
self
,
backbone
,
blaze_head
,
neck
,
post_process
):
super
(
BlazeFace
,
self
).
__init__
()
self
.
backbone
=
backbone
self
.
neck
=
neck
self
.
blaze_head
=
blaze_head
self
.
post_process
=
post_process
@
classmethod
def
from_config
(
cls
,
cfg
,
*
args
,
**
kwargs
):
# backbone
backbone
=
create
(
cfg
[
'backbone'
])
# fpn
kwargs
=
{
'input_shape'
:
backbone
.
out_shape
}
neck
=
create
(
cfg
[
'neck'
],
**
kwargs
)
# head
kwargs
=
{
'input_shape'
:
neck
.
out_shape
}
blaze_head
=
create
(
cfg
[
'blaze_head'
],
**
kwargs
)
return
{
'backbone'
:
backbone
,
'neck'
:
neck
,
'blaze_head'
:
blaze_head
,
}
def
_forward
(
self
):
# Backbone
body_feats
=
self
.
backbone
(
self
.
inputs
)
# neck
neck_feats
=
self
.
neck
(
body_feats
)
# blaze Head
if
self
.
training
:
return
self
.
blaze_head
(
neck_feats
,
self
.
inputs
[
'image'
],
self
.
inputs
[
'gt_bbox'
],
self
.
inputs
[
'gt_class'
])
else
:
preds
,
anchors
=
self
.
blaze_head
(
neck_feats
,
self
.
inputs
[
'image'
])
bbox
,
bbox_num
=
self
.
post_process
(
preds
,
anchors
,
self
.
inputs
[
'im_shape'
],
self
.
inputs
[
'scale_factor'
])
return
bbox
,
bbox_num
def
get_loss
(
self
,
):
return
{
"loss"
:
self
.
_forward
()}
def
get_pred
(
self
):
bbox_pred
,
bbox_num
=
self
.
_forward
()
output
=
{
"bbox"
:
bbox_pred
,
"bbox_num"
:
bbox_num
,
}
return
output
ppdet/modeling/backbones/blazenet.py
浏览文件 @
8a33b794
...
...
@@ -29,6 +29,10 @@ from ..shape_spec import ShapeSpec
__all__
=
[
'BlazeNet'
]
def
hard_swish
(
x
):
return
x
*
F
.
relu6
(
x
+
3
)
/
6.
class
ConvBNLayer
(
nn
.
Layer
):
def
__init__
(
self
,
in_channels
,
...
...
@@ -80,6 +84,10 @@ class ConvBNLayer(nn.Layer):
x
=
F
.
relu
(
x
)
elif
self
.
act
==
"relu6"
:
x
=
F
.
relu6
(
x
)
elif
self
.
act
==
'leaky'
:
x
=
F
.
leaky_relu
(
x
)
elif
self
.
act
==
'hard_swish'
:
x
=
hard_swish
(
x
)
return
x
...
...
@@ -91,6 +99,7 @@ class BlazeBlock(nn.Layer):
double_channels
=
None
,
stride
=
1
,
use_5x5kernel
=
True
,
act
=
'relu'
,
name
=
None
):
super
(
BlazeBlock
,
self
).
__init__
()
assert
stride
in
[
1
,
2
]
...
...
@@ -132,14 +141,14 @@ class BlazeBlock(nn.Layer):
padding
=
1
,
num_groups
=
out_channels1
,
name
=
name
+
"1_dw_2"
)))
act
=
'relu'
if
self
.
use_double_block
else
None
self
.
act
=
act
if
self
.
use_double_block
else
None
self
.
conv_pw
=
ConvBNLayer
(
in_channels
=
out_channels1
,
out_channels
=
out_channels2
,
kernel_size
=
1
,
stride
=
1
,
padding
=
0
,
act
=
act
,
act
=
self
.
act
,
name
=
name
+
"1_sep"
)
if
self
.
use_double_block
:
self
.
conv_dw2
=
[]
...
...
@@ -237,7 +246,8 @@ class BlazeNet(nn.Layer):
blaze_filters
=
[[
24
,
24
],
[
24
,
24
],
[
24
,
48
,
2
],
[
48
,
48
],
[
48
,
48
]],
double_blaze_filters
=
[[
48
,
24
,
96
,
2
],
[
96
,
24
,
96
],
[
96
,
24
,
96
],
[
96
,
24
,
96
,
2
],
[
96
,
24
,
96
],
[
96
,
24
,
96
]],
use_5x5kernel
=
True
):
use_5x5kernel
=
True
,
act
=
None
):
super
(
BlazeNet
,
self
).
__init__
()
conv1_num_filters
=
blaze_filters
[
0
][
0
]
self
.
conv1
=
ConvBNLayer
(
...
...
@@ -262,6 +272,7 @@ class BlazeNet(nn.Layer):
v
[
0
],
v
[
1
],
use_5x5kernel
=
use_5x5kernel
,
act
=
act
,
name
=
'blaze_{}'
.
format
(
k
))))
elif
len
(
v
)
==
3
:
self
.
blaze_block
.
append
(
...
...
@@ -273,6 +284,7 @@ class BlazeNet(nn.Layer):
v
[
1
],
stride
=
v
[
2
],
use_5x5kernel
=
use_5x5kernel
,
act
=
act
,
name
=
'blaze_{}'
.
format
(
k
))))
in_channels
=
v
[
1
]
...
...
@@ -289,6 +301,7 @@ class BlazeNet(nn.Layer):
v
[
1
],
double_channels
=
v
[
2
],
use_5x5kernel
=
use_5x5kernel
,
act
=
act
,
name
=
'double_blaze_{}'
.
format
(
k
))))
elif
len
(
v
)
==
4
:
self
.
blaze_block
.
append
(
...
...
@@ -301,6 +314,7 @@ class BlazeNet(nn.Layer):
double_channels
=
v
[
2
],
stride
=
v
[
3
],
use_5x5kernel
=
use_5x5kernel
,
act
=
act
,
name
=
'double_blaze_{}'
.
format
(
k
))))
in_channels
=
v
[
2
]
self
.
_out_channels
.
append
(
in_channels
)
...
...
ppdet/modeling/heads/face_head.py
浏览文件 @
8a33b794
...
...
@@ -41,7 +41,7 @@ class FaceHead(nn.Layer):
def
__init__
(
self
,
num_classes
=
80
,
in_channels
=
(
96
,
96
)
,
in_channels
=
[
96
,
96
]
,
anchor_generator
=
AnchorGeneratorSSD
().
__dict__
,
kernel_size
=
3
,
padding
=
1
,
...
...
@@ -65,7 +65,7 @@ class FaceHead(nn.Layer):
box_conv
=
self
.
add_sublayer
(
box_conv_name
,
nn
.
Conv2D
(
in_channels
=
in_channels
[
i
],
in_channels
=
self
.
in_channels
[
i
],
out_channels
=
num_prior
*
4
,
kernel_size
=
kernel_size
,
padding
=
padding
))
...
...
@@ -75,7 +75,7 @@ class FaceHead(nn.Layer):
score_conv
=
self
.
add_sublayer
(
score_conv_name
,
nn
.
Conv2D
(
in_channels
=
in_channels
[
i
],
in_channels
=
self
.
in_channels
[
i
],
out_channels
=
num_prior
*
self
.
num_classes
,
kernel_size
=
kernel_size
,
padding
=
padding
))
...
...
ppdet/modeling/necks/__init__.py
浏览文件 @
8a33b794
...
...
@@ -23,3 +23,4 @@ from .yolo_fpn import *
from
.hrfpn
import
*
from
.ttf_fpn
import
*
from
.centernet_fpn
import
*
from
.blazeface_fpn
import
*
ppdet/modeling/necks/blazeface_fpn.py
0 → 100644
浏览文件 @
8a33b794
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
numpy
as
np
import
math
import
paddle
import
paddle.nn.functional
as
F
from
paddle
import
ParamAttr
import
paddle.nn
as
nn
from
paddle.nn.initializer
import
KaimingNormal
from
ppdet.core.workspace
import
register
,
serializable
from
ppdet.modeling.layers
import
ConvNormLayer
from
..shape_spec
import
ShapeSpec
__all__
=
[
'BlazeNeck'
]
def
hard_swish
(
x
):
return
x
*
F
.
relu6
(
x
+
3
)
/
6.
class
ConvBNLayer
(
nn
.
Layer
):
def
__init__
(
self
,
in_channels
,
out_channels
,
kernel_size
,
stride
,
padding
,
num_groups
=
1
,
act
=
'relu'
,
conv_lr
=
0.1
,
conv_decay
=
0.
,
norm_decay
=
0.
,
norm_type
=
'bn'
,
name
=
None
):
super
(
ConvBNLayer
,
self
).
__init__
()
self
.
act
=
act
self
.
_conv
=
nn
.
Conv2D
(
in_channels
,
out_channels
,
kernel_size
=
kernel_size
,
stride
=
stride
,
padding
=
padding
,
groups
=
num_groups
,
weight_attr
=
ParamAttr
(
learning_rate
=
conv_lr
,
initializer
=
KaimingNormal
(),
name
=
name
+
"_weights"
),
bias_attr
=
False
)
param_attr
=
ParamAttr
(
name
=
name
+
"_bn_scale"
)
bias_attr
=
ParamAttr
(
name
=
name
+
"_bn_offset"
)
if
norm_type
==
'sync_bn'
:
self
.
_batch_norm
=
nn
.
SyncBatchNorm
(
out_channels
,
weight_attr
=
param_attr
,
bias_attr
=
bias_attr
)
else
:
self
.
_batch_norm
=
nn
.
BatchNorm
(
out_channels
,
act
=
None
,
param_attr
=
param_attr
,
bias_attr
=
bias_attr
,
use_global_stats
=
False
,
moving_mean_name
=
name
+
'_bn_mean'
,
moving_variance_name
=
name
+
'_bn_variance'
)
def
forward
(
self
,
x
):
x
=
self
.
_conv
(
x
)
x
=
self
.
_batch_norm
(
x
)
if
self
.
act
==
"relu"
:
x
=
F
.
relu
(
x
)
elif
self
.
act
==
"relu6"
:
x
=
F
.
relu6
(
x
)
elif
self
.
act
==
'leaky'
:
x
=
F
.
leaky_relu
(
x
)
elif
self
.
act
==
'hard_swish'
:
x
=
hard_swish
(
x
)
return
x
class
FPN
(
nn
.
Layer
):
def
__init__
(
self
,
in_channels
,
out_channels
,
name
=
None
):
super
(
FPN
,
self
).
__init__
()
self
.
conv1_fpn
=
ConvBNLayer
(
in_channels
,
out_channels
//
2
,
kernel_size
=
1
,
padding
=
0
,
stride
=
1
,
act
=
'leaky'
,
name
=
name
+
'_output1'
)
self
.
conv2_fpn
=
ConvBNLayer
(
in_channels
,
out_channels
//
2
,
kernel_size
=
1
,
padding
=
0
,
stride
=
1
,
act
=
'leaky'
,
name
=
name
+
'_output2'
)
self
.
conv3_fpn
=
ConvBNLayer
(
out_channels
//
2
,
out_channels
//
2
,
kernel_size
=
3
,
padding
=
1
,
stride
=
1
,
act
=
'leaky'
,
name
=
name
+
'_merge'
)
def
forward
(
self
,
input
):
output1
=
self
.
conv1_fpn
(
input
[
0
])
output2
=
self
.
conv2_fpn
(
input
[
1
])
up2
=
F
.
upsample
(
output2
,
size
=
paddle
.
shape
(
output1
)[
-
2
:],
mode
=
'nearest'
)
output1
=
paddle
.
add
(
output1
,
up2
)
output1
=
self
.
conv3_fpn
(
output1
)
return
output1
,
output2
class
SSH
(
nn
.
Layer
):
def
__init__
(
self
,
in_channels
,
out_channels
,
name
=
None
):
super
(
SSH
,
self
).
__init__
()
assert
out_channels
%
4
==
0
self
.
conv0_ssh
=
ConvBNLayer
(
in_channels
,
out_channels
//
2
,
kernel_size
=
3
,
padding
=
1
,
stride
=
1
,
act
=
None
,
name
=
name
+
'ssh_conv3'
)
self
.
conv1_ssh
=
ConvBNLayer
(
out_channels
//
2
,
out_channels
//
4
,
kernel_size
=
3
,
padding
=
1
,
stride
=
1
,
act
=
'leaky'
,
name
=
name
+
'ssh_conv5_1'
)
self
.
conv2_ssh
=
ConvBNLayer
(
out_channels
//
4
,
out_channels
//
4
,
kernel_size
=
3
,
padding
=
1
,
stride
=
1
,
act
=
None
,
name
=
name
+
'ssh_conv5_2'
)
self
.
conv3_ssh
=
ConvBNLayer
(
out_channels
//
4
,
out_channels
//
4
,
kernel_size
=
3
,
padding
=
1
,
stride
=
1
,
act
=
'leaky'
,
name
=
name
+
'ssh_conv7_1'
)
self
.
conv4_ssh
=
ConvBNLayer
(
out_channels
//
4
,
out_channels
//
4
,
kernel_size
=
3
,
padding
=
1
,
stride
=
1
,
act
=
None
,
name
=
name
+
'ssh_conv7_2'
)
def
forward
(
self
,
x
):
conv0
=
self
.
conv0_ssh
(
x
)
conv1
=
self
.
conv1_ssh
(
conv0
)
conv2
=
self
.
conv2_ssh
(
conv1
)
conv3
=
self
.
conv3_ssh
(
conv2
)
conv4
=
self
.
conv4_ssh
(
conv3
)
concat
=
paddle
.
concat
([
conv0
,
conv2
,
conv4
],
axis
=
1
)
return
F
.
relu
(
concat
)
@
register
@
serializable
class
BlazeNeck
(
nn
.
Layer
):
def
__init__
(
self
,
in_channel
,
neck_type
=
"None"
,
data_format
=
'NCHW'
):
super
(
BlazeNeck
,
self
).
__init__
()
self
.
neck_type
=
neck_type
self
.
reture_input
=
False
self
.
_out_channels
=
in_channel
if
self
.
neck_type
==
'None'
:
self
.
reture_input
=
True
if
"fpn"
in
self
.
neck_type
:
self
.
fpn
=
FPN
(
self
.
_out_channels
[
0
],
self
.
_out_channels
[
1
],
name
=
'fpn'
)
self
.
_out_channels
=
[
self
.
_out_channels
[
0
]
//
2
,
self
.
_out_channels
[
1
]
//
2
]
if
"ssh"
in
self
.
neck_type
:
self
.
ssh1
=
SSH
(
self
.
_out_channels
[
0
],
self
.
_out_channels
[
0
],
name
=
'ssh1'
)
self
.
ssh2
=
SSH
(
self
.
_out_channels
[
1
],
self
.
_out_channels
[
1
],
name
=
'ssh2'
)
self
.
_out_channels
=
[
self
.
_out_channels
[
0
],
self
.
_out_channels
[
1
]]
def
forward
(
self
,
inputs
):
if
self
.
reture_input
:
return
inputs
output1
,
output2
=
None
,
None
if
"fpn"
in
self
.
neck_type
:
backout_4
,
backout_1
=
inputs
output1
,
output2
=
self
.
fpn
([
backout_4
,
backout_1
])
if
self
.
neck_type
==
"only_fpn"
:
return
[
output1
,
output2
]
if
self
.
neck_type
==
"only_ssh"
:
output1
,
output2
=
inputs
feature1
=
self
.
ssh1
(
output1
)
feature2
=
self
.
ssh2
(
output2
)
return
[
feature1
,
feature2
]
@
property
def
out_shape
(
self
):
return
[
ShapeSpec
(
channels
=
c
)
for
c
in
[
self
.
_out_channels
[
0
],
self
.
_out_channels
[
1
]]
]
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录