提交 88db5c1b 编写于 作者: G Guanghua Yu 提交者: wangguanzhong

[PaddleDetection] update GETTING_STARTED.md (#2982)

* update GETTING_STARTED.md
上级 16a066c2
......@@ -6,45 +6,122 @@ instructions](INSTALL.md).
## Training
#### Single-GPU Training
```bash
export CUDA_VISIBLE_DEVICES=0
export PYTHONPATH=$PYTHONPATH:.
python tools/train.py -c configs/faster_rcnn_r50_1x.yml
```
#### Multi-GPU Training
```bash
export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
export PYTHONPATH=$PYTHONPATH:.
python tools/train.py -c configs/faster_rcnn_r50_1x.yml
```
#### CPU Training
```bash
export CPU_NUM=8
export PYTHONPATH=$PYTHONPATH:.
python tools/train.py -c configs/faster_rcnn_r50_1x.yml
```
- Datasets is stored in `dataset/coco` by default (configurable).
- Datasets will be downloaded automatically and cached in `~/.cache/paddle/dataset` if not be found locally.
##### Optional arguments
- `-r` or `--resume_checkpoint`: Checkpoint path for resuming training. Such as: `-r output/faster_rcnn_r50_1x/10000`
- `--eval`: Whether to perform evaluation in training, default is `False`
- `-p` or `--output_eval`: If perform evaluation in training, this edits evaluation directory, default is current directory.
- `-d` or `--dataset_dir`: Dataset path, same as `dataset_dir` of configs. Such as: `-d dataset/coco`
- `-o`: Set configuration options in config file. Such as: `-o weights=output/faster_rcnn_r50_1x/model_final`
##### Examples
- Perform evaluation in training
```bash
export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
export PYTHONPATH=$PYTHONPATH:.
python -u tools/train.py -c configs/faster_rcnn_r50_1x.yml --eval
```
Alternating between training epoch and evaluation run is possible, simply pass
in `--eval` to do so and evaluate at each snapshot_iter. It can be modified at `snapshot_iter` of the configuration file. If evaluation dataset is large and
causes time-consuming in training, we suggest decreasing evaluation times or evaluating after training.
- configuration options and assign Dataset path
```bash
export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
export PYTHONPATH=$PYTHONPATH:.
python -u tools/train.py -c configs/faster_rcnn_r50_1x.yml \
-o weights=output/faster_rcnn_r50_1x/model_final \
-d dataset/coco
```
##### NOTES
- `CUDA_VISIBLE_DEVICES` can specify different gpu numbers. Such as: `export CUDA_VISIBLE_DEVICES=0,1,2,3`. GPU calculation rules can refer [FAQ](#faq)
- Dataset is stored in `dataset/coco` by default (configurable).
- Dataset will be downloaded automatically and cached in `~/.cache/paddle/dataset` if not be found locally.
- Pretrained model is downloaded automatically and cached in `~/.cache/paddle/weights`.
- Model checkpoints is saved in `output` by default (configurable).
- Model checkpoints are saved in `output` by default (configurable).
- To check out hyper parameters used, please refer to the config file.
- RCNN models training on CPU is not supported on PaddlePaddle<=1.5.1 and will be fixed on later version.
Alternating between training epoch and evaluation run is possible, simply pass
in `--eval` to do so and evaluate at each snapshot_iter. If evaluation dataset is large and
causes time-consuming in training, we suggest decreasing evaluation times or evaluating after training.
## Evaluation
```bash
export CUDA_VISIBLE_DEVICES=0
export PYTHONPATH=$PYTHONPATH:.
# or run on CPU with:
# export CPU_NUM=1
python tools/eval.py -c configs/faster_rcnn_r50_1x.yml
```
#### Optional arguments
- `-d` or `--dataset_dir`: Dataset path, same as dataset_dir of configs. Such as: `-d dataset/coco`
- `-p` or `--output_eval`: Evaluation directory, default is current directory.
- `-o`: Set configuration options in config file. Such as: `-o weights=output/faster_rcnn_r50_1x/model_final`
- `--json_eval`: Whether to eval with already existed bbox.json or mask.json. Default is `False`. Json file directory is assigned by `-f` argument.
#### Examples
- configuration options && assign Dataset path
```bash
export CUDA_VISIBLE_DEVICES=0
export PYTHONPATH=$PYTHONPATH:.
# or run on CPU with:
# export CPU_NUM=1
python -u tools/eval.py -c configs/faster_rcnn_r50_1x.yml \
-o weights=output/faster_rcnn_r50_1x/model_final \
-d dataset/coco
```
- Evaluation with json
```bash
export CUDA_VISIBLE_DEVICES=0
export PYTHONPATH=$PYTHONPATH:.
# or run on CPU with:
# export CPU_NUM=1
python tools/eval.py -c configs/faster_rcnn_r50_1x.yml \
--json_eval \
-f evaluation/
```
The json file must be named bbox.json or mask.json, placed in the `evaluation/` directory. Or without the `-f` parameter, default is the current directory.
#### NOTES
- Checkpoint is loaded from `output` by default (configurable)
- Multi-GPU evaluation for R-CNN and SSD models is not supported at the
moment, but it is a planned feature
......@@ -57,30 +134,54 @@ moment, but it is a planned feature
```bash
export CUDA_VISIBLE_DEVICES=0
export PYTHONPATH=$PYTHONPATH:.
# or run on CPU with:
# export CPU_NUM=1
python tools/infer.py -c configs/faster_rcnn_r50_1x.yml --infer_img=demo/000000570688.jpg
```
- Batch inference:
- Multi-image inference:
```bash
export CUDA_VISIBLE_DEVICES=0
export PYTHONPATH=$PYTHONPATH:.
# or run on CPU with:
# export CPU_NUM=1
python tools/infer.py -c configs/faster_rcnn_r50_1x.yml --infer_dir=demo
```
#### Optional arguments
- `--output_dir`: Directory for storing the output visualization files.
- `--draw_threshold`: Threshold to reserve the result for visualization. Default is 0.5.
- `--save_inference_model`: Save inference model in output_dir if True.
#### Examples
- Output specified directory && Set up threshold
```bash
export CUDA_VISIBLE_DEVICES=0
export PYTHONPATH=$PYTHONPATH:.
# or run on CPU with:
# export CPU_NUM=1
python tools/infer.py -c configs/faster_rcnn_r50_1x.yml \
--infer_img=demo/000000570688.jpg \
--output_dir=infer_output/ \
--draw_threshold=0.5
```
The visualization files are saved in `output` by default, to specify a different
path, simply add a `--output_dir=` flag.
`--draw_threshold` is an optional argument. Default is 0.5. Different thresholds will produce different results depending on the calculation of [NMS](https://ieeexplore.ieee.org/document/1699659)
- Save inference model
```bash
export CUDA_VISIBLE_DEVICES=0
export PYTHONPATH=$PYTHONPATH:.
# or run on CPU with:
# export CPU_NUM=1
python tools/infer.py -c configs/faster_rcnn_r50_1x.yml --infer_img=demo/000000570688.jpg \
python tools/infer.py -c configs/faster_rcnn_r50_1x.yml \
--infer_img=demo/000000570688.jpg \
--save_inference_model
```
......@@ -92,7 +193,14 @@ Save inference model by set `--save_inference_model`, which can be loaded by Pad
**Q:** Why do I get `NaN` loss values during single GPU training? </br>
**A:** The default learning rate is tuned to multi-GPU training (8x GPUs), it must
be adapted for single GPU training accordingly (e.g., divide by 8).
The calculation rules are as follows,they are equivalent: </br>
| GPU number | Learning rate | Max_iters | Milestones |
| :---------: | :------------: | :-------: | :--------------: |
| 2 | 0.0025 | 720000 | [480000, 640000] |
| 4 | 0.005 | 360000 | [240000, 320000] |
| 8 | 0.01 | 180000 | [120000, 160000] |
**Q:** How to reduce GPU memory usage? </br>
**A:** Setting environment variable FLAGS_conv_workspace_size_limit to a smaller
......
......@@ -11,6 +11,7 @@
```bash
export CUDA_VISIBLE_DEVICES=0
export PYTHONPATH=$PYTHONPATH:.
python tools/train.py -c configs/faster_rcnn_r50_1x.yml
```
......@@ -19,11 +20,49 @@ python tools/train.py -c configs/faster_rcnn_r50_1x.yml
```bash
export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
# or run on CPU with:
# export CPU_NUM=8
export PYTHONPATH=$PYTHONPATH:.
python tools/train.py -c configs/faster_rcnn_r50_1x.yml
```
#### CPU训练
```bash
export CPU_NUM=8
export PYTHONPATH=$PYTHONPATH:.
python tools/train.py -c configs/faster_rcnn_r50_1x.yml
```
##### 可选参数
- `-r` or `--resume_checkpoint`: 从某一检查点恢复训练,例如: `-r output/faster_rcnn_r50_1x/10000`
- `--eval`: 是否边训练边测试,默认是 `False`
- `-p` or `--output_eval`: 如果边训练边测试, 这个参数可以编辑评测保存json路径, 默认是当前目录。
- `-d` or `--dataset_dir`: 数据集路径, 同配置文件里的`dataset_dir`. 例如: `-d dataset/coco`
- `-o`: 设置配置文件里的参数内容。 例如: `-o weights=output/faster_rcnn_r50_1x/model_final`
##### 例子
- 边训练边测试
```bash
export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
export PYTHONPATH=$PYTHONPATH:.
python -u tools/train.py -c configs/faster_rcnn_r50_1x.yml --eval
```
可通过设置`--eval`在训练epoch中交替执行评估, 评估在每个snapshot_iter时开始。可在配置文件的`snapshot_iter`处修改。
如果验证集很大,测试将会比较耗时,影响训练速度,建议减少评估次数,或训练完再进行评估。
- 设置配置文件参数 && 指定数据集路径
```bash
export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
export PYTHONPATH=$PYTHONPATH:.
python -u tools/train.py -c configs/faster_rcnn_r50_1x.yml \
-o weights=output/faster_rcnn_r50_1x/model_final \
-d dataset/coco
```
##### 提示
- `CUDA_VISIBLE_DEVICES` 参数可以指定不同的GPU。例如: `export CUDA_VISIBLE_DEVICES=0,1,2,3`. GPU计算规则可以参考 [FAQ](#faq)
- 数据集默认存储在`dataset/coco`中(可配置)。
- 若本地未找到数据集,将自动下载数据集并保存在`~/.cache/paddle/dataset`中。
- 预训练模型自动下载并保存在`〜/.cache/paddle/weights`中。
......@@ -32,9 +71,6 @@ python tools/train.py -c configs/faster_rcnn_r50_1x.yml
- RCNN系列模型CPU训练在PaddlePaddle 1.5.1及以下版本暂不支持,将在下个版本修复。
可通过设置`--eval`在训练epoch中交替执行评估, 评估在每个snapshot_iter时开始。
如果验证集很大,测试将会比较耗时,影响训练速度,建议减少评估次数,或训练完再进行评估。
## 评估
......@@ -45,6 +81,41 @@ export CUDA_VISIBLE_DEVICES=0
python tools/eval.py -c configs/faster_rcnn_r50_1x.yml
```
#### 可选参数
- `-d` or `--dataset_dir`: 数据集路径, 同配置文件里的`dataset_dir`。例如: `-d dataset/coco`
- `-p` or `--output_eval`: 这个参数可以编辑评测保存json路径, 默认是当前目录。
- `-o`: 设置配置文件里的参数内容。 例如: `-o weights=output/faster_rcnn_r50_1x/model_final`
- `--json_eval`: 是否通过已存在的bbox.json或者mask.json进行评估。默认是`False`。json文件路径通过`-f`指令来设置。
#### 例子
- 设置配置文件参数 && 指定数据集路径
```bash
export CUDA_VISIBLE_DEVICES=0
export PYTHONPATH=$PYTHONPATH:.
# or run on CPU with:
# export CPU_NUM=1
python -u tools/eval.py -c configs/faster_rcnn_r50_1x.yml \
-o weights=output/faster_rcnn_r50_1x/model_final \
-d dataset/coco
```
- 通过json文件评估
```bash
export CUDA_VISIBLE_DEVICES=0
export PYTHONPATH=$PYTHONPATH:.
# or run on CPU with:
# export CPU_NUM=1
python tools/eval.py -c configs/faster_rcnn_r50_1x.yml \
--json_eval \
-f evaluation/
```
json文件必须命名为bbox.json或者mask.json,放在`evaluation/`目录下,或者不加`-f`参数,默认为当前目录。
#### 提示
- 默认从`output`加载checkpoint(可配置)
- R-CNN和SSD模型目前暂不支持多GPU评估,将在后续版本支持
......@@ -70,7 +141,29 @@ export CUDA_VISIBLE_DEVICES=0
python tools/infer.py -c configs/faster_rcnn_r50_1x.yml --infer_dir=demo
```
#### 可选参数
- `--output_dir`: 输出推断后可视化文件。
- `--draw_threshold`: 设置推断的阈值。默认是0.5.
- `--save_inference_model`: Save inference model in output_dir if True.
#### 例子
- 设置输出路径 && 设置推断阈值
```bash
export CUDA_VISIBLE_DEVICES=0
export PYTHONPATH=$PYTHONPATH:.
# or run on CPU with:
# export CPU_NUM=1
python tools/infer.py -c configs/faster_rcnn_r50_1x.yml \
--infer_img=demo/000000570688.jpg \
--output_dir=infer_output/ \
--draw_threshold=0.5
```
可视化文件默认保存在`output`中,可通过`--output_dir=`指定不同的输出路径。
`--draw_threshold` 是个可选参数. 根据 [NMS](https://ieeexplore.ieee.org/document/1699659) 的计算,不同阈值会产生不同的结果。
- 保存推断模型
......@@ -89,6 +182,14 @@ python tools/infer.py -c configs/faster_rcnn_r50_1x.yml --infer_img=demo/0000005
**Q:** 为什么我使用单GPU训练loss会出`NaN`? </br>
**A:** 默认学习率是适配多GPU训练(8x GPU),若使用单GPU训练,须对应调整学习率(例如,除以8)。
计算规则表如下所示,它们是等价的: </br>
| GPU数 | 学习率 | 最大轮数 | 变化节点 |
| :---------: | :------------: | :-------: | :--------------: |
| 2 | 0.0025 | 720000 | [480000, 640000] |
| 4 | 0.005 | 360000 | [240000, 320000] |
| 8 | 0.01 | 180000 | [120000, 160000] |
**Q:** 如何减少GPU显存使用率? </br>
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册