Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
85218f9a
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
85218f9a
编写于
10月 21, 2021
作者:
Z
zhiboniu
提交者:
GitHub
10月 21, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
lite deploy: fix pose visualize (#4349)
上级
4f0aa7ef
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
36 addition
and
33 deletion
+36
-33
deploy/lite/include/keypoint_detector.h
deploy/lite/include/keypoint_detector.h
+4
-2
deploy/lite/src/keypoint_detector.cc
deploy/lite/src/keypoint_detector.cc
+31
-28
deploy/lite/src/main.cc
deploy/lite/src/main.cc
+1
-3
未找到文件。
deploy/lite/include/keypoint_detector.h
浏览文件 @
85218f9a
...
...
@@ -43,7 +43,8 @@ struct KeyPointResult {
// Visualiztion KeyPoint Result
cv
::
Mat
VisualizeKptsResult
(
const
cv
::
Mat
&
img
,
const
std
::
vector
<
KeyPointResult
>&
results
,
const
std
::
vector
<
int
>&
colormap
);
const
std
::
vector
<
int
>&
colormap
,
float
threshold
=
0.2
);
class
KeyPointDetector
{
public:
...
...
@@ -67,7 +68,6 @@ class KeyPointDetector {
void
Predict
(
const
std
::
vector
<
cv
::
Mat
>
imgs
,
std
::
vector
<
std
::
vector
<
float
>>&
center
,
std
::
vector
<
std
::
vector
<
float
>>&
scale
,
const
double
threshold
=
0.5
,
const
int
warmup
=
0
,
const
int
repeats
=
1
,
std
::
vector
<
KeyPointResult
>*
result
=
nullptr
,
...
...
@@ -80,6 +80,8 @@ class KeyPointDetector {
bool
use_dark
(){
return
this
->
use_dark_
;}
inline
float
get_threshold
()
{
return
threshold_
;};
private:
// Preprocess image and copy data to input buffer
void
Preprocess
(
const
cv
::
Mat
&
image_mat
);
...
...
deploy/lite/src/keypoint_detector.cc
浏览文件 @
85218f9a
...
...
@@ -32,7 +32,8 @@ void KeyPointDetector::LoadModel(std::string model_file, int num_theads) {
// Visualiztion MaskDetector results
cv
::
Mat
VisualizeKptsResult
(
const
cv
::
Mat
&
img
,
const
std
::
vector
<
KeyPointResult
>&
results
,
const
std
::
vector
<
int
>&
colormap
)
{
const
std
::
vector
<
int
>&
colormap
,
float
threshold
)
{
const
int
edge
[][
2
]
=
{{
0
,
1
},
{
0
,
2
},
{
1
,
3
},
...
...
@@ -53,7 +54,7 @@ cv::Mat VisualizeKptsResult(const cv::Mat& img,
cv
::
Mat
vis_img
=
img
.
clone
();
for
(
int
batchid
=
0
;
batchid
<
results
.
size
();
batchid
++
)
{
for
(
int
i
=
0
;
i
<
results
[
batchid
].
num_joints
;
i
++
)
{
if
(
results
[
batchid
].
keypoints
[
i
*
3
]
>
0.5
)
{
if
(
results
[
batchid
].
keypoints
[
i
*
3
]
>
threshold
)
{
int
x_coord
=
int
(
results
[
batchid
].
keypoints
[
i
*
3
+
1
]);
int
y_coord
=
int
(
results
[
batchid
].
keypoints
[
i
*
3
+
2
]);
cv
::
circle
(
vis_img
,
...
...
@@ -64,6 +65,8 @@ cv::Mat VisualizeKptsResult(const cv::Mat& img,
}
}
for
(
int
i
=
0
;
i
<
results
[
batchid
].
num_joints
;
i
++
)
{
if
(
results
[
batchid
].
keypoints
[
edge
[
i
][
0
]
*
3
]
>
threshold
&&
results
[
batchid
].
keypoints
[
edge
[
i
][
1
]
*
3
]
>
threshold
)
{
int
x_start
=
int
(
results
[
batchid
].
keypoints
[
edge
[
i
][
0
]
*
3
+
1
]);
int
y_start
=
int
(
results
[
batchid
].
keypoints
[
edge
[
i
][
0
]
*
3
+
2
]);
int
x_end
=
int
(
results
[
batchid
].
keypoints
[
edge
[
i
][
1
]
*
3
+
1
]);
...
...
@@ -75,6 +78,7 @@ cv::Mat VisualizeKptsResult(const cv::Mat& img,
1
);
}
}
}
return
vis_img
;
}
...
...
@@ -119,7 +123,6 @@ void KeyPointDetector::Postprocess(std::vector<float>& output,
void
KeyPointDetector
::
Predict
(
const
std
::
vector
<
cv
::
Mat
>
imgs
,
std
::
vector
<
std
::
vector
<
float
>>&
center_bs
,
std
::
vector
<
std
::
vector
<
float
>>&
scale_bs
,
const
double
threshold
,
const
int
warmup
,
const
int
repeats
,
std
::
vector
<
KeyPointResult
>*
result
,
...
...
deploy/lite/src/main.cc
浏览文件 @
85218f9a
...
...
@@ -238,7 +238,6 @@ void PredictImage(const std::vector<std::string> all_img_paths,
keypoint
->
Predict
(
imgs_kpts
,
center_bs
,
scale_bs
,
0.5
,
10
,
10
,
&
result_kpts
,
...
...
@@ -247,7 +246,6 @@ void PredictImage(const std::vector<std::string> all_img_paths,
keypoint
->
Predict
(
imgs_kpts
,
center_bs
,
scale_bs
,
0.5
,
0
,
1
,
&
result_kpts
,
...
...
@@ -265,7 +263,7 @@ void PredictImage(const std::vector<std::string> all_img_paths,
output_path
+
"keypoint_"
+
image_file_path
.
substr
(
image_file_path
.
find_last_of
(
'/'
)
+
1
);
cv
::
Mat
kpts_vis_img
=
VisualizeKptsResult
(
im
,
result_kpts
,
colormap_kpts
);
VisualizeKptsResult
(
im
,
result_kpts
,
colormap_kpts
,
keypoint
->
get_threshold
()
);
cv
::
imwrite
(
kpts_savepath
,
kpts_vis_img
,
compression_params
);
printf
(
"Visualized output saved as %s
\n
"
,
kpts_savepath
.
c_str
());
}
else
{
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录