From 80b1789eb3406f4f0d26290d4be48cecf766af73 Mon Sep 17 00:00:00 2001 From: wangguanzhong Date: Thu, 10 Mar 2022 15:16:15 +0800 Subject: [PATCH] add attr in deploy (#5342) --- deploy/python/attr_infer.py | 303 ++++++++++++++++++++++++++++++++++++ 1 file changed, 303 insertions(+) create mode 100644 deploy/python/attr_infer.py diff --git a/deploy/python/attr_infer.py b/deploy/python/attr_infer.py new file mode 100644 index 000000000..654ec99fb --- /dev/null +++ b/deploy/python/attr_infer.py @@ -0,0 +1,303 @@ +# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import os +import yaml +import glob +from functools import reduce + +import cv2 +import numpy as np +import math +import paddle +from paddle.inference import Config +from paddle.inference import create_predictor + +import sys +# add deploy path of PadleDetection to sys.path +parent_path = os.path.abspath(os.path.join(__file__, *(['..']))) +sys.path.insert(0, parent_path) + +from benchmark_utils import PaddleInferBenchmark +from preprocess import preprocess, Resize, NormalizeImage, Permute, PadStride, LetterBoxResize, WarpAffine +from visualize import visualize_attr +from utils import argsparser, Timer, get_current_memory_mb +from infer import Detector, get_test_images, print_arguments, load_predictor + +from PIL import Image, ImageDraw, ImageFont + + +class AttrDetector(Detector): + """ + Args: + pred_config (object): config of model, defined by `Config(model_dir)` + model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml + device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU + run_mode (str): mode of running(paddle/trt_fp32/trt_fp16) + batch_size (int): size of pre batch in inference + trt_min_shape (int): min shape for dynamic shape in trt + trt_max_shape (int): max shape for dynamic shape in trt + trt_opt_shape (int): opt shape for dynamic shape in trt + trt_calib_mode (bool): If the model is produced by TRT offline quantitative + calibration, trt_calib_mode need to set True + cpu_threads (int): cpu threads + enable_mkldnn (bool): whether to open MKLDNN + output_dir (str): The path of output + threshold (float): The threshold of score for visualization + """ + + def __init__( + self, + model_dir, + device='CPU', + run_mode='paddle', + batch_size=1, + trt_min_shape=1, + trt_max_shape=1280, + trt_opt_shape=640, + trt_calib_mode=False, + cpu_threads=1, + enable_mkldnn=False, + output_dir='output', + threshold=0.5, ): + super(AttrDetector, self).__init__( + model_dir=model_dir, + device=device, + run_mode=run_mode, + batch_size=batch_size, + trt_min_shape=trt_min_shape, + trt_max_shape=trt_max_shape, + trt_opt_shape=trt_opt_shape, + trt_calib_mode=trt_calib_mode, + cpu_threads=cpu_threads, + enable_mkldnn=enable_mkldnn, + output_dir=output_dir, + threshold=threshold, ) + + def get_label(self): + return self.pred_config.labels + + def postprocess(self, inputs, result): + # postprocess output of predictor + im_results = result['output'] + im_results = np.where(im_results < self.threshold, 0, im_results) + label_list = [['Head', ['Hat', 'Glasses']], [ + 'Upper', [ + 'ShortSleeve', 'LongSleeve', 'UpperStride', 'UpperLogo', + 'UpperPlaid', 'UpperSplice' + ] + ], [ + 'Lower', [ + 'LowerStripe', 'LowerPattern', 'LongCoat', 'Trousers', 'Shorts', + 'Skirt&Dress' + ] + ], ['Shoes', ['boots']], [ + 'Accessory', + ['HandBag', 'ShoulderBag', 'Backpack', 'HoldObjectsInFront'] + ], ['Age', ['AgeOver60', 'Age18-60', 'AgeLess18']], + ['Gender', ['Female']], + ['Direction', ['Front', 'Side', 'Back']]] + + attr_type = [name[0] for name in label_list] + labels = self.pred_config.labels + + batch_res = [] + for res in im_results: + label_res = {} + label_res = {t: [] for t in attr_type} + num = 0 + for i in range(len(label_list)): + type_name_i = attr_type[i] + attr_name_list = label_list[i][1] + for attr_name in attr_name_list: + attr_name = labels[num] + output_prob = res[num] + if output_prob != 0: + label_res[type_name_i].append(attr_name) + num += 1 + + if len(label_res['Shoes']) == 0: + label_res['Shoes'] = ['no boots'] + if len(label_res['Gender']) == 0: + label_res['Gender'] = ['Male'] + label_res['Age'] = [labels[19 + np.argmax(res[19:22])]] + label_res['Direction'] = [labels[23 + np.argmax(res[23:])]] + batch_res.append(label_res) + result = {'output': batch_res} + return result + + def predict(self, repeats=1): + ''' + Args: + repeats (int): repeats number for prediction + Returns: + result (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box, + matix element:[class, score, x_min, y_min, x_max, y_max] + MaskRCNN's result include 'masks': np.ndarray: + shape: [N, im_h, im_w] + ''' + # model prediction + for i in range(repeats): + self.predictor.run() + output_names = self.predictor.get_output_names() + output_tensor = self.predictor.get_output_handle(output_names[0]) + np_output = output_tensor.copy_to_cpu() + result = dict(output=np_output) + return result + + def predict_image(self, + image_list, + run_benchmark=False, + repeats=1, + visual=True): + batch_loop_cnt = math.ceil(float(len(image_list)) / self.batch_size) + results = [] + for i in range(batch_loop_cnt): + start_index = i * self.batch_size + end_index = min((i + 1) * self.batch_size, len(image_list)) + batch_image_list = image_list[start_index:end_index] + if run_benchmark: + # preprocess + inputs = self.preprocess(batch_image_list) # warmup + self.det_times.preprocess_time_s.start() + inputs = self.preprocess(batch_image_list) + self.det_times.preprocess_time_s.end() + + # model prediction + result = self.predict(repeats=repeats) # warmup + self.det_times.inference_time_s.start() + result = self.predict(repeats=repeats) + self.det_times.inference_time_s.end(repeats=repeats) + + # postprocess + result_warmup = self.postprocess(inputs, result) # warmup + self.det_times.postprocess_time_s.start() + result = self.postprocess(inputs, result) + self.det_times.postprocess_time_s.end() + self.det_times.img_num += len(batch_image_list) + + cm, gm, gu = get_current_memory_mb() + self.cpu_mem += cm + self.gpu_mem += gm + self.gpu_util += gu + else: + # preprocess + self.det_times.preprocess_time_s.start() + inputs = self.preprocess(batch_image_list) + self.det_times.preprocess_time_s.end() + + # model prediction + self.det_times.inference_time_s.start() + result = self.predict() + self.det_times.inference_time_s.end() + + # postprocess + self.det_times.postprocess_time_s.start() + result = self.postprocess(inputs, result) + self.det_times.postprocess_time_s.end() + self.det_times.img_num += len(batch_image_list) + + if visual: + visualize( + batch_image_list, result, output_dir=self.output_dir) + + results.append(result) + if visual: + print('Test iter {}'.format(i)) + + results = self.merge_batch_result(results) + return results + + def merge_batch_result(self, batch_result): + if len(batch_result) == 1: + return batch_result[0] + res_key = batch_result[0].keys() + results = {k: [] for k in res_key} + for res in batch_result: + for k, v in res.items(): + results[k].extend(v) + return results + + +def visualize(image_list, batch_res, output_dir='output'): + + # visualize the predict result + batch_res = batch_res['output'] + for image_file, res in zip(image_list, batch_res): + im = visualize_attr(image_file, [res]) + if not os.path.exists(output_dir): + os.makedirs(output_dir) + img_name = os.path.split(image_file)[-1] + out_path = os.path.join(output_dir, img_name) + im.save(out_path, quality=95) + print("save result to: " + out_path) + + +def main(): + detector = AttrDetector( + FLAGS.model_dir, + device=FLAGS.device, + run_mode=FLAGS.run_mode, + batch_size=FLAGS.batch_size, + trt_min_shape=FLAGS.trt_min_shape, + trt_max_shape=FLAGS.trt_max_shape, + trt_opt_shape=FLAGS.trt_opt_shape, + trt_calib_mode=FLAGS.trt_calib_mode, + cpu_threads=FLAGS.cpu_threads, + enable_mkldnn=FLAGS.enable_mkldnn, + threshold=FLAGS.threshold, + output_dir=FLAGS.output_dir) + + # predict from image + if FLAGS.image_dir is None and FLAGS.image_file is not None: + assert FLAGS.batch_size == 1, "batch_size should be 1, when image_file is not None" + img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file) + detector.predict_image(img_list, FLAGS.run_benchmark, repeats=10) + if not FLAGS.run_benchmark: + detector.det_times.info(average=True) + else: + mems = { + 'cpu_rss_mb': detector.cpu_mem / len(img_list), + 'gpu_rss_mb': detector.gpu_mem / len(img_list), + 'gpu_util': detector.gpu_util * 100 / len(img_list) + } + + perf_info = detector.det_times.report(average=True) + model_dir = FLAGS.model_dir + mode = FLAGS.run_mode + model_info = { + 'model_name': model_dir.strip('/').split('/')[-1], + 'precision': mode.split('_')[-1] + } + data_info = { + 'batch_size': FLAGS.batch_size, + 'shape': "dynamic_shape", + 'data_num': perf_info['img_num'] + } + det_log = PaddleInferBenchmark(detector.config, model_info, data_info, + perf_info, mems) + det_log('Attr') + + +if __name__ == '__main__': + paddle.enable_static() + parser = argsparser() + FLAGS = parser.parse_args() + print_arguments(FLAGS) + FLAGS.device = FLAGS.device.upper() + assert FLAGS.device in ['CPU', 'GPU', 'XPU' + ], "device should be CPU, GPU or XPU" + assert not FLAGS.use_gpu, "use_gpu has been deprecated, please use --device" + + main() -- GitLab