Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
8055e86e
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
8055e86e
编写于
6月 12, 2020
作者:
K
Kaipeng Deng
提交者:
GitHub
6月 12, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
split weights and PaddleLite model in configs/mobile/README (#935)
* split weights and PaddleLite model in configs/mobile/README
上级
e77baea4
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
18 addition
and
26 deletion
+18
-26
configs/mobile/README.md
configs/mobile/README.md
+9
-13
configs/mobile/README_en.md
configs/mobile/README_en.md
+9
-13
未找到文件。
configs/mobile/README.md
浏览文件 @
8055e86e
...
@@ -7,23 +7,19 @@
...
@@ -7,23 +7,19 @@
PaddleDetection目前提供一系列针对移动应用进行优化的模型,主要支持以下结构:
PaddleDetection目前提供一系列针对移动应用进行优化的模型,主要支持以下结构:
| 骨干网络 | 结构
| 输入大小 | 图片/gpu
<sup>
1
</sup>
| 学习率策略 | Box AP | 下载
<sup>
2
</sup>
|
| 骨干网络 | 结构
| 输入大小 | 图片/gpu
<sup>
1
</sup>
| 学习率策略 | Box AP | 下载 | PaddleLite模型下载
|
|
--------------------------|---------------------------|-------|------------------------|---------------|--------|-----------------------
|
|
:----------------------- | :------------------------ | :---: | :--------------------: | :------------ | :----: | :--- | :-----------------
|
| MobileNetV3 Small | SSDLite | 320 | 64 | 400K (cosine) | 16.6 |
[
链接
](
https://paddlemodels.bj.bcebos.com/object_detection/
ssdlite_mobilenet_v3_small.tar.gz
)
|
| MobileNetV3 Small | SSDLite | 320 | 64 | 400K (cosine) | 16.6 |
[
链接
](
https://paddlemodels.bj.bcebos.com/object_detection/
mobile_models/ssdlite_mobilenet_v3_small.tar
)
|
[
链接
](
https://paddlemodels.bj.bcebos.com/object_detection/mobile_models/lite/ssdlite_mobilenet_v3_small.tar
)
|
| MobileNetV3 Large | SSDLite | 320 | 64 | 400K (cosine) | 22.8 |
[
链接
](
https://paddlemodels.bj.bcebos.com/object_detection/
ssdlite_mobilenet_v3_large.tar.gz
)
|
| MobileNetV3 Large | SSDLite | 320 | 64 | 400K (cosine) | 22.8 |
[
链接
](
https://paddlemodels.bj.bcebos.com/object_detection/
mobile_models/ssdlite_mobilenet_v3_large.tar
)
|
[
链接
](
https://paddlemodels.bj.bcebos.com/object_detection/mobile_models/lite/ssdlite_mobilenet_v3_large.tar
)
|
| MobileNetV3 Large w/ FPN | Cascade RCNN | 320 | 2 | 500k (cosine) | 25.0 |
[
链接
](
https://paddlemodels.bj.bcebos.com/object_detection/
cascade_rcnn_mobilenetv3_fpn_320.tar.gz
)
|
| MobileNetV3 Large w/ FPN | Cascade RCNN | 320 | 2 | 500k (cosine) | 25.0 |
[
链接
](
https://paddlemodels.bj.bcebos.com/object_detection/
mobile_models/cascade_rcnn_mobilenetv3_fpn_320.tar
)
|
[
链接
](
https://paddlemodels.bj.bcebos.com/object_detection/mobile_models/lite/cascade_rcnn_mobilenetv3_fpn_320.tar
)
|
| MobileNetV3 Large w/ FPN | Cascade RCNN | 640 | 2 | 500k (cosine) | 30.2 |
[
链接
](
https://paddlemodels.bj.bcebos.com/object_detection/
cascade_rcnn_mobilenetv3_fpn_640.tar.gz
)
|
| MobileNetV3 Large w/ FPN | Cascade RCNN | 640 | 2 | 500k (cosine) | 30.2 |
[
链接
](
https://paddlemodels.bj.bcebos.com/object_detection/
mobile_models/cascade_rcnn_mobilenetv3_fpn_640.tar
)
|
[
链接
](
https://paddlemodels.bj.bcebos.com/object_detection/mobile_models/lite/cascade_rcnn_mobilenetv3_fpn_640.tar
)
|
| MobileNetV3 Large | YOLOv3 | 320 | 8 | 500K | 27.1 |
[
链接
](
https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v3.
tar.gz
)
|
| MobileNetV3 Large | YOLOv3 | 320 | 8 | 500K | 27.1 |
[
链接
](
https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v3.
pdparams
)
|
[
链接
](
https://paddlemodels.bj.bcebos.com/object_detection/mobile_models/lite/yolov3_mobilenet_v3.tar
)
|
| MobileNetV3 Large | YOLOv3 Prune
<sup>
3
</sup>
| 320 | 8 | - | 24.6 |
[
链接
](
https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v3_prune86_FPGM_320.tar.gz
)
|
| MobileNetV3 Large | YOLOv3 Prune
<sup>
2
</sup>
| 320 | 8 | - | 24.6 |
[
链接
](
https://paddlemodels.bj.bcebos.com/object_detection/mobile_models/yolov3_mobilenet_v3_prune75875_FPGM_distillby_r34.pdparams
)
|
[
链接
](
https://paddlemodels.bj.bcebos.com/object_detection/mobile_models/lite/yolov3_mobilenet_v3_prune86_FPGM_320.tar
)
|
**注意**
:
**注意**
:
-
<a
name=
"gpu"
>
[1]
</a>
模型统一使用8卡训练.
-
<a
name=
"gpu"
>
[1]
</a>
模型统一使用8卡训练.
-
<a
name=
"tarball"
>
[2]
</a>
压缩包包括下列文件
-
<a
name=
"prune"
>
[2]
</a>
参考下面关于YOLO剪裁的说明
-
模型权重文件 (
`.pdparams`
or
`.tar`
)
-
inference model 文件 (
`__model__`
and
`__params__`
)
-
Paddle-Lite 模型文件 (
`.nb`
)
-
<a
name=
"prune"
>
[3]
</a>
参考下面关于YOLO剪裁的说明
## 评测结果
## 评测结果
...
...
configs/mobile/README_en.md
浏览文件 @
8055e86e
...
@@ -7,23 +7,19 @@ English | [简体中文](README.md)
...
@@ -7,23 +7,19 @@ English | [简体中文](README.md)
This directory contains models optimized for mobile applications, at present the following models included:
This directory contains models optimized for mobile applications, at present the following models included:
| Backbone | Architecture | Input | Image/gpu
<sup>
1
</sup>
| Lr schd | Box AP | Download
<sup>
2
</sup>
|
| Backbone | Architecture | Input | Image/gpu
<sup>
1
</sup>
| Lr schd | Box AP | Download
| PaddleLite Model Download
|
|
--------------------------|---------------------------|-------|------------------------|---------------|--------|-----------------------
|
|
:----------------------- | :------------------------ | :---: | :--------------------: | :------------ | :----: | :------- | :------------------------
|
| MobileNetV3 Small | SSDLite | 320 | 64 | 400K (cosine) | 16.6 |
[
Link
](
https://paddlemodels.bj.bcebos.com/object_detection/
ssdlite_mobilenet_v3_small.tar.gz
)
|
| MobileNetV3 Small | SSDLite | 320 | 64 | 400K (cosine) | 16.6 |
[
Link
](
https://paddlemodels.bj.bcebos.com/object_detection/
mobile_models/ssdlite_mobilenet_v3_small.tar
)
|
[
Link
](
https://paddlemodels.bj.bcebos.com/object_detection/mobile_models/lite/ssdlite_mobilenet_v3_small.tar
)
|
| MobileNetV3 Large | SSDLite | 320 | 64 | 400K (cosine) | 22.8 |
[
Link
](
https://paddlemodels.bj.bcebos.com/object_detection/
ssdlite_mobilenet_v3_large.tar.gz
)
|
| MobileNetV3 Large | SSDLite | 320 | 64 | 400K (cosine) | 22.8 |
[
Link
](
https://paddlemodels.bj.bcebos.com/object_detection/
mobile_models/ssdlite_mobilenet_v3_large.tar
)
|
[
Link
](
https://paddlemodels.bj.bcebos.com/object_detection/mobile_models/lite/ssdlite_mobilenet_v3_large.tar
)
|
| MobileNetV3 Large w/ FPN | Cascade RCNN | 320 | 2 | 500k (cosine) | 25.0 |
[
Link
](
https://paddlemodels.bj.bcebos.com/object_detection/
cascade_rcnn_mobilenetv3_fpn_320.tar.gz
)
|
| MobileNetV3 Large w/ FPN | Cascade RCNN | 320 | 2 | 500k (cosine) | 25.0 |
[
Link
](
https://paddlemodels.bj.bcebos.com/object_detection/
mobile_models/cascade_rcnn_mobilenetv3_fpn_320.tar
)
|
[
Link
](
https://paddlemodels.bj.bcebos.com/object_detection/mobile_models/lite/cascade_rcnn_mobilenetv3_fpn_320.tar
)
|
| MobileNetV3 Large w/ FPN | Cascade RCNN | 640 | 2 | 500k (cosine) | 30.2 |
[
Link
](
https://paddlemodels.bj.bcebos.com/object_detection/
cascade_rcnn_mobilenetv3_fpn_640.tar.gz
)
|
| MobileNetV3 Large w/ FPN | Cascade RCNN | 640 | 2 | 500k (cosine) | 30.2 |
[
Link
](
https://paddlemodels.bj.bcebos.com/object_detection/
mobile_models/cascade_rcnn_mobilenetv3_fpn_640.tar
)
|
[
Link
](
https://paddlemodels.bj.bcebos.com/object_detection/mobile_models/lite/cascade_rcnn_mobilenetv3_fpn_640.tar
)
|
| MobileNetV3 Large | YOLOv3 | 320 | 8 | 500K | 27.1 |
[
Link
](
https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v3.
tar.gz
)
|
| MobileNetV3 Large | YOLOv3 | 320 | 8 | 500K | 27.1 |
[
Link
](
https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v3.
pdparams
)
|
[
Link
](
https://paddlemodels.bj.bcebos.com/object_detection/mobile_models/lite/yolov3_mobilenet_v3.tar
)
|
| MobileNetV3 Large | YOLOv3 Prune
<sup>
3
</sup>
| 320 | 8 | - | 24.6 |
[
Link
](
https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v3_prune86_FPGM_320.tar.gz
)
|
| MobileNetV3 Large | YOLOv3 Prune
<sup>
2
</sup>
| 320 | 8 | - | 24.6 |
[
Link
](
https://paddlemodels.bj.bcebos.com/object_detection/mobile_models/yolov3_mobilenet_v3_prune75875_FPGM_distillby_r34.pdparams
)
|
[
Link
](
https://paddlemodels.bj.bcebos.com/object_detection/mobile_models/lite/yolov3_mobilenet_v3_prune86_FPGM_320.tar
)
|
**Notes**
:
**Notes**
:
-
<a
name=
"gpu"
>
[1]
</a>
All models are trained on 8 GPUs.
-
<a
name=
"gpu"
>
[1]
</a>
All models are trained on 8 GPUs.
-
<a
name=
"tarball"
>
[2]
</a>
Each tarball contains the following files
-
<a
name=
"prune"
>
[2]
</a>
See the note section on how YOLO head is pruned
-
model weight file (
`.pdparams`
or
`.tar`
)
-
inference model files (
`__model__`
and
`__params__`
)
-
Paddle-Lite model file (
`.nb`
)
-
<a
name=
"prune"
>
[3]
</a>
See the note section on how YOLO head is pruned
## Benchmarks Results
## Benchmarks Results
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录