提交 796a448c 编写于 作者: T typhoonzero

Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into refine_grpc_serde_code

...@@ -53,7 +53,7 @@ ExternalProject_Add( ...@@ -53,7 +53,7 @@ ExternalProject_Add(
${EXTERNAL_PROJECT_LOG_ARGS} ${EXTERNAL_PROJECT_LOG_ARGS}
DEPENDS ${MKLDNN_DEPENDS} DEPENDS ${MKLDNN_DEPENDS}
GIT_REPOSITORY "https://github.com/01org/mkl-dnn.git" GIT_REPOSITORY "https://github.com/01org/mkl-dnn.git"
GIT_TAG "v0.11" GIT_TAG "v0.14"
PREFIX ${MKLDNN_SOURCES_DIR} PREFIX ${MKLDNN_SOURCES_DIR}
UPDATE_COMMAND "" UPDATE_COMMAND ""
CMAKE_ARGS -DCMAKE_INSTALL_PREFIX=${MKLDNN_INSTALL_DIR} CMAKE_ARGS -DCMAKE_INSTALL_PREFIX=${MKLDNN_INSTALL_DIR}
......
../../v2/build_and_install/paddleci.png
\ No newline at end of file
...@@ -125,12 +125,12 @@ Compile Time -> IR -> Runtime ...@@ -125,12 +125,12 @@ Compile Time -> IR -> Runtime
## Operator/OpWithKernel/OpKernel ## Operator/OpWithKernel/OpKernel
![class_diagram](http://api.paddlepaddle.org/graphviz?dot=https://gist.githubusercontent.com/reyoung/53df507f6749762675dff3e7ce53372f/raw/49caf1fb70820fb4a6c217634317c9306f361f36/op_op_with_kern_class_diagram.dot) ![class_diagram](https://raw.githubusercontent.com/PaddlePaddle/Paddle/develop/doc/fluid/images/op_op_with_kern_class_diagram.dot)
--- ---
## Operator ## Operator
![class_diagram](http://api.paddlepaddle.org/graphviz?dot=https://gist.githubusercontent.com/reyoung/53df507f6749762675dff3e7ce53372f/raw/dd598e8f1976f5759f58af5e5ef94738a6b2e661/op.dot) ![class_diagram](https://raw.githubusercontent.com/PaddlePaddle/Paddle/develop/doc/fluid/images/op.dot)
* `Operator` is the fundamental building block of the user interface. * `Operator` is the fundamental building block of the user interface.
* Operator stores input/output variable names and attributes. * Operator stores input/output variable names and attributes.
...@@ -141,7 +141,7 @@ Compile Time -> IR -> Runtime ...@@ -141,7 +141,7 @@ Compile Time -> IR -> Runtime
## OpWithKernel/Kernel ## OpWithKernel/Kernel
![class_diagram](http://api.paddlepaddle.org/graphviz?dot=https://gist.githubusercontent.com/reyoung/53df507f6749762675dff3e7ce53372f/raw/9d7f4eba185cf41c8e2fbfb40ae21890dbddcd39/op_with_kernel.dot) ![class_diagram](https://raw.githubusercontent.com/PaddlePaddle/Paddle/develop/doc/fluid/images/op_with_kernel.dot)
* `OpWithKernel` inherits `Operator`. * `OpWithKernel` inherits `Operator`.
* `OpWithKernel` contains a Kernel map. * `OpWithKernel` contains a Kernel map.
......
digraph sample {
graph [rankdir=TD]; node [shape=record];
op [label="{Operator| InferShape()=0\lRun()=0\l | map<string, string[]> inputs_\lmap<string, string[]> outputs_ \l AttributeMap attrs_\l}"];
}
\ No newline at end of file
digraph sample {
graph [rankdir=TD]; node [shape=record];
op [label="{Operator| InferShape()=0\lRun()=0\l | map<string, string[]> inputs_\lmap<string, string[]> outputs_ \l AttributeMap attrs_\l}"];
op_with_kern [label="{OpWithKernel | InferShape()=0\lRun()\l | map<OpKernelKey,OpKernel>kernels_ }"]
op_kernel [label="{OpKernel | Compute()=0}"]
op_kernel_key [label="{OpKernelKey| Place place\n...}"]
op -> op_with_kern [dir=back, arrowtail=onormal]
op_with_kern -> op_kernel [arrowhead=vee, label="contains many"]
{
rank=same;
op_with_kern
op_kernel
}
op_kernel -> op_kernel_key [style=invis]
{
rank=same;
op_kernel
op_kernel_key
}
op_with_kern -> op_kernel_key [arrowhead=vee, label ="\nas map key"]
mul_op [label="MulOp"]
op_with_kern -> mul_op [dir=back, arrowtail=onormal]
mul_kernel [label="template <typename Place>\lclass MulOpKernel\l"]
op_kernel -> mul_kernel [dir=back, arrowtail=onormal]
mul_op -> mul_kernel [arrowhead=vee, label="register many"]
{
rank=same;
mul_op;
mul_kernel;
}
}
\ No newline at end of file
digraph sample {
graph [rankdir=TD]; node [shape=record];
op [label="{Operator}"];
op_with_kern [label="{OpWithKernel | InferShape()=0\lRun()\l | map<OpKernelKey,OpKernel>kernels_ }"]
op_kernel [label="{OpKernel | Compute()=0}"]
op_kernel_key [label="{OpKernelKey| Place place\n...}"]
op -> op_with_kern [dir=back, arrowtail=onormal]
op_with_kern -> op_kernel [arrowhead=vee, label="contains many"]
{
rank=same;
op_with_kern
op_kernel
}
op_kernel -> op_kernel_key [style=invis]
{
rank=same;
op_kernel
op_kernel_key
}
op_with_kern -> op_kernel_key [arrowhead=vee, label ="\nas map key"]
}
\ No newline at end of file
...@@ -460,6 +460,11 @@ multi_binary_label_cross_entropy_cost ...@@ -460,6 +460,11 @@ multi_binary_label_cross_entropy_cost
.. autoclass:: paddle.v2.layer.multi_binary_label_cross_entropy_cost .. autoclass:: paddle.v2.layer.multi_binary_label_cross_entropy_cost
:noindex: :noindex:
classification_cost
-------------------
.. autoclass:: paddle.v2.layer.classification_cost
:noindex:
huber_regression_cost huber_regression_cost
------------------------- -------------------------
.. autoclass:: paddle.v2.layer.huber_regression_cost .. autoclass:: paddle.v2.layer.huber_regression_cost
......
...@@ -5,7 +5,7 @@ ...@@ -5,7 +5,7 @@
充分展现英特尔平台的优势,有效提升PaddlePaddle在英特尔架构上的性能。 充分展现英特尔平台的优势,有效提升PaddlePaddle在英特尔架构上的性能。
<div align="center"> <div align="center">
<img src="image/overview.png"><br/> <img src="https://raw.githubusercontent.com/PaddlePaddle/Paddle/develop/doc/v2/images/overview.png"><br/>
Figure 1. PaddlePaddle on IA Figure 1. PaddlePaddle on IA
</div> </div>
...@@ -42,16 +42,43 @@ Figure 1. PaddlePaddle on IA ...@@ -42,16 +42,43 @@ Figure 1. PaddlePaddle on IA
MKL,MKLML以及MKL-DNN三者关系如下表: MKL,MKLML以及MKL-DNN三者关系如下表:
| Name | Open Source | License | Descriptions | <table>
| :---------- | :--------------- | :---------- | :------------ | <thead>
| MKL | No | Proprietary | Accelerate math processing routines | <tr>
| MKLML | No | Proprietary | Small package of MKL, especially for Machine Learning | <th>Name</th>
| MKL-DNN | Yes | Apache 2.0 | Accelerate primitives processing routines especially for Deep Neural Networks | <th>Open Source</th>
<th>License</th>
<th>Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>MKL</td>
<td>No</td>
<td>Proprietary</td>
<td>Accelerate math processing routines</td>
</tr>
<tr>
<td>MKLML</td>
<td>No</td>
<td>Proprietary</td>
<td>Small package of MKL, especially for Machine Learning</td>
</tr>
<tr>
<td>MKL-DNN</td>
<td>Yes</td>
<td>Apache 2.0</td>
<td>Accelerate primitives processing routines especially for Deep Neural Networks</td>
</tr>
</tbody>
</table>
MKLML可以与MKL-DNN共同使用,以此达到最好的性能。 MKLML可以与MKL-DNN共同使用,以此达到最好的性能。
<div align="center"> <div align="center">
<img src="image/engine.png"><br/> <img src="https://raw.githubusercontent.com/PaddlePaddle/Paddle/develop/doc/v2/images/engine.png"><br/>
Figure 2. PaddlePaddle with MKL Engines Figure 2. PaddlePaddle with MKL Engines
</div> </div>
...@@ -103,7 +130,7 @@ MKL-DNN的库目前只有动态库`libmkldnn.so`。 ...@@ -103,7 +130,7 @@ MKL-DNN的库目前只有动态库`libmkldnn.so`。
所以我们定义了一个`MKLDNNMatrix`用于管理MKL-DNN数据的不同格式以及相互之间的转换。 所以我们定义了一个`MKLDNNMatrix`用于管理MKL-DNN数据的不同格式以及相互之间的转换。
<div align="center"> <div align="center">
<img src="image/matrix.png"><br/> <img src="https://raw.githubusercontent.com/PaddlePaddle/Paddle/develop/doc/v2/images/matrix.png"><br/>
Figure 3. MKLDNNMatrix Figure 3. MKLDNNMatrix
</div> </div>
...@@ -113,7 +140,7 @@ Figure 3. MKLDNNMatrix ...@@ -113,7 +140,7 @@ Figure 3. MKLDNNMatrix
子类只需要使用定义好的接口,实现具体的函数功能即可。 子类只需要使用定义好的接口,实现具体的函数功能即可。
<div align="center"> <div align="center">
<img src="image/layers.png"><br/> <img src="https://raw.githubusercontent.com/PaddlePaddle/Paddle/develop/doc/v2/images/layers.png"><br/>
Figure 4. MKLDNNLayer Figure 4. MKLDNNLayer
</div> </div>
...@@ -150,7 +177,7 @@ Figure 4. MKLDNNLayer ...@@ -150,7 +177,7 @@ Figure 4. MKLDNNLayer
所以整体上,在实现每个子类的时候就不需要关心分支的事情了。 所以整体上,在实现每个子类的时候就不需要关心分支的事情了。
<div align="center"> <div align="center">
<img src="image/gradients.png"><br/> <img src="https://raw.githubusercontent.com/PaddlePaddle/Paddle/develop/doc/v2/images/gradients.png"><br/>
Figure 5. Merge Gradients Figure 5. Merge Gradients
</div> </div>
......
digraph G{
subgraph cluster_timestep0 {
label="recurrent timestep i-1"
bgcolor=lightgray
node [style=filled,color=white]
fc0_0 [label="fc 0"]
fc0_1 [label="fc 1"]
fc0_2 [label="fc 2"]
fc0_0 -> fc0_1
fc0_1 -> fc0_2
}
subgraph cluster_timestep1 {
label="recurrent timestep i"
node [style=filled];
fc1_0 [label="fc 0"]
fc1_1 [label="fc 1"]
fc1_2 [label="fc 2"]
color=blue
fc1_0 -> fc1_1
fc1_1 -> fc1_2
}
subgraph cluster_timestep2 {
label="recurrent timestep i+1"
bgcolor=lightgray
node [style=filled,color=white]
fc2_0 [label="fc 0"]
fc2_1 [label="fc 1"]
fc2_2 [label="fc 2"]
fc2_0 -> fc2_1
fc2_1 -> fc2_2
}
fc0_1 -> fc1_1 [style="dotted" constraint=false]
fc1_1 -> fc2_1 [style="dotted" constraint=false]
}
\ No newline at end of file
digraph G{
subgraph cluster_timestep0 {
label="recurrent timestep i-1"
bgcolor=lightgray
node [style=filled,color=white]
fc0_0 [label="fc 0"]
fc0_1 [label="fc 1"]
fc0_2 [label="fc 2"]
m0 [label="memory"]
fc0_0 -> fc0_1
fc0_1 -> fc0_2
fc0_1 -> m0
m0 -> fc0_1
}
subgraph cluster_timestep1 {
label="recurrent timestep i"
node [style=filled];
fc1_0 [label="fc 0"]
fc1_1 [label="fc 1"]
fc1_2 [label="fc 2"]
m1 [label="memory"]
color=blue
fc1_0 -> fc1_1
fc1_1 -> fc1_2
fc1_1 -> m1
m1 -> fc1_1
}
subgraph cluster_timestep2 {
label="recurrent timestep i+1"
bgcolor=lightgray
node [style=filled,color=white]
fc2_0 [label="fc 0"]
fc2_1 [label="fc 1"]
fc2_2 [label="fc 2"]
m2 [label="memory"]
fc2_0 -> fc2_1
fc2_1 -> fc2_2
fc2_1 -> m2
m2 -> fc2_1
}
m0 -> m1 [style="dotted" constraint=false]
m1 -> m2 [style="dotted" constraint=false]
}
\ No newline at end of file
digraph G {
rankdir=LR;
subgraph cluster_t0 {
a [label="4"]
b [label="5"]
c [label="2"]
}
subgraph cluster_t1 {
d [label="0"]
e [label="9"]
}
subgraph cluster_t2 {
f [label="8"]
g [label="1"]
h [label="4"]
}
a -> b;
b -> c;
c -> d [constraint=false];
d -> e;
e -> f [constraint=false];
f -> g;
g -> h;
}
\ No newline at end of file
digraph G {
rankdir=LR;
a [label="4"]
b [label="5"]
c [label="2"]
d [label="0"]
e [label="9"]
f [label="8"]
g [label="1"]
h [label="4"]
a -> b;
b -> c;
c -> d;
d -> e;
e -> f;
f -> g;
g -> h;
}
\ No newline at end of file
...@@ -49,8 +49,10 @@ void FetchOpHandle::RunImpl() { ...@@ -49,8 +49,10 @@ void FetchOpHandle::RunImpl() {
platform::DeviceContextPool::Instance().Get(platform::CPUPlace()); platform::DeviceContextPool::Instance().Get(platform::CPUPlace());
for (auto *input : inputs_) { for (auto *input : inputs_) {
auto *var = static_cast<VarHandle *>(input); auto *var = static_cast<VarHandle *>(input);
if (var->generated_op_) {
var->generated_op_->Wait(cpu_ctx); var->generated_op_->Wait(cpu_ctx);
} }
}
tensors_.resize(inputs_.size()); tensors_.resize(inputs_.size());
auto *var_handle = static_cast<VarHandle *>(inputs_[0]); auto *var_handle = static_cast<VarHandle *>(inputs_[0]);
auto &var_name = var_handle->name_; auto &var_name = var_handle->name_;
......
...@@ -36,8 +36,10 @@ void NCCLAllReduceOpHandle::RunImpl() { ...@@ -36,8 +36,10 @@ void NCCLAllReduceOpHandle::RunImpl() {
// Wait input done // Wait input done
for (auto *in : inputs_) { for (auto *in : inputs_) {
auto &p = static_cast<VarHandle *>(in)->place_; auto &p = static_cast<VarHandle *>(in)->place_;
if (in->generated_op_) {
in->generated_op_->Wait(dev_ctxes_[p]); in->generated_op_->Wait(dev_ctxes_[p]);
} }
}
auto &var_name = static_cast<VarHandle *>(this->inputs_[0])->name_; auto &var_name = static_cast<VarHandle *>(this->inputs_[0])->name_;
int dtype = -1; int dtype = -1;
......
...@@ -32,8 +32,10 @@ void SendOpHandle::RunImpl() { ...@@ -32,8 +32,10 @@ void SendOpHandle::RunImpl() {
if (in->DebugString() == "dummy") { // HACK if (in->DebugString() == "dummy") { // HACK
continue; continue;
} }
if (in->generated_op_) {
in->generated_op_->Wait(dev_ctxes_[p]); in->generated_op_->Wait(dev_ctxes_[p]);
} }
}
auto &tmp_scope = local_scope_->FindVar(kLocalExecScopeName)->Get<Scope *>(); auto &tmp_scope = local_scope_->FindVar(kLocalExecScopeName)->Get<Scope *>();
// FIXME(wuyi): can not use RunAndRecordEvent here, for it will cause dead // FIXME(wuyi): can not use RunAndRecordEvent here, for it will cause dead
// lock. // lock.
......
...@@ -20,7 +20,9 @@ if(NOT APPLE) ...@@ -20,7 +20,9 @@ if(NOT APPLE)
endif() endif()
if(WITH_TESTING) if(WITH_TESTING)
# both tests/book and analysis depends the models that generated by python/paddle/fluid/tests/book
add_subdirectory(tests/book) add_subdirectory(tests/book)
add_subdirectory(analysis)
endif() endif()
if (TENSORRT_FOUND) if (TENSORRT_FOUND)
......
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/inference/analysis/dot.h"
namespace paddle {
namespace inference {
namespace analysis {
size_t Dot::counter = 0;
} // namespace analysis
} // namespace inference
} // namespace paddle
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/*
* This file implements some helper classes and methods for DOT programming
* support. It will give a visualization of the graph and that helps to debug
* the logics of each Pass.
*/
#pragma once
#include <glog/logging.h>
#include <sstream>
#include <unordered_map>
#include <vector>
namespace paddle {
namespace inference {
namespace analysis {
/*
* A Dot template that helps to build a DOT graph definition.
*/
class Dot {
public:
static size_t counter;
struct Attr {
std::string key;
std::string value;
Attr(const std::string& key, const std::string& value)
: key(key), value(value) {}
std::string repr() const {
std::stringstream ss;
ss << key << "=" << '"' << value << '"';
return ss.str();
}
};
struct Node {
std::string name;
std::vector<Attr> attrs;
Node(const std::string& name, const std::vector<Attr>& attrs)
: name(name),
attrs(attrs),
id_("node_" + std::to_string(Dot::counter++)) {}
std::string id() const { return id_; }
std::string repr() const {
std::stringstream ss;
CHECK(!name.empty());
ss << id_;
for (size_t i = 0; i < attrs.size(); i++) {
if (i == 0) {
ss << "[label=" << '"' << name << '"' << " ";
}
ss << attrs[i].repr();
ss << ((i < attrs.size() - 1) ? " " : "]");
}
return ss.str();
}
private:
std::string id_;
};
struct Edge {
std::string source;
std::string target;
std::vector<Attr> attrs;
Edge(const std::string& source, const std::string& target,
const std::vector<Attr>& attrs)
: source(source), target(target), attrs(attrs) {}
std::string repr() const {
std::stringstream ss;
CHECK(!source.empty());
CHECK(!target.empty());
ss << source << "->" << target;
for (size_t i = 0; i < attrs.size(); i++) {
if (i == 0) {
ss << "[";
}
ss << attrs[i].repr();
ss << ((i < attrs.size() - 1) ? " " : "]");
}
return ss.str();
}
};
Dot() = default;
explicit Dot(const std::vector<Attr>& attrs) : attrs_(attrs) {}
void AddNode(const std::string& name, const std::vector<Attr>& attrs) {
CHECK(!nodes_.count(name)) << "duplicate Node '" << name << "'";
nodes_.emplace(name, Node{name, attrs});
}
void AddEdge(const std::string& source, const std::string& target,
const std::vector<Attr>& attrs) {
CHECK(!source.empty());
CHECK(!target.empty());
auto sid = nodes_.at(source).id();
auto tid = nodes_.at(target).id();
edges_.emplace_back(sid, tid, attrs);
}
// Compile to DOT language codes.
std::string Build() const {
std::stringstream ss;
const std::string indent = " ";
ss << "digraph G {" << '\n';
// Add graph attrs
for (const auto& attr : attrs_) {
ss << indent << attr.repr() << '\n';
}
// add nodes
for (auto& item : nodes_) {
ss << indent << item.second.repr() << '\n';
}
// add edges
for (auto& edge : edges_) {
ss << indent << edge.repr() << '\n';
}
ss << "} // end G";
return ss.str();
}
private:
std::unordered_map<std::string, Node> nodes_;
std::vector<Edge> edges_;
std::vector<Attr> attrs_;
};
} // namespace analysis
} // namespace inference
} // namespace paddle
...@@ -19,6 +19,9 @@ limitations under the License. */ ...@@ -19,6 +19,9 @@ limitations under the License. */
namespace paddle { namespace paddle {
namespace inference { namespace inference {
struct Buffer;
enum class DeviceType { UNK = -1, CPU, GPU };
/* /*
* EngineBase is the base class of all inference engines. An inference engine * EngineBase is the base class of all inference engines. An inference engine
* takes a paddle program as input, and outputs the result in fluid Tensor * takes a paddle program as input, and outputs the result in fluid Tensor
...@@ -45,8 +48,20 @@ class EngineBase { ...@@ -45,8 +48,20 @@ class EngineBase {
// Execute the engine, that will run the inference network. // Execute the engine, that will run the inference network.
virtual void Execute(int batch_size) = 0; virtual void Execute(int batch_size) = 0;
// Return the IO buffer that allocated in engine. One can read/write directly
// on the buffer. If the buffer's buffer is nullptr, one can also allocate
// memory and maintain it outside the engine.
virtual Buffer& buffer(const std::string& name) = 0;
virtual ~EngineBase() {} virtual ~EngineBase() {}
}; // class EngineBase }; // class EngineBase
struct Buffer {
void* buffer{nullptr}; // buffer should be allocated only once.
int max_size; // buffer allocated space.
int size; // data size.
DeviceType device{DeviceType::UNK}; // tells which device this buffer is on.
};
} // namespace inference } // namespace inference
} // namespace paddle } // namespace paddle
nv_library(tensorrt_engine SRCS engine.cc DEPS framework_proto)
nv_test(test_tensorrt SRCS test_tensorrt.cc DEPS dynload_cuda device_context dynamic_loader) nv_test(test_tensorrt SRCS test_tensorrt.cc DEPS dynload_cuda device_context dynamic_loader)
nv_test(test_tensorrt_engine SRCS test_engine.cc engine.cc DEPS dynload_cuda) nv_test(test_tensorrt_engine SRCS test_engine.cc DEPS dynload_cuda tensorrt_engine)
set(ENGINE_FILE ${CMAKE_CURRENT_SOURCE_DIR}/engine.cc)
add_subdirectory(convert) add_subdirectory(convert)
nv_test(test_op_converter SRCS test_op_converter.cc mul_op.cc conv2d_op.cc DEPS ${FLUID_CORE_MODULES}) nv_test(test_op_converter SRCS test_op_converter.cc mul_op.cc conv2d_op.cc DEPS ${FLUID_CORE_MODULES})
nv_test(test_trt_activation_op SRCS test_activation_op.cc ${ENGINE_FILE} activation_op.cc nv_test(test_trt_activation_op SRCS test_activation_op.cc activation_op.cc
DEPS ${FLUID_CORE_MODULES} activation_op) DEPS ${FLUID_CORE_MODULES} activation_op tensorrt_engine)
nv_test(test_io_converter SRCS test_io_converter.cc io_converter.cc DEPS dynload_cuda dynamic_loader lod_tensor) nv_test(test_io_converter SRCS test_io_converter.cc io_converter.cc DEPS dynload_cuda dynamic_loader lod_tensor)
...@@ -30,16 +30,24 @@ void TensorRTEngine::Build(const DescType& paddle_model) { ...@@ -30,16 +30,24 @@ void TensorRTEngine::Build(const DescType& paddle_model) {
} }
void TensorRTEngine::Execute(int batch_size) { void TensorRTEngine::Execute(int batch_size) {
infer_context_->enqueue(batch_size, buffers_.data(), *stream_, nullptr); std::vector<void*> buffers;
for (auto& buf : buffers_) {
PADDLE_ENFORCE_NOT_NULL(buf.buffer, "buffer should be allocated");
PADDLE_ENFORCE_GT(buf.max_size, 0);
PADDLE_ENFORCE(buf.device == DeviceType::GPU);
buffers.push_back(buf.buffer);
}
infer_context_->enqueue(batch_size, buffers.data(), *stream_, nullptr);
cudaStreamSynchronize(*stream_); cudaStreamSynchronize(*stream_);
} }
TensorRTEngine::~TensorRTEngine() { TensorRTEngine::~TensorRTEngine() {
// clean buffer // clean buffer
for (auto& buffer : buffers_) { for (auto& buf : buffers_) {
if (buffer != nullptr) { if (buf.buffer != nullptr) {
PADDLE_ENFORCE_EQ(0, cudaFree(buffer)); PADDLE_ENFORCE_EQ(0, cudaFree(buf.buffer));
buffer = nullptr; buf.buffer = nullptr;
buf.max_size = 0;
} }
} }
} }
...@@ -59,7 +67,7 @@ void TensorRTEngine::FreezeNetwork() { ...@@ -59,7 +67,7 @@ void TensorRTEngine::FreezeNetwork() {
infer_context_.reset(infer_engine_->createExecutionContext()); infer_context_.reset(infer_engine_->createExecutionContext());
// allocate GPU buffers. // allocate GPU buffers.
buffers_.resize(buffer_sizes_.size(), nullptr); buffers_.resize(buffer_sizes_.size());
for (auto& item : buffer_sizes_) { for (auto& item : buffer_sizes_) {
if (item.second == 0) { if (item.second == 0) {
auto slot_offset = infer_engine_->getBindingIndex(item.first.c_str()); auto slot_offset = infer_engine_->getBindingIndex(item.first.c_str());
...@@ -67,7 +75,11 @@ void TensorRTEngine::FreezeNetwork() { ...@@ -67,7 +75,11 @@ void TensorRTEngine::FreezeNetwork() {
infer_engine_->getBindingDataType(slot_offset))] * infer_engine_->getBindingDataType(slot_offset))] *
AccumDims(infer_engine_->getBindingDimensions(slot_offset)); AccumDims(infer_engine_->getBindingDimensions(slot_offset));
} }
PADDLE_ENFORCE_EQ(0, cudaMalloc(&buffer(item.first), item.second)); auto& buf = buffer(item.first);
CHECK(buf.buffer == nullptr); // buffer should be allocated only once.
PADDLE_ENFORCE_EQ(0, cudaMalloc(&buf.buffer, item.second));
buf.size = buf.max_size = item.second;
buf.device = DeviceType::GPU;
} }
} }
...@@ -113,7 +125,7 @@ void TensorRTEngine::DeclareOutput(const std::string& name) { ...@@ -113,7 +125,7 @@ void TensorRTEngine::DeclareOutput(const std::string& name) {
} }
void* TensorRTEngine::GetOutputInGPU(const std::string& name) { void* TensorRTEngine::GetOutputInGPU(const std::string& name) {
return buffer(name); return buffer(name).buffer;
} }
void TensorRTEngine::GetOutputInCPU(const std::string& name, void* dst, void TensorRTEngine::GetOutputInCPU(const std::string& name, void* dst,
...@@ -123,11 +135,13 @@ void TensorRTEngine::GetOutputInCPU(const std::string& name, void* dst, ...@@ -123,11 +135,13 @@ void TensorRTEngine::GetOutputInCPU(const std::string& name, void* dst,
PADDLE_ENFORCE(it != buffer_sizes_.end()); PADDLE_ENFORCE(it != buffer_sizes_.end());
PADDLE_ENFORCE_GT(it->second, 0); PADDLE_ENFORCE_GT(it->second, 0);
PADDLE_ENFORCE_GE(max_size, it->second); PADDLE_ENFORCE_GE(max_size, it->second);
PADDLE_ENFORCE_EQ(0, cudaMemcpyAsync(dst, buffer(name), it->second, auto& buf = buffer(name);
PADDLE_ENFORCE_NOT_NULL(buf.buffer, "buffer should be allocated before");
PADDLE_ENFORCE_EQ(0, cudaMemcpyAsync(dst, buf.buffer, it->second,
cudaMemcpyDeviceToHost, *stream_)); cudaMemcpyDeviceToHost, *stream_));
} }
void*& TensorRTEngine::buffer(const std::string& name) { Buffer& TensorRTEngine::buffer(const std::string& name) {
PADDLE_ENFORCE(infer_engine_ != nullptr, "call FreezeNetwork first."); PADDLE_ENFORCE(infer_engine_ != nullptr, "call FreezeNetwork first.");
auto it = buffer_sizes_.find(name); auto it = buffer_sizes_.find(name);
PADDLE_ENFORCE(it != buffer_sizes_.end()); PADDLE_ENFORCE(it != buffer_sizes_.end());
...@@ -137,10 +151,12 @@ void*& TensorRTEngine::buffer(const std::string& name) { ...@@ -137,10 +151,12 @@ void*& TensorRTEngine::buffer(const std::string& name) {
void TensorRTEngine::SetInputFromCPU(const std::string& name, void* data, void TensorRTEngine::SetInputFromCPU(const std::string& name, void* data,
size_t size) { size_t size) {
void* buf = buffer(name); auto& buf = buffer(name);
cudaMemcpyAsync(buf, data, size, cudaMemcpyHostToDevice, *stream_); PADDLE_ENFORCE_NOT_NULL(buf.buffer);
PADDLE_ENFORCE_EQ( PADDLE_ENFORCE_LE(size, buf.max_size, "buffer is too small");
0, cudaMemcpyAsync(buf, data, size, cudaMemcpyHostToDevice, *stream_)); PADDLE_ENFORCE(buf.device == DeviceType::GPU);
PADDLE_ENFORCE_EQ(0, cudaMemcpyAsync(buf.buffer, data, size,
cudaMemcpyHostToDevice, *stream_));
} }
void TensorRTEngine::SetITensor(const std::string& name, void TensorRTEngine::SetITensor(const std::string& name,
......
...@@ -87,7 +87,9 @@ class TensorRTEngine : public EngineBase { ...@@ -87,7 +87,9 @@ class TensorRTEngine : public EngineBase {
// these memory directly for acceleration, for example, output the converted // these memory directly for acceleration, for example, output the converted
// data directly to the buffer to save data copy overhead. // data directly to the buffer to save data copy overhead.
// NOTE this should be used after calling `FreezeNetwork`. // NOTE this should be used after calling `FreezeNetwork`.
void*& buffer(const std::string& name); Buffer& buffer(const std::string& name) override;
cudaStream_t* stream() { return stream_; }
// Fill an input from CPU memory with name and size. // Fill an input from CPU memory with name and size.
void SetInputFromCPU(const std::string& name, void* data, size_t size); void SetInputFromCPU(const std::string& name, void* data, size_t size);
...@@ -116,7 +118,7 @@ class TensorRTEngine : public EngineBase { ...@@ -116,7 +118,7 @@ class TensorRTEngine : public EngineBase {
cudaStream_t* stream_; cudaStream_t* stream_;
nvinfer1::ILogger& logger_; nvinfer1::ILogger& logger_;
std::vector<void*> buffers_; std::vector<Buffer> buffers_;
// max data size for the buffers. // max data size for the buffers.
std::unordered_map<std::string /*name*/, size_t /*max size*/> buffer_sizes_; std::unordered_map<std::string /*name*/, size_t /*max size*/> buffer_sizes_;
std::unordered_map<std::string /*name*/, nvinfer1::ITensor* /*ITensor*/> std::unordered_map<std::string /*name*/, nvinfer1::ITensor* /*ITensor*/>
......
...@@ -77,6 +77,37 @@ TEST_F(TensorRTEngineTest, add_layer) { ...@@ -77,6 +77,37 @@ TEST_F(TensorRTEngineTest, add_layer) {
ASSERT_EQ(y_cpu, x_v * 2 + 3); ASSERT_EQ(y_cpu, x_v * 2 + 3);
} }
TEST_F(TensorRTEngineTest, add_layer_multi_dim) {
// Weight in CPU memory.
// It seems tensorrt FC use col-major: [[1.0, 3.3], [1.1, 4.4]]
// instead of row-major, which is [[1.0, 1.1], [3.3, 4.4]]
float raw_weight[4] = {1.0, 1.1, 3.3, 4.4};
float raw_bias[2] = {1.3, 2.4};
TensorRTEngine::Weight weight(nvinfer1::DataType::kFLOAT, raw_weight, 4);
TensorRTEngine::Weight bias(nvinfer1::DataType::kFLOAT, raw_bias, 2);
auto* x = engine_->DeclareInput("x", nvinfer1::DataType::kFLOAT,
nvinfer1::DimsCHW{1, 2, 1});
auto* fc_layer = TRT_ENGINE_ADD_LAYER(engine_, FullyConnected, *x, 2,
weight.get(), bias.get());
PADDLE_ENFORCE(fc_layer != nullptr);
engine_->DeclareOutput(fc_layer, 0, "y");
engine_->FreezeNetwork();
ASSERT_EQ(engine_->engine()->getNbBindings(), 2);
float x_v[2] = {1.0, 2.0};
engine_->SetInputFromCPU("x", reinterpret_cast<void*>(&x_v),
2 * sizeof(float));
engine_->Execute(1);
LOG(INFO) << "to get output";
float y_cpu[2] = {-1., -1.};
engine_->GetOutputInCPU("y", &y_cpu[0], sizeof(float) * 2);
ASSERT_EQ(y_cpu[0], 4.5);
ASSERT_EQ(y_cpu[1], 14.5);
}
} // namespace tensorrt } // namespace tensorrt
} // namespace inference } // namespace inference
} // namespace paddle } // namespace paddle
...@@ -36,5 +36,5 @@ inference_test(label_semantic_roles) ...@@ -36,5 +36,5 @@ inference_test(label_semantic_roles)
inference_test(recognize_digits ARGS mlp conv) inference_test(recognize_digits ARGS mlp conv)
inference_test(recommender_system) inference_test(recommender_system)
#inference_test(rnn_encoder_decoder) #inference_test(rnn_encoder_decoder)
inference_test(understand_sentiment ARGS conv) #inference_test(understand_sentiment ARGS conv)
inference_test(word2vec) inference_test(word2vec)
...@@ -187,7 +187,8 @@ class GemmConvKernel : public framework::OpKernel<T> { ...@@ -187,7 +187,8 @@ class GemmConvKernel : public framework::OpKernel<T> {
// gemm // gemm
Tensor out_slice = out_batch.Slice(g * out_step, (g + 1) * out_step); Tensor out_slice = out_batch.Slice(g * out_step, (g + 1) * out_step);
Tensor filter_slice = filter.Slice(g * out_step, (g + 1) * out_step); Tensor filter_slice = filter.Slice(g * out_step, (g + 1) * out_step);
blas.MatMul(filter_slice, col_matrix, &out_slice); blas.MatMul(filter_slice, false, col_matrix, false, T(1.0), &out_slice,
T(0.0));
} }
} }
} }
...@@ -304,7 +305,8 @@ class GemmConvGradKernel : public framework::OpKernel<T> { ...@@ -304,7 +305,8 @@ class GemmConvGradKernel : public framework::OpKernel<T> {
col_matrix.ShareDataWith(in_grad_slice); col_matrix.ShareDataWith(in_grad_slice);
col_matrix.Resize(col_matrix_shape); col_matrix.Resize(col_matrix_shape);
} }
blas.MatMul(filter_slice, true, out_grad_slice, false, &col_matrix); blas.MatMul(filter_slice, true, out_grad_slice, false, T(1.0),
&col_matrix, T(0.0));
if (is_expand && data_dim == 2U) { if (is_expand && data_dim == 2U) {
col2im(dev_ctx, col, dilations, strides, col2im(dev_ctx, col, dilations, strides,
...@@ -351,8 +353,8 @@ class GemmConvGradKernel : public framework::OpKernel<T> { ...@@ -351,8 +353,8 @@ class GemmConvGradKernel : public framework::OpKernel<T> {
// gemm // gemm
Tensor filter_grad_slice = Tensor filter_grad_slice =
filter_grad_.Slice(g * out_step, (g + 1) * out_step); filter_grad_.Slice(g * out_step, (g + 1) * out_step);
blas.MatMul(out_grad_slice, false, col_matrix, true, blas.MatMul(out_grad_slice, false, col_matrix, true, T(1.0),
&filter_grad_slice); &filter_grad_slice, T(1.0));
} }
} }
} }
......
...@@ -135,7 +135,8 @@ class GemmConvTransposeKernel : public framework::OpKernel<T> { ...@@ -135,7 +135,8 @@ class GemmConvTransposeKernel : public framework::OpKernel<T> {
// col_matrix = filter * input_batch // col_matrix = filter * input_batch
// of shape (c * k_h * k_w, h * w) or (c * k_d * k_h * k_w, d * h * w) // of shape (c * k_h * k_w, h * w) or (c * k_d * k_h * k_w, d * h * w)
blas.MatMul(filter, true, input_batch, false, &col_matrix); blas.MatMul(filter, true, input_batch, false, static_cast<T>(1.0),
&col_matrix, static_cast<T>(0.0));
if (data_dim == 2U) { if (data_dim == 2U) {
// col2im: col_matrix -> dy // col2im: col_matrix -> dy
...@@ -267,7 +268,8 @@ class GemmConvTransposeGradKernel : public framework::OpKernel<T> { ...@@ -267,7 +268,8 @@ class GemmConvTransposeGradKernel : public framework::OpKernel<T> {
// or // or
// (m, c * k_d * k_h * k_w) * (c * k_d * k_h * k_w, d * h * w) -> (m, // (m, c * k_d * k_h * k_w) * (c * k_d * k_h * k_w, d * h * w) -> (m,
// d, h, w) // d, h, w)
blas.MatMul(filter, false, col_matrix, false, &input_grad_batch); blas.MatMul(filter, false, col_matrix, false, static_cast<T>(1.0),
&input_grad_batch, static_cast<T>(0.0));
} }
if (filter_grad) { if (filter_grad) {
// input batch // input batch
...@@ -277,7 +279,8 @@ class GemmConvTransposeGradKernel : public framework::OpKernel<T> { ...@@ -277,7 +279,8 @@ class GemmConvTransposeGradKernel : public framework::OpKernel<T> {
// or // or
// (m, d * h * w) * (d * h * w, c * k_d * k_h * k_w) -> (m, c * k_d * // (m, d * h * w) * (d * h * w, c * k_d * k_h * k_w) -> (m, c * k_d *
// k_h * k_w) // k_h * k_w)
blas.MatMul(in_batch, false, col_matrix, true, &filter_grad_); blas.MatMul(in_batch, false, col_matrix, true, static_cast<T>(1.0),
&filter_grad_, static_cast<T>(1.0));
} }
} }
} }
......
...@@ -46,19 +46,6 @@ class LoadOp : public framework::OperatorBase { ...@@ -46,19 +46,6 @@ class LoadOp : public framework::OperatorBase {
auto *tensor = out_var->GetMutable<framework::LoDTensor>(); auto *tensor = out_var->GetMutable<framework::LoDTensor>();
DeserializeFromStream(fin, tensor, *dev_ctx); DeserializeFromStream(fin, tensor, *dev_ctx);
if (platform::is_gpu_place(place)) {
// copy CPU to GPU
framework::LoDTensor cpu_tensor;
cpu_tensor.ShareDataWith(*tensor);
cpu_tensor.set_lod(tensor->lod());
// reset tensor
out_var->Clear();
tensor = out_var->GetMutable<framework::LoDTensor>();
tensor->set_lod(cpu_tensor.lod());
TensorCopy(cpu_tensor, place, *dev_ctx, tensor);
}
} }
}; };
......
...@@ -63,6 +63,7 @@ __device__ T reduceSum(T val, int tid, int len) { ...@@ -63,6 +63,7 @@ __device__ T reduceSum(T val, int tid, int len) {
val += platform::CudaShuffleDownSync(mask, val, offset); val += platform::CudaShuffleDownSync(mask, val, offset);
if (tid < warpSize) shm[tid] = 0; if (tid < warpSize) shm[tid] = 0;
__syncthreads();
if (tid % warpSize == 0) { if (tid % warpSize == 0) {
shm[tid / warpSize] = val; shm[tid / warpSize] = val;
......
...@@ -463,7 +463,7 @@ void SetProfileListener() { ...@@ -463,7 +463,7 @@ void SetProfileListener() {
std::mt19937 rng; std::mt19937 rng;
rng.seed(std::random_device()()); rng.seed(std::random_device()());
std::uniform_int_distribution<std::mt19937::result_type> dist6( std::uniform_int_distribution<std::mt19937::result_type> dist6(
1, std::numeric_limits<int64_t>::max()); 1, std::numeric_limits<std::mt19937::result_type>::max());
profiler_lister_id = dist6(rng); profiler_lister_id = dist6(rng);
} }
int64_t ListenerId() { return profiler_lister_id; } int64_t ListenerId() { return profiler_lister_id; }
......
...@@ -398,7 +398,7 @@ function gen_dockerfile() { ...@@ -398,7 +398,7 @@ function gen_dockerfile() {
cat <<EOF cat <<EOF
======================================== ========================================
Generate /paddle/build/Dockerfile ... Generate ${PADDLE_ROOT}/build/Dockerfile ...
======================================== ========================================
EOF EOF
...@@ -422,7 +422,7 @@ EOF ...@@ -422,7 +422,7 @@ EOF
CMD='"true"' CMD='"true"'
fi fi
cat >> /paddle/build/Dockerfile <<EOF cat >> ${PADDLE_ROOT}/build/Dockerfile <<EOF
ADD python/dist/*.whl / ADD python/dist/*.whl /
# run paddle version to install python packages first # run paddle version to install python packages first
RUN apt-get update &&\ RUN apt-get update &&\
...@@ -436,8 +436,14 @@ EOF ...@@ -436,8 +436,14 @@ EOF
${DOCKERFILE_CUDNN_DSO} ${DOCKERFILE_CUDNN_DSO}
${DOCKERFILE_GPU_ENV} ${DOCKERFILE_GPU_ENV}
ENV NCCL_LAUNCH_MODE PARALLEL ENV NCCL_LAUNCH_MODE PARALLEL
EOF
if [[ ${WITH_GOLANG:-OFF} == "ON" ]]; then
cat >> ${PADDLE_ROOT}/build/Dockerfile <<EOF
ADD go/cmd/pserver/pserver /usr/bin/ ADD go/cmd/pserver/pserver /usr/bin/
ADD go/cmd/master/master /usr/bin/ ADD go/cmd/master/master /usr/bin/
EOF
fi
cat >> ${PADDLE_ROOT}/build/Dockerfile <<EOF
# default command shows the paddle version and exit # default command shows the paddle version and exit
CMD [${CMD}] CMD [${CMD}]
EOF EOF
......
...@@ -32,7 +32,7 @@ function start_build_docker() { ...@@ -32,7 +32,7 @@ function start_build_docker() {
DOCKER_ENV=$(cat <<EOL DOCKER_ENV=$(cat <<EOL
-e FLAGS_fraction_of_gpu_memory_to_use=0.15 \ -e FLAGS_fraction_of_gpu_memory_to_use=0.15 \
-e CTEST_OUTPUT_ON_FAILURE=1 \ -e CTEST_OUTPUT_ON_FAILURE=1 \
-e CTEST_PARALLEL_LEVEL=5 \ -e CTEST_PARALLEL_LEVEL=1 \
-e APT_MIRROR=${apt_mirror} \ -e APT_MIRROR=${apt_mirror} \
-e WITH_GPU=ON \ -e WITH_GPU=ON \
-e CUDA_ARCH_NAME=Auto \ -e CUDA_ARCH_NAME=Auto \
......
...@@ -96,7 +96,7 @@ def __get_dict_size(src_dict_size, trg_dict_size, src_lang): ...@@ -96,7 +96,7 @@ def __get_dict_size(src_dict_size, trg_dict_size, src_lang):
src_dict_size = min(src_dict_size, (TOTAL_EN_WORDS if src_lang == "en" else src_dict_size = min(src_dict_size, (TOTAL_EN_WORDS if src_lang == "en" else
TOTAL_DE_WORDS)) TOTAL_DE_WORDS))
trg_dict_size = min(trg_dict_size, (TOTAL_DE_WORDS if src_lang == "en" else trg_dict_size = min(trg_dict_size, (TOTAL_DE_WORDS if src_lang == "en" else
TOTAL_ENG_WORDS)) TOTAL_EN_WORDS))
return src_dict_size, trg_dict_size return src_dict_size, trg_dict_size
......
...@@ -299,14 +299,18 @@ class Executor(object): ...@@ -299,14 +299,18 @@ class Executor(object):
if feed is None: if feed is None:
feed = {} feed = {}
if not isinstance(feed, dict): if not isinstance(feed, dict):
raise TypeError("feed should be a map") raise TypeError(
"feed requires dict as its Parameter. But you passed in %s" %
(type(feed)))
if fetch_list is None: if fetch_list is None:
fetch_list = [] fetch_list = []
if program is None: if program is None:
program = default_main_program() program = default_main_program()
if not isinstance(program, Program): if not isinstance(program, Program):
raise TypeError() raise TypeError(
"Executor requires Program as its Parameter. But you passed in %s"
% (type(program)))
if scope is None: if scope is None:
scope = global_scope() scope = global_scope()
......
...@@ -47,6 +47,8 @@ class Optimizer(object): ...@@ -47,6 +47,8 @@ class Optimizer(object):
raise TypeError("learning rate should be float or Variable") raise TypeError("learning rate should be float or Variable")
self.regularization = regularization self.regularization = regularization
self._learning_rate = learning_rate self._learning_rate = learning_rate
# the learning rate type should be inferenced from loss
self._dtype = None
# each program should have a independent learning rate # each program should have a independent learning rate
# program -> Variable(learning_rate) # program -> Variable(learning_rate)
self._learning_rate_map = dict() self._learning_rate_map = dict()
...@@ -77,7 +79,7 @@ class Optimizer(object): ...@@ -77,7 +79,7 @@ class Optimizer(object):
name=unique_name.generate("learning_rate"), name=unique_name.generate("learning_rate"),
shape=[1], shape=[1],
value=float(self._learning_rate), value=float(self._learning_rate),
dtype='float32', dtype='float32' if self._dtype == None else self._dtype,
persistable=True) persistable=True)
def global_learning_rate(self, program=None): def global_learning_rate(self, program=None):
...@@ -200,6 +202,7 @@ class Optimizer(object): ...@@ -200,6 +202,7 @@ class Optimizer(object):
# Create any accumulators # Create any accumulators
program = loss.block.program program = loss.block.program
self._dtype = loss.dtype
with program_guard(program, startup_program): with program_guard(program, startup_program):
global_block = framework.default_main_program().global_block() global_block = framework.default_main_program().global_block()
start = len(global_block.ops) start = len(global_block.ops)
...@@ -391,7 +394,7 @@ class AdamOptimizer(Optimizer): ...@@ -391,7 +394,7 @@ class AdamOptimizer(Optimizer):
beta_shape = [1] beta_shape = [1]
self._beta1_pow_acc = self.helper.create_global_variable( self._beta1_pow_acc = self.helper.create_global_variable(
name=unique_name.generate('beta1_pow_acc'), name=unique_name.generate('beta1_pow_acc'),
dtype='float32', dtype='float32' if self._dtype == None else self._dtype,
shape=beta_shape, shape=beta_shape,
lod_level=0, lod_level=0,
persistable=True) persistable=True)
...@@ -400,7 +403,7 @@ class AdamOptimizer(Optimizer): ...@@ -400,7 +403,7 @@ class AdamOptimizer(Optimizer):
self._beta2_pow_acc = self.helper.create_global_variable( self._beta2_pow_acc = self.helper.create_global_variable(
name=unique_name.generate('beta2_pow_acc'), name=unique_name.generate('beta2_pow_acc'),
dtype='float32', dtype='float32' if self._dtype == None else self._dtype,
shape=beta_shape, shape=beta_shape,
lod_level=0, lod_level=0,
persistable=True) persistable=True)
...@@ -493,7 +496,7 @@ class AdamaxOptimizer(Optimizer): ...@@ -493,7 +496,7 @@ class AdamaxOptimizer(Optimizer):
beta_shape = [1] beta_shape = [1]
self._beta1_pow_acc = self.helper.create_global_variable( self._beta1_pow_acc = self.helper.create_global_variable(
name=unique_name.generate('beta1_pow_acc'), name=unique_name.generate('beta1_pow_acc'),
dtype='float32', dtype='float32' if self._dtype == None else self._dtype,
shape=beta_shape, shape=beta_shape,
lod_level=0, lod_level=0,
persistable=True) persistable=True)
...@@ -900,8 +903,10 @@ class ModelAverage(Optimizer): ...@@ -900,8 +903,10 @@ class ModelAverage(Optimizer):
# param = (sum_1 + sum_2 + sum_3) / (num_accumulates + old_num_accumulates) # param = (sum_1 + sum_2 + sum_3) / (num_accumulates + old_num_accumulates)
tmp = layers.sum(x=[num_accumulates, old_num_accumulates]) tmp = layers.sum(x=[num_accumulates, old_num_accumulates])
sum = layers.sum(x=[sum_1, sum_2, sum_3]) sum = layers.sum(x=[sum_1, sum_2, sum_3])
tmp = layers.cast(x=tmp, dtype='float32') tmp = layers.cast(
sum = layers.cast(x=sum, dtype='float32') x=tmp, dtype='float32' if self._dtype == None else self._dtype)
sum = layers.cast(
x=sum, dtype='float32' if self._dtype == None else self._dtype)
layers.elementwise_div(x=sum, y=tmp, out=param) layers.elementwise_div(x=sum, y=tmp, out=param)
def _add_average_restore_op(self, block, param_grad): def _add_average_restore_op(self, block, param_grad):
......
...@@ -36,7 +36,7 @@ depth = 8 ...@@ -36,7 +36,7 @@ depth = 8
mix_hidden_lr = 1e-3 mix_hidden_lr = 1e-3
IS_SPARSE = True IS_SPARSE = True
PASS_NUM = 100 PASS_NUM = 10
BATCH_SIZE = 10 BATCH_SIZE = 10
embedding_name = 'emb' embedding_name = 'emb'
......
...@@ -18,7 +18,7 @@ import unittest ...@@ -18,7 +18,7 @@ import unittest
import paddle.fluid.layers as layers import paddle.fluid.layers as layers
import paddle.fluid.optimizer as optimizer import paddle.fluid.optimizer as optimizer
from paddle.fluid.framework import Program, program_guard from paddle.fluid.framework import Program, program_guard
from paddle.fluid.memory_optimization_transpiler import memory_optimize from paddle.fluid.transpiler import memory_optimize
class TestControlFlowGraph(unittest.TestCase): class TestControlFlowGraph(unittest.TestCase):
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
from paddle.fluid.executor import Executor
BATCH_SIZE = 20
class TestNetWithDtype(unittest.TestCase):
def setUp(self):
self.dtype = "float64"
self.init_dtype()
self.x = fluid.layers.data(name='x', shape=[13], dtype=self.dtype)
self.y = fluid.layers.data(name='y', shape=[1], dtype=self.dtype)
y_predict = fluid.layers.fc(input=self.x, size=1, act=None)
cost = fluid.layers.square_error_cost(input=y_predict, label=self.y)
avg_cost = fluid.layers.mean(cost)
self.fetch_list = [avg_cost]
sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
sgd_optimizer.minimize(avg_cost)
def run_net_on_place(self, place):
train_reader = paddle.batch(
paddle.dataset.uci_housing.train(), batch_size=BATCH_SIZE)
feeder = fluid.DataFeeder(place=place, feed_list=[self.x, self.y])
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
for data in train_reader():
exe.run(fluid.default_main_program(),
feed=feeder.feed(data),
fetch_list=self.fetch_list)
# the main program is runable, the datatype is fully supported
break
def init_dtype(self):
pass
def test_cpu(self):
place = fluid.CPUPlace()
self.run_net_on_place(place)
def test_gpu(self):
if not core.is_compiled_with_cuda():
return
place = fluid.CUDAPlace(0)
self.run_net_on_place(place)
# TODO(dzhwinter): make sure the fp16 is runable
# class TestFloat16(SimpleNet):
# def init_dtype(self):
# self.dtype = "float16"
if __name__ == '__main__':
unittest.main()
...@@ -12,7 +12,7 @@ ...@@ -12,7 +12,7 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
import numpy import numpy as np
import unittest import unittest
import paddle.fluid as fluid import paddle.fluid as fluid
...@@ -243,7 +243,7 @@ class TestParallelExecutorBase(unittest.TestCase): ...@@ -243,7 +243,7 @@ class TestParallelExecutorBase(unittest.TestCase):
begin = time.time() begin = time.time()
first_loss, = run_executor( first_loss, = run_executor(
exe=exe, feed=feed_dict, fetch_list=[loss.name]) exe=exe, feed=feed_dict, fetch_list=[loss.name])
first_loss = numpy.array(first_loss) first_loss = np.array(first_loss)
for i in xrange(iter): for i in xrange(iter):
run_executor(exe=exe, feed=feed_dict, fetch_list=[]) run_executor(exe=exe, feed=feed_dict, fetch_list=[])
...@@ -256,7 +256,7 @@ class TestParallelExecutorBase(unittest.TestCase): ...@@ -256,7 +256,7 @@ class TestParallelExecutorBase(unittest.TestCase):
print "%.4f Instance per second" % ( print "%.4f Instance per second" % (
(batch_size * iter + 2) / (end - begin)) (batch_size * iter + 2) / (end - begin))
last_loss = numpy.array(last_loss) last_loss = np.array(last_loss)
print first_loss, last_loss print first_loss, last_loss
# self.assertGreater(first_loss[0], last_loss[0]) # self.assertGreater(first_loss[0], last_loss[0])
...@@ -284,8 +284,8 @@ class TestMNIST(TestParallelExecutorBase): ...@@ -284,8 +284,8 @@ class TestMNIST(TestParallelExecutorBase):
self.check_network_convergence(simple_fc_net) self.check_network_convergence(simple_fc_net)
self.check_network_convergence(simple_fc_net, allow_op_delay=True) self.check_network_convergence(simple_fc_net, allow_op_delay=True)
img = numpy.zeros(shape=[32, 784], dtype='float32') img = np.zeros(shape=[32, 784], dtype='float32')
label = numpy.ones(shape=[32, 1], dtype='int64') label = np.ones(shape=[32, 1], dtype='int64')
self.check_network_convergence( self.check_network_convergence(
simple_fc_net, feed_dict={"image": img, simple_fc_net, feed_dict={"image": img,
"label": label}) "label": label})
...@@ -294,8 +294,8 @@ class TestMNIST(TestParallelExecutorBase): ...@@ -294,8 +294,8 @@ class TestMNIST(TestParallelExecutorBase):
self.check_simple_fc_convergence() self.check_simple_fc_convergence()
def check_simple_fc_parallel_accuracy(self): def check_simple_fc_parallel_accuracy(self):
img = numpy.zeros(shape=[32, 784], dtype='float32') img = np.zeros(shape=[32, 784], dtype='float32')
label = numpy.ones(shape=[32, 1], dtype='int64') label = np.ones(shape=[32, 1], dtype='int64')
single_first_loss, single_last_loss = self.check_network_convergence( single_first_loss, single_last_loss = self.check_network_convergence(
method=simple_fc_net, method=simple_fc_net,
seed=1000, seed=1000,
...@@ -319,8 +319,8 @@ class TestMNIST(TestParallelExecutorBase): ...@@ -319,8 +319,8 @@ class TestMNIST(TestParallelExecutorBase):
def check_batchnorm_fc_convergence(self): def check_batchnorm_fc_convergence(self):
self.check_network_convergence(fc_with_batchnorm) self.check_network_convergence(fc_with_batchnorm)
img = numpy.zeros(shape=[32, 784], dtype='float32') img = np.zeros(shape=[32, 784], dtype='float32')
label = numpy.ones(shape=[32, 1], dtype='int64') label = np.ones(shape=[32, 1], dtype='int64')
self.check_network_convergence( self.check_network_convergence(
fc_with_batchnorm, feed_dict={"image": img, fc_with_batchnorm, feed_dict={"image": img,
"label": label}) "label": label})
...@@ -404,9 +404,6 @@ class ModelHyperParams(object): ...@@ -404,9 +404,6 @@ class ModelHyperParams(object):
dropout = 0.1 dropout = 0.1
import numpy as np
def prepare_batch_input(insts, src_pad_idx, trg_pad_idx, n_head): def prepare_batch_input(insts, src_pad_idx, trg_pad_idx, n_head):
""" """
Pad the instances to the max sequence length in batch, and generate the Pad the instances to the max sequence length in batch, and generate the
...@@ -533,9 +530,8 @@ class ParallelExecutorTestingDuringTraining(unittest.TestCase): ...@@ -533,9 +530,8 @@ class ParallelExecutorTestingDuringTraining(unittest.TestCase):
opt.minimize(loss) opt.minimize(loss)
batch_size = 32 batch_size = 32
image = numpy.random.normal(size=(batch_size, image = np.random.normal(size=(batch_size, 784)).astype('float32')
784)).astype('float32') label = np.random.randint(0, 10, (batch_size, 1), dtype="int64")
label = numpy.random.randint(0, 10, (batch_size, 1), dtype="int64")
place = fluid.CUDAPlace(0) place = fluid.CUDAPlace(0)
exe = fluid.Executor(place) exe = fluid.Executor(place)
...@@ -552,12 +548,12 @@ class ParallelExecutorTestingDuringTraining(unittest.TestCase): ...@@ -552,12 +548,12 @@ class ParallelExecutorTestingDuringTraining(unittest.TestCase):
for i in xrange(5): for i in xrange(5):
test_loss, = test_exe.run([loss.name], feed=feed_dict) test_loss, = test_exe.run([loss.name], feed=feed_dict)
test_loss = numpy.array(test_loss) test_loss = np.array(test_loss)
train_loss, = train_exe.run([loss.name], feed=feed_dict) train_loss, = train_exe.run([loss.name], feed=feed_dict)
train_loss = numpy.array(train_loss) train_loss = np.array(train_loss)
self.assertTrue( self.assertTrue(
numpy.allclose( np.allclose(
train_loss, test_loss, atol=1e-8), train_loss, test_loss, atol=1e-8),
"Train loss: " + str(train_loss) + "\n Test loss:" + "Train loss: " + str(train_loss) + "\n Test loss:" +
str(test_loss)) str(test_loss))
...@@ -712,7 +708,7 @@ class TestCRFModel(unittest.TestCase): ...@@ -712,7 +708,7 @@ class TestCRFModel(unittest.TestCase):
data = train_data() data = train_data()
for i in xrange(10): for i in xrange(10):
cur_batch = next(data) cur_batch = next(data)
print map(numpy.array, print map(np.array,
pe.run(feed=feeder.feed(cur_batch), pe.run(feed=feeder.feed(cur_batch),
fetch_list=[avg_cost.name]))[0] fetch_list=[avg_cost.name]))[0]
...@@ -721,3 +717,84 @@ class TestCRFModel(unittest.TestCase): ...@@ -721,3 +717,84 @@ class TestCRFModel(unittest.TestCase):
def test_update_dense_parameter(self): def test_update_dense_parameter(self):
self.check_network_convergence(is_sparse=False) self.check_network_convergence(is_sparse=False)
# test fetch all the variables of global_block
import paddle.dataset.flowers as flowers
import math
def Lenet(data, class_dim):
conv1 = fluid.layers.conv2d(data, 32, 5, 1, act=None)
bn1 = fluid.layers.batch_norm(conv1, act='relu')
pool1 = fluid.layers.pool2d(bn1, 2, 'max', 2)
conv2 = fluid.layers.conv2d(pool1, 50, 5, 1, act=None)
bn2 = fluid.layers.batch_norm(conv2, act='relu')
pool2 = fluid.layers.pool2d(bn2, 2, 'max', 2)
fc1 = fluid.layers.fc(pool2, size=500, act='relu')
fc2 = fluid.layers.fc(fc1, size=class_dim, act='softmax')
return fc2
class TestFetchOp(unittest.TestCase):
def parallel_exe(self, train_inputs, seed):
main = fluid.Program()
startup = fluid.Program()
startup.random_seed = seed
with fluid.program_guard(main, startup):
data = fluid.layers.data(
name='image', shape=[3, 224, 224], dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
out = Lenet(data, class_dim=102)
loss = fluid.layers.cross_entropy(input=out, label=label)
loss = fluid.layers.mean(loss)
opt = fluid.optimizer.Momentum(
learning_rate=0.1,
momentum=0.9,
regularization=fluid.regularizer.L2Decay(1e-4))
opt.minimize(loss)
# TODO(zcd): I found that onece the memory optimizer is open,
# parallel_exe doesn't fetch some variable, such as conv2d_0.b_0@GRAD,
# conv2d_1.b_0@GRAD. Those variables should not be pruned.
# fluid.memory_optimize(main)
place = fluid.CUDAPlace(0)
exe = fluid.Executor(place)
exe.run(startup)
feeder = fluid.DataFeeder(place=place, feed_list=[data, label])
pe = fluid.ParallelExecutor(
use_cuda=True, loss_name=loss.name, main_program=main)
fetch_list = []
all_vars = main.global_block().vars
for k, v in all_vars.iteritems():
if 'tmp' not in k and k[0] is not '_' or v.persistable:
fetch_list.append(k)
for data in train_inputs:
ret = pe.run(fetch_list, feed=feeder.feed(data))
for i in range(len(fetch_list)):
assert not math.isnan(np.sum(ret[i])) and \
not math.isinf(np.sum(ret[i]))
def test_update_sparse_parameter(self):
tst_reader = paddle.batch(flowers.test(use_xmap=False), batch_size=16)
tst_reader_iter = tst_reader()
iters = 3
train_inputs = []
for i in range(iters):
train_inputs.append(tst_reader_iter.next())
self.parallel_exe(train_inputs, seed=1)
if __name__ == '__main__':
unittest.main()
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
import math import math
import unittest import unittest
from paddle.fluid.distribute_transpiler import split_dense_variable from paddle.fluid.transpiler.distribute_transpiler import split_dense_variable
import paddle.fluid as fluid import paddle.fluid as fluid
import paddle.fluid.core as core import paddle.fluid.core as core
import random import random
......
...@@ -20,6 +20,7 @@ import time ...@@ -20,6 +20,7 @@ import time
import threading import threading
import logging import logging
import copy import copy
import csv
import netaddr import netaddr
import boto3 import boto3
...@@ -136,6 +137,12 @@ parser.add_argument( ...@@ -136,6 +137,12 @@ parser.add_argument(
parser.add_argument( parser.add_argument(
'--master_server_ip', type=str, default="", help="master server private ip") '--master_server_ip', type=str, default="", help="master server private ip")
parser.add_argument(
'--metric_data_identifier',
type=str,
default="**metrics_data: ",
help="key string to identify metrics data")
parser.add_argument( parser.add_argument(
'--no_clean_up', '--no_clean_up',
type=str2bool, type=str2bool,
...@@ -155,6 +162,11 @@ logging.basicConfig( ...@@ -155,6 +162,11 @@ logging.basicConfig(
log_files = ["master.log"] log_files = ["master.log"]
metrics = {}
metrics_csv_file_name = "metrics.csv"
is_metrics_file_created = False
def create_subnet(): def create_subnet():
# if no vpc id provided, list vpcs # if no vpc id provided, list vpcs
...@@ -329,12 +341,42 @@ def create_pservers(): ...@@ -329,12 +341,42 @@ def create_pservers():
cleanup(args.task_name) cleanup(args.task_name)
def save_metrics_data(str_msg):
#parse msg
logging.info("found metrics data, saving it to csv file")
global is_metrics_file_created
metrics_raw = str_msg.split(",")
with open(args.log_path + metrics_csv_file_name, 'a') as csvfile:
csv_fieldnames = []
csv_write_data = {}
for metric in metrics_raw:
metric_data = metric.split("=")
metric_key = metric_data[0].strip()
metric_val = float(metric_data[1].strip())
if not metric_key in metrics:
metrics[metric_key] = []
metric_repo = metrics[metric_key]
metric_repo.append(metric_val)
csv_fieldnames.append(metric_key)
csv_write_data[metric_key] = metric_val
writer = csv.DictWriter(csvfile, fieldnames=csv_fieldnames)
if not is_metrics_file_created:
writer.writeheader()
is_metrics_file_created = True
writer.writerow(csv_write_data)
logging.info("csv file appended")
def log_to_file(source, filename): def log_to_file(source, filename):
if not filename in log_files: if not filename in log_files:
log_files.append(filename) log_files.append(filename)
with open(args.log_path + filename, "a") as log_file: with open(args.log_path + filename, "a") as log_file:
for line in iter(source.readline, ""): for line in iter(source.readline, ""):
log_file.write(line) log_file.write(line)
if (line.startswith(args.metric_data_identifier)):
#found key data, trying to add to csv
line = line.replace(args.metric_data_identifier, "")
save_metrics_data(line)
def parse_command(command_raw, defaults={}): def parse_command(command_raw, defaults={}):
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册