Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
772b476b
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
772b476b
编写于
2月 20, 2017
作者:
Q
qiaolongfei
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
optimize code
上级
3b69629d
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
14 addition
and
18 deletion
+14
-18
demo/mnist/api_train.py
demo/mnist/api_train.py
+2
-2
demo/mnist/api_train_v2.py
demo/mnist/api_train_v2.py
+2
-2
python/paddle/v2/layer.py
python/paddle/v2/layer.py
+10
-14
未找到文件。
demo/mnist/api_train.py
浏览文件 @
772b476b
...
...
@@ -71,8 +71,8 @@ def main():
assert
isinstance
(
updater
,
api
.
ParameterUpdater
)
# define network
images
=
paddle_v2
.
layer
.
data
(
name
=
'pixel'
,
type
=
dp
.
dense_vector
(
784
))
label
=
paddle_v2
.
layer
.
data
(
name
=
'label'
,
type
=
dp
.
integer_value
(
10
))
images
=
paddle_v2
.
layer
.
data
(
name
=
'pixel'
,
data_
type
=
dp
.
dense_vector
(
784
))
label
=
paddle_v2
.
layer
.
data
(
name
=
'label'
,
data_
type
=
dp
.
integer_value
(
10
))
hidden1
=
paddle_v2
.
layer
.
fc
(
input
=
images
,
size
=
200
)
hidden2
=
paddle_v2
.
layer
.
fc
(
input
=
hidden1
,
size
=
200
)
inference
=
paddle_v2
.
layer
.
fc
(
input
=
hidden2
,
...
...
demo/mnist/api_train_v2.py
浏览文件 @
772b476b
...
...
@@ -16,8 +16,8 @@ def main():
paddle
.
init
(
use_gpu
=
False
,
trainer_count
=
1
)
# define network topology
images
=
paddle
.
layer
.
data
(
name
=
'pixel'
,
type
=
dense_vector
(
784
))
label
=
paddle
.
layer
.
data
(
name
=
'label'
,
type
=
integer_value
(
10
))
images
=
paddle
.
layer
.
data
(
name
=
'pixel'
,
data_
type
=
dense_vector
(
784
))
label
=
paddle
.
layer
.
data
(
name
=
'label'
,
data_
type
=
integer_value
(
10
))
hidden1
=
paddle
.
layer
.
fc
(
input
=
images
,
size
=
200
)
hidden2
=
paddle
.
layer
.
fc
(
input
=
hidden1
,
size
=
200
)
inference
=
paddle
.
layer
.
fc
(
input
=
hidden2
,
...
...
python/paddle/v2/layer.py
浏览文件 @
772b476b
...
...
@@ -165,26 +165,22 @@ So we also need to implement some special LayerV2.
class
DataLayerV2
(
Layer
):
def
__init__
(
self
,
name
,
type
,
**
kwargs
):
self
.
__method_name__
=
'data_layer'
assert
isinstance
(
type
,
dp
.
InputType
)
def
__init__
(
self
,
name
,
data_type
,
**
kwargs
):
assert
isinstance
(
data_type
,
dp
.
InputType
)
# get data_size from type.dim
args
=
dict
()
for
key
in
kwargs
:
args
[
key
]
=
kwargs
[
key
]
args
[
'size'
]
=
type
.
dim
self
.
__args__
=
args
self
.
__method_name__
=
'data_layer'
self
.
__kwargs__
=
kwargs
self
.
__data_size__
=
data_type
.
dim
super
(
DataLayerV2
,
self
).
__init__
(
name
=
name
,
parent_layers
=
dict
())
def
to_proto_impl
(
self
,
**
kwargs
):
args
=
dict
()
args
[
'size'
]
=
self
.
__data_size__
for
each
in
kwargs
:
args
[
each
]
=
kwargs
[
each
]
for
each
in
self
.
__args__
:
args
[
each
]
=
self
.
__args__
[
each
]
for
each
in
self
.
__
kw
args__
:
args
[
each
]
=
self
.
__
kw
args__
[
each
]
return
getattr
(
conf_helps
,
self
.
__method_name__
)(
name
=
self
.
name
,
**
args
)
...
...
@@ -202,8 +198,8 @@ cross_entropy_cost = __convert_to_v2__(
parent_names
=
[
'input'
,
'label'
])
if
__name__
==
'__main__'
:
pixel
=
data
(
name
=
'pixel'
,
type
=
dp
.
dense_vector
(
784
))
label
=
data
(
name
=
'label'
,
type
=
dp
.
integer_value
(
10
))
pixel
=
data
(
name
=
'pixel'
,
data_
type
=
dp
.
dense_vector
(
784
))
label
=
data
(
name
=
'label'
,
data_
type
=
dp
.
integer_value
(
10
))
hidden
=
fc
(
input
=
pixel
,
size
=
100
,
act
=
conf_helps
.
SigmoidActivation
())
inference
=
fc
(
input
=
hidden
,
size
=
10
,
act
=
conf_helps
.
SoftmaxActivation
())
maxid
=
max_id
(
input
=
inference
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录