提交 74d3ca8b 编写于 作者: C caoying03

Merge branch 'develop' into cross_entropy_over_beam

...@@ -257,6 +257,11 @@ seq_concat ...@@ -257,6 +257,11 @@ seq_concat
.. autoclass:: paddle.v2.layer.seq_concat .. autoclass:: paddle.v2.layer.seq_concat
:noindex: :noindex:
seq_slice
---------
.. autoclass:: paddle.v2.layer.seq_slice
:noindex:
kmax_sequence_score kmax_sequence_score
------------------- -------------------
.. autoclass:: paddle.v2.layer.kmax_sequence_score .. autoclass:: paddle.v2.layer.kmax_sequence_score
......
...@@ -15,6 +15,7 @@ if(Boost_FOUND) ...@@ -15,6 +15,7 @@ if(Boost_FOUND)
add_subdirectory(platform) add_subdirectory(platform)
add_subdirectory(framework) add_subdirectory(framework)
add_subdirectory(operators) add_subdirectory(operators)
add_subdirectory(pybind)
endif() endif()
if(WITH_C_API) if(WITH_C_API)
......
...@@ -18,8 +18,8 @@ cc_test(scope_test SRCS scope_test.cc DEPS scope) ...@@ -18,8 +18,8 @@ cc_test(scope_test SRCS scope_test.cc DEPS scope)
proto_library(framework_proto SRCS framework.proto) proto_library(framework_proto SRCS framework.proto)
cc_library(attribute SRCS attribute.cc DEPS framework_proto) cc_library(attribute SRCS attribute.cc DEPS framework_proto)
cc_library(op_info SRCS op_info.cc DEPS attribute framework_proto)
cc_library(operator SRCS operator.cc DEPS framework_proto device_context tensor scope attribute) cc_library(operator SRCS operator.cc DEPS op_info device_context tensor scope)
cc_test(operator_test SRCS operator_test.cc DEPS operator op_registry) cc_test(operator_test SRCS operator_test.cc DEPS operator op_registry)
cc_library(grad_op_builder SRCS grad_op_builder.cc DEPS operator) cc_library(grad_op_builder SRCS grad_op_builder.cc DEPS operator)
...@@ -39,21 +39,3 @@ add_custom_command(TARGET framework_py_proto POST_BUILD ...@@ -39,21 +39,3 @@ add_custom_command(TARGET framework_py_proto POST_BUILD
cc_library(backward SRCS backward.cc DEPS net_op) cc_library(backward SRCS backward.cc DEPS net_op)
cc_test(backward_test SRCS backward_test.cc DEPS backward recurrent_op device_context) cc_test(backward_test SRCS backward_test.cc DEPS backward recurrent_op device_context)
if(WITH_PYTHON)
cc_library(paddle_pybind SHARED
SRCS pybind.cc
DEPS pybind python backward
sgd_op
add_op
mul_op
rowwise_add_op
sigmoid_op
softmax_op
mean_op
cross_entropy_op
recurrent_op
uniform_random_op
gaussian_random_op
fill_zeros_like_op)
endif(WITH_PYTHON)
...@@ -72,8 +72,8 @@ class NoGradOpMaker : public OpProtoAndCheckerMaker { ...@@ -72,8 +72,8 @@ class NoGradOpMaker : public OpProtoAndCheckerMaker {
class FcOp : public operators::NetOp { class FcOp : public operators::NetOp {
public: public:
FcOp(const std::string &type, const VarNameMap &inputs, FcOp(const std::string &type, const VariableNameMap &inputs,
const VarNameMap &outputs, const AttributeMap &attrs) const VariableNameMap &outputs, const AttributeMap &attrs)
: NetOp(type, inputs, outputs, attrs) { : NetOp(type, inputs, outputs, attrs) {
AppendOp(OpRegistry::CreateOp("mul", AppendOp(OpRegistry::CreateOp("mul",
{{"X", {Input("X")}}, {"Y", {Input("W")}}}, {{"X", {Input("X")}}, {"Y", {Input("W")}}},
......
...@@ -20,13 +20,13 @@ namespace framework { ...@@ -20,13 +20,13 @@ namespace framework {
enum class OpArgType { IN, OUT }; enum class OpArgType { IN, OUT };
static void TransOpArg(const OperatorBase* src_op, const OpArgType& src_type, static void TransOpArg(const OperatorBase* src_op, const OpArgType& src_type,
bool is_grad, OperatorBase::VarNameMap* vars) { bool is_grad, VariableNameMap* vars) {
const auto& src_inout = const auto& src_inout =
src_type == OpArgType::IN ? src_op->Inputs() : src_op->Outputs(); src_type == OpArgType::IN ? src_op->Inputs() : src_op->Outputs();
auto& dst_inout = *vars; auto& dst_inout = *vars;
const OpProto* proto = OpRegistry::op_info_map().at(src_op->Type()).proto_; auto& proto = OpInfoMap::Instance().Get(src_op->Type()).Proto();
const auto& src_arg_list = const auto& src_arg_list =
src_type == OpArgType::IN ? proto->inputs() : proto->outputs(); src_type == OpArgType::IN ? proto.inputs() : proto.outputs();
for (const auto& arg : src_arg_list) { for (const auto& arg : src_arg_list) {
if (arg.not_in_gradient() && !is_grad) continue; if (arg.not_in_gradient() && !is_grad) continue;
const std::string src_name = arg.name(); const std::string src_name = arg.name();
...@@ -40,26 +40,18 @@ static void TransOpArg(const OperatorBase* src_op, const OpArgType& src_type, ...@@ -40,26 +40,18 @@ static void TransOpArg(const OperatorBase* src_op, const OpArgType& src_type,
} }
OperatorBase* BuildGradOp(const OperatorBase* op) { OperatorBase* BuildGradOp(const OperatorBase* op) {
auto it = OpRegistry::op_info_map().find(op->Type()); auto& info = OpInfoMap::Instance().Get(op->Type());
PADDLE_ENFORCE(it != OpRegistry::op_info_map().end(), PADDLE_ENFORCE(info.HasGradientOp());
"'%s' has not been registered.", op->Type());
PADDLE_ENFORCE(it->second.proto_ != nullptr, "'%s' has no OpProto.",
op->Type());
std::string grad_op_type = it->second.grad_op_type_;
PADDLE_ENFORCE(!grad_op_type.empty(), "'%s' has no gradient operator.",
op->Type());
OperatorBase::VarNameMap inputs; VariableNameMap inputs;
OperatorBase::VarNameMap outputs; VariableNameMap outputs;
TransOpArg(op, OpArgType::IN, false, &inputs); // I TransOpArg(op, OpArgType::IN, false, &inputs); // I
TransOpArg(op, OpArgType::OUT, false, &inputs); // O TransOpArg(op, OpArgType::OUT, false, &inputs); // O
TransOpArg(op, OpArgType::OUT, true, &inputs); // OG TransOpArg(op, OpArgType::OUT, true, &inputs); // OG
TransOpArg(op, OpArgType::IN, true, &outputs); // IG TransOpArg(op, OpArgType::IN, true, &outputs); // IG
it = OpRegistry::op_info_map().find(grad_op_type); auto& grad_info = OpInfoMap::Instance().Get(info.grad_op_type_);
PADDLE_ENFORCE(it != OpRegistry::op_info_map().end(), return grad_info.Creator()(info.grad_op_type_, inputs, outputs, op->Attrs());
"'%s' has not been registered.", grad_op_type);
return it->second.creator_(grad_op_type, inputs, outputs, op->Attrs());
} }
} // namespace framework } // namespace framework
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/framework/op_info.h"
namespace paddle {
namespace framework {
static OpInfoMap* g_op_info_map = nullptr;
OpInfoMap& OpInfoMap::Instance() {
if (g_op_info_map == nullptr) {
g_op_info_map = new OpInfoMap();
}
return *g_op_info_map;
}
} // namespace framework
} // namespace paddle
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <functional>
#include <map>
#include <string>
#include <unordered_map>
#include "paddle/framework/attribute.h"
namespace paddle {
namespace framework {
class OperatorBase;
using VariableNameMap = std::map<std::string, std::vector<std::string>>;
using OpCreator = std::function<OperatorBase*(
const std::string& /*type*/, const VariableNameMap& /*inputs*/,
const VariableNameMap& /*outputs*/, const AttributeMap& /*attrs*/)>;
struct OpInfo {
OpCreator creator_;
std::string grad_op_type_;
OpProto* proto_;
OpAttrChecker* checker_;
bool HasOpProtoAndChecker() const {
return proto_ != nullptr && checker_ != nullptr;
}
const OpProto& Proto() const {
PADDLE_ENFORCE_NOT_NULL(proto_, "Operator Proto has not been registered");
PADDLE_ENFORCE(proto_->IsInitialized(),
"Operator Proto must be initialized in op info");
return *proto_;
}
const OpAttrChecker& Checker() const {
PADDLE_ENFORCE_NOT_NULL(checker_,
"Operator Checker has not been registered");
return *checker_;
}
const OpCreator& Creator() const {
PADDLE_ENFORCE_NOT_NULL(creator_,
"Operator Creator has not been registered");
return creator_;
}
bool HasGradientOp() const { return !grad_op_type_.empty(); }
};
class OpInfoMap {
public:
static OpInfoMap& Instance();
OpInfoMap(const OpInfoMap& o) = delete;
OpInfoMap(OpInfoMap&& o) = delete;
OpInfoMap& operator=(const OpInfoMap& o) = delete;
OpInfoMap& operator=(OpInfoMap&& o) = delete;
bool Has(const std::string& op_type) const {
return map_.find(op_type) != map_.end();
}
void Insert(const std::string& type, const OpInfo& info) {
PADDLE_ENFORCE(!Has(type), "Operator %s has been registered", type);
map_.insert({type, info});
}
const OpInfo& Get(const std::string& type) const {
auto it = map_.find(type);
PADDLE_ENFORCE(it != map_.end(), "Operator %s are not found", type);
return it->second;
}
template <typename Callback>
void IterAllInfo(Callback callback) {
for (auto& it : map_) {
callback(it.first, it.second);
}
}
private:
OpInfoMap() = default;
std::unordered_map<std::string, const OpInfo> map_;
};
} // namespace framework
} // namespace paddle
...@@ -19,32 +19,18 @@ limitations under the License. */ ...@@ -19,32 +19,18 @@ limitations under the License. */
namespace paddle { namespace paddle {
namespace framework { namespace framework {
std::unique_ptr<OperatorBase> OpRegistry::CreateOp(const std::string& type, std::unique_ptr<OperatorBase> OpRegistry::CreateOp(
const VarNameMap& inputs, const std::string& type, const VariableNameMap& inputs,
const VarNameMap& outputs, const VariableNameMap& outputs, AttributeMap attrs) {
AttributeMap attrs) { auto& info = OpInfoMap::Instance().Get(type);
auto it = op_info_map().find(type); info.Checker().Check(attrs);
PADDLE_ENFORCE(it != op_info_map().end(), auto op = info.Creator()(type, inputs, outputs, attrs);
"Operator '%s' has not been registered.", type);
it->second.checker_->Check(attrs);
auto op = it->second.creator_(type, inputs, outputs, attrs);
return std::unique_ptr<OperatorBase>(op); return std::unique_ptr<OperatorBase>(op);
} }
std::unique_ptr<OperatorBase> OpRegistry::CreateOp(const OpDesc& op_desc) { static VariableNameMap ConvertOpDescVarsToVarNameMap(
VarNameMap inputs = ConvertOpDescVarsToVarNameMap(op_desc.inputs());
VarNameMap outputs = ConvertOpDescVarsToVarNameMap(op_desc.outputs());
AttributeMap attrs;
for (auto& attr : op_desc.attrs()) {
attrs[attr.name()] = GetAttrValue(attr);
}
return CreateOp(op_desc.type(), inputs, outputs, attrs);
}
OperatorBase::VarNameMap OpRegistry::ConvertOpDescVarsToVarNameMap(
const google::protobuf::RepeatedPtrField<OpDesc::Var>& op_desc_vars) { const google::protobuf::RepeatedPtrField<OpDesc::Var>& op_desc_vars) {
VarNameMap ret_val; VariableNameMap ret_val;
for (auto& var : op_desc_vars) { for (auto& var : op_desc_vars) {
auto& var_names = ret_val[var.parameter()]; auto& var_names = ret_val[var.parameter()];
auto& var_names_in_proto = var.arguments(); auto& var_names_in_proto = var.arguments();
...@@ -55,6 +41,17 @@ OperatorBase::VarNameMap OpRegistry::ConvertOpDescVarsToVarNameMap( ...@@ -55,6 +41,17 @@ OperatorBase::VarNameMap OpRegistry::ConvertOpDescVarsToVarNameMap(
return ret_val; return ret_val;
} }
std::unique_ptr<OperatorBase> OpRegistry::CreateOp(const OpDesc& op_desc) {
VariableNameMap inputs = ConvertOpDescVarsToVarNameMap(op_desc.inputs());
VariableNameMap outputs = ConvertOpDescVarsToVarNameMap(op_desc.outputs());
AttributeMap attrs;
for (auto& attr : op_desc.attrs()) {
attrs[attr.name()] = GetAttrValue(attr);
}
return CreateOp(op_desc.type(), inputs, outputs, attrs);
}
std::unique_ptr<OperatorBase> OpRegistry::CreateGradOp(const OperatorBase& op) { std::unique_ptr<OperatorBase> OpRegistry::CreateGradOp(const OperatorBase& op) {
PADDLE_ENFORCE(!op.IsNetOp(), "Use framework::Backward to get backward ops"); PADDLE_ENFORCE(!op.IsNetOp(), "Use framework::Backward to get backward ops");
return std::unique_ptr<OperatorBase>(BuildGradOp(&op)); return std::unique_ptr<OperatorBase>(BuildGradOp(&op));
......
...@@ -23,6 +23,7 @@ limitations under the License. */ ...@@ -23,6 +23,7 @@ limitations under the License. */
#include "paddle/framework/attribute.h" #include "paddle/framework/attribute.h"
#include "paddle/framework/framework.pb.h" #include "paddle/framework/framework.pb.h"
#include "paddle/framework/grad_op_builder.h" #include "paddle/framework/grad_op_builder.h"
#include "paddle/framework/op_info.h"
#include "paddle/framework/operator.h" #include "paddle/framework/operator.h"
#include "paddle/framework/scope.h" #include "paddle/framework/scope.h"
...@@ -30,28 +31,16 @@ namespace paddle { ...@@ -30,28 +31,16 @@ namespace paddle {
namespace framework { namespace framework {
class OpRegistry { class OpRegistry {
using VarNameMap = OperatorBase::VarNameMap;
using OpCreator = std::function<OperatorBase*(
const std::string& /*type*/, const VarNameMap& /*inputs*/,
const VarNameMap& /*outputs*/, const AttributeMap& /*attrs*/)>;
public: public:
struct OpInfo {
OpCreator creator_;
std::string grad_op_type_;
OpProto* proto_;
OpAttrChecker* checker_;
};
template <typename OpType, typename ProtoMakerType, typename GradOpType> template <typename OpType, typename ProtoMakerType, typename GradOpType>
static void RegisterOp(const std::string& op_type, static void RegisterOp(const std::string& op_type,
const std::string& grad_op_type) { const std::string& grad_op_type) {
PADDLE_ENFORCE(op_info_map().count(op_type) == 0, PADDLE_ENFORCE(!OpInfoMap::Instance().Has(op_type),
"'%s' is registered more than once.", op_type); "'%s' is registered more than once.", op_type);
OpInfo op_info; OpInfo op_info;
op_info.creator_ = [](const std::string& type, const VarNameMap& inputs, op_info.creator_ = [](
const VarNameMap& outputs, const std::string& type, const VariableNameMap& inputs,
const AttributeMap& attrs) { const VariableNameMap& outputs, const AttributeMap& attrs) {
return new OpType(type, inputs, outputs, attrs); return new OpType(type, inputs, outputs, attrs);
}; };
op_info.grad_op_type_ = grad_op_type; op_info.grad_op_type_ = grad_op_type;
...@@ -70,7 +59,7 @@ class OpRegistry { ...@@ -70,7 +59,7 @@ class OpRegistry {
op_info.proto_ = nullptr; op_info.proto_ = nullptr;
op_info.checker_ = nullptr; op_info.checker_ = nullptr;
} }
op_info_map().insert(std::make_pair(op_type, op_info)); OpInfoMap::Instance().Insert(op_type, op_info);
// register gradient op // register gradient op
if (!grad_op_type.empty()) { if (!grad_op_type.empty()) {
RegisterOp<GradOpType, NOPMaker, NOP>(grad_op_type, ""); RegisterOp<GradOpType, NOPMaker, NOP>(grad_op_type, "");
...@@ -78,21 +67,13 @@ class OpRegistry { ...@@ -78,21 +67,13 @@ class OpRegistry {
} }
static std::unique_ptr<OperatorBase> CreateOp(const std::string& type, static std::unique_ptr<OperatorBase> CreateOp(const std::string& type,
const VarNameMap& inputs, const VariableNameMap& inputs,
const VarNameMap& outputs, const VariableNameMap& outputs,
AttributeMap attrs); AttributeMap attrs);
static std::unique_ptr<OperatorBase> CreateOp(const OpDesc& op_desc); static std::unique_ptr<OperatorBase> CreateOp(const OpDesc& op_desc);
static VarNameMap ConvertOpDescVarsToVarNameMap(
const google::protobuf::RepeatedPtrField<OpDesc::Var>& op_desc_vars);
static std::unique_ptr<OperatorBase> CreateGradOp(const OperatorBase& op); static std::unique_ptr<OperatorBase> CreateGradOp(const OperatorBase& op);
static std::unordered_map<std::string, const OpInfo>& op_info_map() {
static std::unordered_map<std::string, const OpInfo> op_info_map_;
return op_info_map_;
}
}; };
class Registrar { class Registrar {
......
...@@ -115,8 +115,8 @@ void OperatorBase::Rename(const std::string& old_name, ...@@ -115,8 +115,8 @@ void OperatorBase::Rename(const std::string& old_name,
} }
OperatorBase::OperatorBase(const std::string& type, OperatorBase::OperatorBase(const std::string& type,
const OperatorBase::VarNameMap& inputs, const VariableNameMap& inputs,
const OperatorBase::VarNameMap& outputs, const VariableNameMap& outputs,
const AttributeMap& attrs) const AttributeMap& attrs)
: type_(type), inputs_(inputs), outputs_(outputs), attrs_(attrs) { : type_(type), inputs_(inputs), outputs_(outputs), attrs_(attrs) {
static std::atomic<size_t> gUniqId(0UL); static std::atomic<size_t> gUniqId(0UL);
...@@ -141,18 +141,10 @@ std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const { ...@@ -141,18 +141,10 @@ std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
} }
return ret_val; return ret_val;
} }
auto it = OpRegistry::op_info_map().find(type_); auto& info = OpInfoMap::Instance().Get(Type());
PADDLE_ENFORCE(
it != OpRegistry::op_info_map().end(),
"Operator %s not registered, cannot figure out intermediate outputs",
type_);
PADDLE_ENFORCE(
it->second.proto_ != nullptr,
"Operator %s has no OpProto, cannot figure out intermediate outputs",
type_);
// get all OpProto::Var for outputs // get all OpProto::Var for outputs
for (auto& o : it->second.proto_->outputs()) { for (auto& o : info.Proto().outputs()) {
// ignore all intermediate output // ignore all intermediate output
if (o.intermediate()) continue; if (o.intermediate()) continue;
auto out = outputs_.find(o.name()); auto out = outputs_.find(o.name());
......
...@@ -19,6 +19,7 @@ limitations under the License. */ ...@@ -19,6 +19,7 @@ limitations under the License. */
#include <unordered_map> #include <unordered_map>
#include <vector> #include <vector>
#include "op_info.h"
#include "paddle/framework/attribute.h" #include "paddle/framework/attribute.h"
#include "paddle/framework/framework.pb.h" #include "paddle/framework/framework.pb.h"
#include "paddle/framework/scope.h" #include "paddle/framework/scope.h"
...@@ -62,10 +63,8 @@ class ExecutionContext; ...@@ -62,10 +63,8 @@ class ExecutionContext;
*/ */
class OperatorBase { class OperatorBase {
public: public:
using VarNameMap = std::map<std::string, std::vector<std::string>>; OperatorBase(const std::string& type, const VariableNameMap& inputs,
const VariableNameMap& outputs, const AttributeMap& attrs);
OperatorBase(const std::string& type, const VarNameMap& inputs,
const VarNameMap& outputs, const AttributeMap& attrs);
virtual ~OperatorBase() {} virtual ~OperatorBase() {}
...@@ -93,8 +92,8 @@ class OperatorBase { ...@@ -93,8 +92,8 @@ class OperatorBase {
/// rename inputs outputs name /// rename inputs outputs name
void Rename(const std::string& old_name, const std::string& new_name); void Rename(const std::string& old_name, const std::string& new_name);
const VarNameMap& Inputs() const { return inputs_; } const VariableNameMap& Inputs() const { return inputs_; }
const VarNameMap& Outputs() const { return outputs_; } const VariableNameMap& Outputs() const { return outputs_; }
//! Get a input with argument's name described in `op_proto` //! Get a input with argument's name described in `op_proto`
const std::string& Input(const std::string& name) const; const std::string& Input(const std::string& name) const;
//! Get a input which has multiple variables. //! Get a input which has multiple variables.
...@@ -122,30 +121,32 @@ class OperatorBase { ...@@ -122,30 +121,32 @@ class OperatorBase {
// I (Inputs)opear // I (Inputs)opear
// O (Outputs) // O (Outputs)
// OG (Output Gradients) // OG (Output Gradients)
VarNameMap inputs_; VariableNameMap inputs_;
// NOTE: in case of OpGrad, outputs_ contains // NOTE: in case of OpGrad, outputs_ contains
// IG (Inputs Gradients) // IG (Inputs Gradients)
VarNameMap outputs_; VariableNameMap outputs_;
AttributeMap attrs_; AttributeMap attrs_;
}; };
// Macro for define a clone method. // Macro for define a clone method.
// If you are writing an kernel operator, `Clone` will be defined when you // If you are writing an kernel operator, `Clone` will be defined when you
// register it. i.e. `Clone` method is not needed to define by yourself. // register it. i.e. `Clone` method is not needed to define by yourself.
#define DEFINE_OP_CLONE_METHOD(CLS) \ #define DEFINE_OP_CLONE_METHOD(cls) \
std::unique_ptr<OperatorBase> Clone() const final { \ std::unique_ptr<OperatorBase> Clone() const final { \
return std::unique_ptr<OperatorBase>(new CLS(*this)); \ return std::unique_ptr<OperatorBase>(new cls(*this)); \
} }
// Macro for define a default constructor for Operator. // Macro for define a default constructor for Operator.
// You can also use // You can also use
// using PARENT_CLASS::PARENT_CLASS; // using PARENT_CLASS::PARENT_CLASS;
// to use parent's constructor. // to use parent's constructor.
#define DEFINE_OP_CONSTRUCTOR(CLS, PARENT_CLS) \ #define DEFINE_OP_CONSTRUCTOR(cls, parent_cls) \
CLS(const std::string& type, const VarNameMap& inputs, \ cls(const std::string& type, \
const VarNameMap& outputs, const paddle::framework::AttributeMap& attrs) \ const ::paddle::framework::VariableNameMap& inputs, \
: PARENT_CLS(type, inputs, outputs, attrs) {} const ::paddle::framework::VariableNameMap& outputs, \
const paddle::framework::AttributeMap& attrs) \
: parent_cls(type, inputs, outputs, attrs) {}
class NOP : public OperatorBase { class NOP : public OperatorBase {
public: public:
...@@ -389,8 +390,8 @@ class OperatorWithKernel : public OperatorBase { ...@@ -389,8 +390,8 @@ class OperatorWithKernel : public OperatorBase {
using OpKernelMap = using OpKernelMap =
std::unordered_map<OpKernelKey, std::unique_ptr<OpKernel>, OpKernelHash>; std::unordered_map<OpKernelKey, std::unique_ptr<OpKernel>, OpKernelHash>;
OperatorWithKernel(const std::string& type, const VarNameMap& inputs, OperatorWithKernel(const std::string& type, const VariableNameMap& inputs,
const VarNameMap& outputs, const AttributeMap& attrs) const VariableNameMap& outputs, const AttributeMap& attrs)
: OperatorBase(type, inputs, outputs, attrs) {} : OperatorBase(type, inputs, outputs, attrs) {}
void InferShape(const Scope& scope) const override { void InferShape(const Scope& scope) const override {
......
...@@ -23,8 +23,8 @@ static int op_run_num = 0; ...@@ -23,8 +23,8 @@ static int op_run_num = 0;
class OpWithoutKernelTest : public OperatorBase { class OpWithoutKernelTest : public OperatorBase {
public: public:
OpWithoutKernelTest(const std::string& type, const VarNameMap& inputs, OpWithoutKernelTest(const std::string& type, const VariableNameMap& inputs,
const VarNameMap& outputs, const AttributeMap& attrs) const VariableNameMap& outputs, const AttributeMap& attrs)
: OperatorBase(type, inputs, outputs, attrs), x(1) {} : OperatorBase(type, inputs, outputs, attrs), x(1) {}
void InferShape(const Scope& scope) const override {} void InferShape(const Scope& scope) const override {}
void Run(const Scope& scope, void Run(const Scope& scope,
...@@ -249,8 +249,9 @@ TEST(OpKernel, multi_inputs) { ...@@ -249,8 +249,9 @@ TEST(OpKernel, multi_inputs) {
class OperatorClone : public paddle::framework::OperatorBase { class OperatorClone : public paddle::framework::OperatorBase {
public: public:
DEFINE_OP_CLONE_METHOD(OperatorClone); DEFINE_OP_CLONE_METHOD(OperatorClone);
OperatorClone(const std::string& type, const VarNameMap& inputs, OperatorClone(const std::string& type,
const VarNameMap& outputs, const paddle::framework::VariableNameMap& inputs,
const paddle::framework::VariableNameMap& outputs,
const paddle::framework::AttributeMap& attrs) const paddle::framework::AttributeMap& attrs)
: OperatorBase(type, inputs, outputs, attrs) {} : OperatorBase(type, inputs, outputs, attrs) {}
void InferShape(const paddle::framework::Scope& scope) const override {} void InferShape(const paddle::framework::Scope& scope) const override {}
......
...@@ -105,7 +105,10 @@ class Tensor { ...@@ -105,7 +105,10 @@ class Tensor {
template <typename T> template <typename T>
inline Tensor Slice(const int& begin_idx, const int& end_idx) const; inline Tensor Slice(const int& begin_idx, const int& end_idx) const;
platform::Place place() const { return holder_->place(); } platform::Place place() const {
PADDLE_ENFORCE_NOT_NULL(holder_, "Tensor get place() must contains holder");
return holder_->place();
}
private: private:
template <typename T> template <typename T>
......
...@@ -1012,11 +1012,6 @@ void RecurrentGradientMachine::generateSequence() { ...@@ -1012,11 +1012,6 @@ void RecurrentGradientMachine::generateSequence() {
/* width */ resultNum, /* width */ resultNum,
false, false,
/* useGpu */ false); /* useGpu */ false);
Matrix::resizeOrCreate(generator_.outArg.value,
/* height */ maxGenWordCount,
/* width */ 1,
false,
/* useGpu */ false);
} }
ICpuGpuVector::resizeOrCreate(generator_.outArg.sequenceStartPositions, ICpuGpuVector::resizeOrCreate(generator_.outArg.sequenceStartPositions,
numSequences + 1, numSequences + 1,
...@@ -1026,7 +1021,7 @@ void RecurrentGradientMachine::generateSequence() { ...@@ -1026,7 +1021,7 @@ void RecurrentGradientMachine::generateSequence() {
} else { } else {
oneWaySearch(numSequences); oneWaySearch(numSequences);
} }
if (dataArgsSize_) createDataOutlink(batchMachineIdVec_); if (dataArgsSize_) createDataOutlink();
size_t size = generator_.ids.size(); size_t size = generator_.ids.size();
generator_.outArg.ids->resize(size); generator_.outArg.ids->resize(size);
...@@ -1106,6 +1101,7 @@ void RecurrentGradientMachine::oneWaySearch(size_t batchSize) { ...@@ -1106,6 +1101,7 @@ void RecurrentGradientMachine::oneWaySearch(size_t batchSize) {
} }
batchMachineIdVec_.clear(); batchMachineIdVec_.clear();
batchMachineStartPos_.clear();
int* starts = generator_.outArg.sequenceStartPositions->getMutableData(false); int* starts = generator_.outArg.sequenceStartPositions->getMutableData(false);
starts[0] = 0; starts[0] = 0;
generator_.ids.clear(); generator_.ids.clear();
...@@ -1312,13 +1308,20 @@ void RecurrentGradientMachine::fillGenOutputs() { ...@@ -1312,13 +1308,20 @@ void RecurrentGradientMachine::fillGenOutputs() {
finalPaths_[i].resize(minFinalPathsSize); finalPaths_[i].resize(minFinalPathsSize);
} }
batchMachineIdVec_.clear();
generator_.ids.clear(); generator_.ids.clear();
int* starts = generator_.outArg.sequenceStartPositions->getMutableData(false); int* starts = generator_.outArg.sequenceStartPositions->getMutableData(false);
starts[0] = 0; starts[0] = 0;
if (numResults > 1) { if (numResults > 1) {
real* probs = generator_.outArg.in->getData(); int idsProbSaveSize = 0;
for (auto inSeq : finalPaths_) {
for (auto path : inSeq) idsProbSaveSize += path.ids.size();
idsProbSaveSize += inSeq.size();
}
Matrix::resizeOrCreate(
generator_.outArg.value, idsProbSaveSize, 1, false, false);
real* idsProb = generator_.outArg.value->getData(); real* idsProb = generator_.outArg.value->getData();
real* probs = generator_.outArg.in->getData();
size_t curPos = 0; size_t curPos = 0;
for (size_t i = 0; i < finalPaths_.size(); ++i) { for (size_t i = 0; i < finalPaths_.size(); ++i) {
for (size_t j = 0; j < finalPaths_[i].size(); ++j) { for (size_t j = 0; j < finalPaths_[i].size(); ++j) {
...@@ -1333,24 +1336,16 @@ void RecurrentGradientMachine::fillGenOutputs() { ...@@ -1333,24 +1336,16 @@ void RecurrentGradientMachine::fillGenOutputs() {
curPos += genLen; curPos += genLen;
idsProb[curPos++] = -1.0; idsProb[curPos++] = -1.0;
probs[i * numResults + j] = path.logProb; probs[i * numResults + j] = path.logProb;
if (!j && dataArgsSize_) {
// in beam search, here only reserved the top 1 generated result
// for out_links that are not the generated word indices.
batchMachineIdVec_.insert(batchMachineIdVec_.end(),
path.machineIdVec.begin(),
path.machineIdVec.end());
}
} }
starts[i + 1] = generator_.ids.size(); starts[i + 1] = generator_.ids.size();
} }
} else { } else {
for (size_t i = 0; i < finalPaths_.size(); ++i) { for (size_t i = 0; i < finalPaths_.size(); ++i) {
CHECK(!finalPaths_[i].empty()); CHECK(!finalPaths_[i].empty());
generator_.ids.insert(generator_.ids.begin(), Path& path = finalPaths_[i][0];
finalPaths_[i][0].ids.begin(), generator_.ids.insert(
finalPaths_[i][0].ids.end()); generator_.ids.begin(), path.ids.begin(), path.ids.end());
starts[i + 1] = starts[i] + finalPaths_[i][0].ids.size(); starts[i + 1] = starts[i] + path.ids.size();
} }
} }
} }
...@@ -1364,25 +1359,76 @@ void RecurrentGradientMachine::copyDataOutlinkFrame(size_t machineCur) { ...@@ -1364,25 +1359,76 @@ void RecurrentGradientMachine::copyDataOutlinkFrame(size_t machineCur) {
} }
} }
void RecurrentGradientMachine::createDataOutlink( void RecurrentGradientMachine::createDataOutlinkSelRowsInfo(
std::vector<int>& machineIdVec) { bool isSeq, std::vector<Argument>& outArgs) {
size_t seqNum = batchMachineIdVec_.clear();
getBeamSize() > 1UL ? finalPaths_.size() : finalPaths_[0].size();
std::vector<int> starts(seqNum + 1, 0); size_t seqIdx = 0;
for (size_t i = 0; i < seqNum; ++i) { for (size_t i = 0; i < finalPaths_.size(); ++i) {
size_t seqLen = getBeamSize() > 1UL ? finalPaths_[i][0].ids.size() for (size_t j = 0; j < finalPaths_[i].size(); ++j) {
: finalPaths_[0][i].ids.size(); std::vector<int>& machineIdVec = finalPaths_[i][j].machineIdVec;
starts[i + 1] = starts[i] + seqLen; if (isSeq) {
for (size_t i = 0; i < machineIdVec.size(); ++i) {
size_t rowId = machineIdVec[i];
int* seqPos =
outArgs[i].sequenceStartPositions->getMutableData(false);
batchMachineIdVec_.push_back(seqPos[rowId]);
}
} else {
batchMachineIdVec_.insert(
batchMachineIdVec_.end(), machineIdVec.begin(), machineIdVec.end());
}
seqIdx++;
}
}
}
void RecurrentGradientMachine::createDataOutlinkCopySizeInfo(
bool isSeq, std::vector<Argument>& outArgs, std::vector<int>& copySize) {
size_t totalSeqNum = std::accumulate(
finalPaths_.begin(),
finalPaths_.end(),
0UL,
[](size_t a, const std::vector<Path>& b) { return a + b.size(); });
copySize.resize(totalSeqNum, 1);
batchMachineStartPos_.resize(totalSeqNum + 1, 0);
if (isSeq) {
ICpuGpuVectorPtr inputSeqStartPos = outArgs[0].sequenceStartPositions;
CHECK_EQ(static_cast<size_t>(inputSeqStartPos->getSize() - 1),
getBeamSize() > 1 ? finalPaths_.size() : finalPaths_[0].size());
int* starts = inputSeqStartPos->getMutableData(false);
int seqId = 0;
for (int i = 0; i < finalPaths_.size(); ++i) {
for (int j = 0; j < finalPaths_[i].size(); ++j) {
copySize[seqId] = getBeamSize() > 1 ? starts[i + 1] - starts[i]
: starts[j + 1] - starts[j];
batchMachineStartPos_[seqId + 1] =
batchMachineStartPos_[seqId] + finalPaths_[i][j].ids.size();
seqId++;
}
}
} else {
for (size_t i = 0; i < finalPaths_[0].size(); ++i)
batchMachineStartPos_[i + 1] =
batchMachineStartPos_[i] + finalPaths_[0][i].ids.size();
} }
}
void RecurrentGradientMachine::createDataOutlink() {
for (size_t i = 0; i < dataArgsSize_; i++) { for (size_t i = 0; i < dataArgsSize_; i++) {
bool isSeq = dataArgsFrame_[i][0].hasSeq();
std::vector<int> copySize;
createDataOutlinkCopySizeInfo(isSeq, dataArgsFrame_[i], copySize);
createDataOutlinkSelRowsInfo(isSeq, dataArgsFrame_[i]);
dataArgs_[i].concat(dataArgsFrame_[i], dataArgs_[i].concat(dataArgsFrame_[i],
machineIdVec, batchMachineIdVec_,
starts, batchMachineStartPos_,
copySize,
useGpu_, useGpu_,
HPPL_STREAM_1, HPPL_STREAM_1,
PASS_TEST); PASS_TEST);
auto dataAgent = auto dataAgent =
dynamic_cast<DataLayer*>(outFrameLines_[i + 1].agentLayer.get()); dynamic_cast<DataLayer*>(outFrameLines_[i + 1].agentLayer.get());
CHECK_NOTNULL(dataAgent); CHECK_NOTNULL(dataAgent);
......
...@@ -190,7 +190,7 @@ public: ...@@ -190,7 +190,7 @@ public:
std::vector<int> ids; std::vector<int> ids;
/** /**
* @brief idsProb, log probability of each generated words. * @brief idsProb, log probability of each generated word.
*/ */
std::vector<real> idsProb; std::vector<real> idsProb;
...@@ -472,15 +472,43 @@ private: ...@@ -472,15 +472,43 @@ private:
void copyDataOutlinkFrame(size_t machineCur); void copyDataOutlinkFrame(size_t machineCur);
/* /*
* @brief In generation, if the layer group has more than 1 outlink, outlinks * @brief In generation, if the layer group has more than 1 outlink, outlink
* except the first one are data outlinks. This function creates the data * except the first one is a data outlink. In RecurrentLayerGroup, each time
* outlinks. * step is a separate Network, outputs of a layer inside the
* @note In beam search, only one generated sequence with the hightest log * RecurrentLayerGroup are stored in separate Arguments. If one layer is
* probabilites are retained. * specified as an outlink of RecurrentLayerGroup. This function will
* @param machineIdVec : select a row of output matrix in each frame * collect outputs in each time step of each generated sequence which are
* that the generation process expanded. * dispersed in separate Arguments to form a new single Argument as output of
* RecurrentLayerGroup.
*/ */
void createDataOutlink(std::vector<int>& machineIdVec); void createDataOutlink();
/*
* @brief decide to select how many rows from the Matrix stored the forward
* pass results from a start position.
*
* @param isSeq: a flag indicating whetehr the layer to be output of the
* RecurrentGradientMachine is a sequence or not
* @param outArgs: all of the the returned Arguments of the forward pass
* during the generation process.
* @param copySize: the returned result, number of rows to select from the
* Matrix stored the forward pass results from a start position.
*/
void createDataOutlinkCopySizeInfo(bool isSeq,
std::vector<Argument>& outArgs,
std::vector<int>& copySize);
/*
* @brief decide index of the start row for each time step of a generated
* sequence in Matrix stored the entire beam search batch's forward pass
* results.
*
* @param isSeq: a flag indicating whether the layer to be output of the
* RecurrentGradientMachine is a sequence or not
* @param outArgs: all of the returned Arguments of the forward pass
* during the generation process.
*/
void createDataOutlinkSelRowsInfo(bool isSeq, std::vector<Argument>& outArgs);
/* /*
* @brief used in beam search, connect previous frame to form recurrent link * @brief used in beam search, connect previous frame to form recurrent link
...@@ -543,6 +571,7 @@ private: ...@@ -543,6 +571,7 @@ private:
std::vector<int> topIds_; std::vector<int> topIds_;
std::vector<int> seqIds_; std::vector<int> seqIds_;
std::vector<int> batchMachineIdVec_; std::vector<int> batchMachineIdVec_;
std::vector<int> batchMachineStartPos_;
std::vector<std::vector<Path>> finalPaths_; std::vector<std::vector<Path>> finalPaths_;
std::vector<real> minFinalPathLogProb_; std::vector<real> minFinalPathLogProb_;
BeamSearchControlCallbacks* beamSearchCtrlCallbacks_; BeamSearchControlCallbacks* beamSearchCtrlCallbacks_;
......
...@@ -80,13 +80,14 @@ void KmaxSeqScoreLayer::forward(PassType passType) { ...@@ -80,13 +80,14 @@ void KmaxSeqScoreLayer::forward(PassType passType) {
<< "input of " << getName() << "input of " << getName()
<< " must be a sequence or a nested sequence."; << " must be a sequence or a nested sequence.";
CHECK_EQ(input.value->getWidth(), 1UL) CHECK_EQ(input.value->getWidth(), 1UL)
<< "input of " << getName() << "input of " << getName() << " are scores over a sequence or "
<< " is score over a sequence or a nested sequence, so its width " << "a nested sequence, so its width must be 1.";
<< " must be 1.";
if (useGpu_) { if (useGpu_) {
// this Layer runs only in CPU, if the model is runing on GPU, /*
// then copy the input to this layer from GPU to CPU. * currently, this Layer only runs in CPU, if the other part of the model is
* runing on GPU, then copy the input to this layer from GPU to CPU.
*/
Matrix::resizeOrCreate(scores_, Matrix::resizeOrCreate(scores_,
inputScore->getHeight(), inputScore->getHeight(),
1, 1,
...@@ -97,6 +98,14 @@ void KmaxSeqScoreLayer::forward(PassType passType) { ...@@ -97,6 +98,14 @@ void KmaxSeqScoreLayer::forward(PassType passType) {
scores_ = inputScore; scores_ = inputScore;
} }
/*
* TODO(caoying)
* In PaddePaddle, currently all matrices are real number types,
* but output of this layer which is some selected indices of the give
* sequence are actually filled with int types so that storing int types
* information in a real number matrix is dangerous, since real numbers will
* be convered to int types.
*/
Matrix::resizeOrCreate( Matrix::resizeOrCreate(
output_.value, output_.value,
input.hasSubseq() ? input.getNumSubSequences() : input.getNumSequences(), input.hasSubseq() ? input.getNumSubSequences() : input.getNumSequences(),
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "Layer.h"
#include "paddle/math/Matrix.h"
#include "paddle/math/Vector.h"
#include "paddle/utils/Logging.h"
#include "paddle/utils/Stat.h"
namespace paddle {
class SequenceSliceLayer : public Layer {
public:
explicit SequenceSliceLayer(const LayerConfig& config) : Layer(config) {}
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
void forward(PassType passType) override;
void backward(const UpdateCallback& callback = nullptr) override;
private:
/*
* TODO(caoying)
* In PaddePaddle, currently all matrices are real number types,
* but the second and the (optional) third input which are some
* selected indices of the give sequence to trim the sequence, are actually
* filled with int types so that storing int types information in real number
* matrices is very dangerous, since real numbers will be convered to int
* types. If a user fills this matrix himself, invalid data may occor.
*/
MatrixPtr startIdsOnCpu_;
MatrixPtr endIdsOnCpu_;
std::vector<int> selectedRows_;
IVectorPtr rowIndice_;
std::vector<std::vector<int>> inputSeqInfoVec_;
std::vector<int> outSubSeqStartPos_;
std::vector<int> outSeqStartPos_;
void checkInputs();
void copySliceIdsToCpu();
void calSelectedRows(const MatrixPtr starts, const MatrixPtr ends);
};
REGISTER_LAYER(seq_slice, SequenceSliceLayer);
bool SequenceSliceLayer::init(const LayerMap& layerMap,
const ParameterMap& parameterMap) {
/* Initialize the basic parent class */
Layer::init(layerMap, parameterMap);
CHECK_GE(inputLayers_.size(), 2U);
CHECK_LE(inputLayers_.size(), 3U);
setNeedSequenceInfo(false);
return true;
}
void SequenceSliceLayer::checkInputs() {
const Argument& inputSeq = getInput(0);
CHECK(inputSeq.hasSeq()) << "The first input of sequence slice layer "
<< "must be a sequence.";
const MatrixPtr indices1 = getInputValue(1);
CHECK_EQ(static_cast<size_t>(indices1->getHeight()),
inputSeq.hasSubseq() ? inputSeq.getNumSubSequences()
: inputSeq.getNumSequences())
<< "Height of the second input should be equal to number of sequence "
<< "in the first input.";
if (inputLayers_.size() == 3) {
const MatrixPtr indices2 = getInputValue(2);
CHECK_EQ(indices2->getHeight(), indices1->getHeight())
<< "start indices and end indices should have the same height.";
CHECK_EQ(indices2->getWidth(), indices1->getWidth())
<< "start indices and end indices should have the same Width.";
}
}
void SequenceSliceLayer::copySliceIdsToCpu() {
const MatrixPtr indices1 = getInputValue(1);
if (inputLayers_.size() == 2U) {
if (config_.select_first()) {
Matrix::resizeOrCreate(startIdsOnCpu_,
indices1->getHeight(),
indices1->getWidth(),
false /* trans */,
false /* useGpu */);
startIdsOnCpu_->copyFrom(*indices1);
endIdsOnCpu_ = nullptr;
} else {
Matrix::resizeOrCreate(endIdsOnCpu_,
indices1->getHeight(),
indices1->getWidth(),
false /* trans */,
false /* useGpu */);
endIdsOnCpu_->copyFrom(*indices1);
startIdsOnCpu_ = nullptr;
}
} else if (inputLayers_.size() == 3U) {
Matrix::resizeOrCreate(startIdsOnCpu_,
indices1->getHeight(),
indices1->getWidth(),
false /* trans */,
false /* useGpu */);
startIdsOnCpu_->copyFrom(*indices1);
const MatrixPtr indices2 = getInputValue(2);
Matrix::resizeOrCreate(endIdsOnCpu_,
indices2->getHeight(),
indices2->getWidth(),
false /* trans */,
false /* useGpu */);
endIdsOnCpu_->copyFrom(*indices2);
}
}
void SequenceSliceLayer::calSelectedRows(const MatrixPtr starts,
const MatrixPtr ends) {
CHECK(starts || ends) << "At least one of the start or end indices "
<< "should be given.";
outSeqStartPos_.resize(1, 0);
outSubSeqStartPos_.resize(1, 0);
selectedRows_.clear();
size_t beamSize = starts ? starts->getWidth() : ends->getWidth();
size_t rowIdx = 0;
for (size_t i = 0; i < inputSeqInfoVec_.size(); ++i) {
for (size_t j = 0; j < inputSeqInfoVec_[i].size() - 1; ++j) {
for (size_t k = 0; k < beamSize; ++k) {
if (starts && starts->getElement(rowIdx, k) == -1.) break;
if (ends && ends->getElement(rowIdx, k) == -1.) break;
int begPos = inputSeqInfoVec_[i][j];
if (starts) begPos += starts->getElement(rowIdx, k);
int endPos = inputSeqInfoVec_[i][j + 1] - 1;
if (ends) endPos = inputSeqInfoVec_[i][j] + ends->getElement(rowIdx, k);
int seqLen = endPos - begPos + 1;
CHECK_GT(seqLen, 0U);
for (int m = begPos; m <= endPos; ++m) selectedRows_.push_back(m);
inputSeqInfoVec_.size() > 1
? outSubSeqStartPos_.push_back(outSubSeqStartPos_.back() + seqLen)
: outSeqStartPos_.push_back(outSeqStartPos_.back() + seqLen);
}
rowIdx++;
}
if (inputSeqInfoVec_.size() > 1)
outSeqStartPos_.push_back(outSubSeqStartPos_.back());
}
if (useGpu_) {
rowIndice_ = IVector::create(selectedRows_.size(), useGpu_);
rowIndice_->copyFrom(selectedRows_.data(), selectedRows_.size());
} else {
rowIndice_ =
IVector::create(selectedRows_.data(), selectedRows_.size(), useGpu_);
}
// create the sequence information for the output.
ICpuGpuVector::resizeOrCreate(
output_.sequenceStartPositions, outSeqStartPos_.size(), false);
output_.sequenceStartPositions->copyFrom(
outSeqStartPos_.data(), outSeqStartPos_.size(), false);
if (inputSeqInfoVec_.size() > 1) {
ICpuGpuVector::resizeOrCreate(
output_.subSequenceStartPositions, outSubSeqStartPos_.size(), false);
output_.subSequenceStartPositions->copyFrom(
outSubSeqStartPos_.data(), outSubSeqStartPos_.size(), false);
}
}
void SequenceSliceLayer::forward(PassType passType) {
Layer::forward(passType);
checkInputs();
const Argument& inputSeq = getInput(0);
inputSeqInfoVec_.clear();
Argument::reorganizeSeqInfo(inputSeq.sequenceStartPositions,
inputSeq.subSequenceStartPositions,
inputSeqInfoVec_);
if (!useGpu_) {
if (inputLayers_.size() == 2U) {
startIdsOnCpu_ = config_.select_first() ? getInputValue(1) : nullptr;
endIdsOnCpu_ = config_.select_first() ? nullptr : getInputValue(1);
} else if (inputLayers_.size() == 3U) {
startIdsOnCpu_ = getInputValue(1);
endIdsOnCpu_ = getInputValue(2);
}
} else
copySliceIdsToCpu();
// calculate the selected row indices in a batch,
// and build the output sequence information.
calSelectedRows(startIdsOnCpu_ ? startIdsOnCpu_ : nullptr,
endIdsOnCpu_ ? endIdsOnCpu_ : nullptr);
resetOutput(selectedRows_.size(), getSize());
getOutputValue()->selectRows(*getInputValue(0), *rowIndice_);
}
void SequenceSliceLayer::backward(const UpdateCallback& callback) {
getOutputGrad()->addToRows(*getInputGrad(0), *rowIndice_);
}
} // namespace paddle
...@@ -52,23 +52,34 @@ private: ...@@ -52,23 +52,34 @@ private:
* ] * ]
* *
* ths output is saved to private member rowIndice_; * ths output is saved to private member rowIndice_;
* [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15, * [0,1,2,3,4,5,6,7,8,9,15,16,17,18,19,20,21,23,24,25,26,27]
* 16,17,18,19,20,21,22,23,24,25,26,27]
*/ */
void calSelectedCols(const MatrixPtr selectedIndices, void calSelectedRows(const MatrixPtr selectedIndices,
const std::vector<std::vector<int>>& inputSeqInfo); const std::vector<std::vector<int>>& inputSeqInfo);
// if the second input of this layer is on GPU memory, copy it to CPU memory. /*
* TODO(caoying)
* In PaddePaddle, currently all matrices are real number types,
* but the second is some selected indices of the give sequence to trim
* the nested sequence, are actually filled with int types so that storing
* int types information in real number matrices is very dangerous, since
* real numbers will be convered to int types. If a user fills this matrix
* himself, invalid data may occor.
*
* if the second input of this layer is on GPU memory, copy it to CPU memory.
*/
MatrixPtr selIdsCpu_; MatrixPtr selIdsCpu_;
// reorganized sequenceStartPositions and subSequenceStartPositions /*
// into a 2d vector to facilitate the sequence selection process. * reorganize sequenceStartPositions and subSequenceStartPositions
* into a 2d vector to facilitate the sequence selection process.
*/
std::vector<std::vector<int>> inputSeqInfoVec_; std::vector<std::vector<int>> inputSeqInfoVec_;
// the final selected row indices in a batch, /* store the final selected row indices in a batch */
// rowIdx_ and selectedRows_ actually share a same memory.
IVectorPtr rowIndice_; IVectorPtr rowIndice_;
/* rowIndice_ and selectedRows_ actually share a same memory. */
std::vector<int> selectedRows_; std::vector<int> selectedRows_;
}; };
...@@ -83,7 +94,7 @@ bool SubNestedSequenceLayer::init(const LayerMap& layerMap, ...@@ -83,7 +94,7 @@ bool SubNestedSequenceLayer::init(const LayerMap& layerMap,
return true; return true;
} }
void SubNestedSequenceLayer::calSelectedCols( void SubNestedSequenceLayer::calSelectedRows(
const MatrixPtr selectedIndices, const MatrixPtr selectedIndices,
const std::vector<std::vector<int>>& inputSeqInfo) { const std::vector<std::vector<int>>& inputSeqInfo) {
selectedRows_.clear(); selectedRows_.clear();
...@@ -160,7 +171,7 @@ void SubNestedSequenceLayer::forward(PassType passType) { ...@@ -160,7 +171,7 @@ void SubNestedSequenceLayer::forward(PassType passType) {
Argument::reorganizeSeqInfo(inputSeq.sequenceStartPositions, Argument::reorganizeSeqInfo(inputSeq.sequenceStartPositions,
inputSeq.subSequenceStartPositions, inputSeq.subSequenceStartPositions,
inputSeqInfoVec_); inputSeqInfoVec_);
calSelectedCols(selIdsCpu_, inputSeqInfoVec_); calSelectedRows(selIdsCpu_, inputSeqInfoVec_);
resetOutput(selectedRows_.size(), getSize()); resetOutput(selectedRows_.size(), getSize());
getOutputValue()->selectRows(*getInputValue(0), *rowIndice_); getOutputValue()->selectRows(*getInputValue(0), *rowIndice_);
......
...@@ -41,6 +41,13 @@ add_unittest_without_exec(test_CrossEntropyOverBeam ...@@ -41,6 +41,13 @@ add_unittest_without_exec(test_CrossEntropyOverBeam
add_test(NAME test_CrossEntropyOverBeam add_test(NAME test_CrossEntropyOverBeam
COMMAND test_CrossEntropyOverBeam) COMMAND test_CrossEntropyOverBeam)
################ test_SeqSliceLayerGrad ####################
add_unittest_without_exec(test_SeqSliceLayerGrad
test_SeqSliceLayerGrad.cpp
LayerGradUtil.cpp)
add_test(NAME test_SeqSliceLayerGrad
COMMAND test_SeqSliceLayerGrad)
add_unittest_without_exec(test_ActivationGrad add_unittest_without_exec(test_ActivationGrad
test_ActivationGrad.cpp test_ActivationGrad.cpp
LayerGradUtil.cpp) LayerGradUtil.cpp)
......
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <gtest/gtest.h>
#include "ModelConfig.pb.h"
#include "paddle/gserver/layers/DataLayer.h"
#include "paddle/trainer/Trainer.h"
#include "LayerGradUtil.h"
#include "paddle/testing/TestUtil.h"
using namespace paddle; // NOLINT
using namespace std; // NOLINT
DECLARE_int32(gpu_id);
DECLARE_bool(thread_local_rand_use_global_seed);
const int MAX_SEQ_NUM = 17;
const int MAX_SEQ_LEN = 23;
const int MAX_BEAM_SIZE = 13;
vector<real> randSampling(real range, int n) {
CHECK_GE(range, n);
vector<real> num(range);
iota(begin(num), end(num), 0.);
if (range == n) return num;
random_shuffle(begin(num), end(num));
num.resize(n);
sort(begin(num), end(num));
return num;
}
void genSeqInfo(vector<int>& seqStartPos, vector<int>& subSeqStartPos) {
seqStartPos.resize(1, 0);
subSeqStartPos.resize(1, 0);
srand((size_t)(time(NULL)));
int seqNum = 1 + (rand() % MAX_SEQ_NUM);
for (int i = 0; i < seqNum; ++i) {
int subSeqNum = 1 + (rand() % MAX_SEQ_NUM);
for (int j = 0; j < subSeqNum; ++j)
subSeqStartPos.push_back(subSeqStartPos.back() +
(1 + (rand() % MAX_SEQ_LEN)));
seqStartPos.push_back(subSeqStartPos.back());
}
}
/*
generate start indices according to sequence start positions.
*/
void genStarts(vector<int>& seqStartPos,
vector<vector<real>>& starts,
size_t beamSize) {
starts.clear();
starts.resize(seqStartPos.size() - 1, vector<real>(beamSize, -1.));
for (size_t i = 0; i < seqStartPos.size() - 1; ++i) {
int seqLen = seqStartPos[i + 1] - seqStartPos[i];
vector<real> randStarts =
randSampling(seqLen, min(seqLen, static_cast<int>(beamSize)));
copy(begin(randStarts), end(randStarts), begin(starts[i]));
}
}
/*
generate end indices according to sequence start positions and start indices.
*/
void genEnds(vector<int>& seqStartPos,
vector<vector<real>>& starts,
vector<vector<real>>& ends,
size_t beamSize) {
CHECK_EQ(seqStartPos.size() - 1, starts.size());
ends.clear();
ends.resize(seqStartPos.size() - 1, vector<real>(beamSize, -1.));
for (size_t i = 0; i < starts.size(); ++i) {
for (size_t j = 0; j < starts[i].size(); ++j) {
int seqLen = seqStartPos[i + 1] - seqStartPos[i];
CHECK_GE(seqLen - 1, starts[i][j]);
if (starts[i][j] == -1.) break;
if (starts[i][j] == (seqLen - 1)) {
ends[i][j] = starts[i][j];
} else {
ends[i][j] = starts[i][j] + randSampling(seqLen - starts[i][j], 1)[0];
}
}
}
}
void genTestData(vector<int>& seqStartPos,
vector<int>& subSeqStartPos,
vector<vector<real>>& starts,
vector<vector<real>>& ends,
bool hasSubseq) {
size_t beamSize = 1 + (rand() % MAX_BEAM_SIZE);
genSeqInfo(seqStartPos, subSeqStartPos);
genStarts(hasSubseq ? subSeqStartPos : seqStartPos, starts, beamSize);
genEnds(hasSubseq ? subSeqStartPos : seqStartPos, starts, ends, beamSize);
}
template <typename T>
void flatten2dVector(vector<vector<T>>& inVec, vector<T>& outVec) {
size_t totalSize{0};
for (auto const& items : inVec) totalSize += items.size();
outVec.reserve(totalSize);
for (auto& items : inVec)
move(items.begin(), items.end(), back_inserter(outVec));
}
void testSeqSliceLayer(bool hasSubseq,
bool useGpu,
vector<int>& seqStartPos,
vector<int>& subSeqStartPos,
vector<vector<real>>& starts,
vector<vector<real>>& ends) {
// layer size is not crutial for this layer,
// so here use a small layer size in the unittest.
const size_t layerSize{4};
TestConfig config;
config.layerConfig.set_type("seq_slice");
config.layerConfig.set_size(layerSize);
// add the first input
MatrixPtr seqInputPtr =
Matrix::create(hasSubseq ? subSeqStartPos.back() : seqStartPos.back(),
layerSize,
false,
false);
seqInputPtr->randomizeUniform();
if (hasSubseq) {
config.inputDefs.push_back({INPUT_SELF_DEFINE_DATA,
"seq_input",
seqInputPtr,
seqStartPos,
subSeqStartPos});
} else {
config.inputDefs.push_back(
{INPUT_SELF_DEFINE_DATA, "seq_input", seqInputPtr, seqStartPos});
}
config.layerConfig.add_inputs();
// add start indices
if (starts.size()) {
vector<real> startsToVec;
flatten2dVector(starts, startsToVec);
MatrixPtr startMatrixPtr =
Matrix::create(starts.size(), starts[0].size(), false, false);
startMatrixPtr->copyFrom(startsToVec.data(), startsToVec.size());
config.inputDefs.push_back(
{INPUT_SELF_DEFINE_DATA, "starts", startMatrixPtr});
config.layerConfig.add_inputs();
config.layerConfig.set_select_first(true);
}
// add end indices
if (ends.size()) {
vector<real> endsToVec;
flatten2dVector(ends, endsToVec);
MatrixPtr endMatrixPtr =
Matrix::create(ends.size(), ends[0].size(), false, false);
endMatrixPtr->copyFrom(endsToVec.data(), endsToVec.size());
config.inputDefs.push_back({INPUT_SELF_DEFINE_DATA, "ends", endMatrixPtr});
config.layerConfig.add_inputs();
config.layerConfig.set_select_first(false);
}
testLayerGrad(config, "seq_slice", /*batchSize*/ 100, false, useGpu, false);
}
TEST(Layer, SeqSliceLayer) {
vector<int> seqStartPos;
vector<int> subSeqStartPos;
vector<vector<real>> starts;
vector<vector<real>> ends;
std::vector<bool> mode = {false};
#ifndef PADDLE_ONLY_CPU
mode.push_back(true);
#endif
genSeqInfo(seqStartPos, subSeqStartPos);
for (bool hasSubseq : {true, false}) {
LOG(INFO) << "hasSubSeq : " << hasSubseq;
genTestData(seqStartPos, subSeqStartPos, starts, ends, hasSubseq);
for (bool useGpu : mode) {
vector<vector<real>> tmp;
testSeqSliceLayer(
hasSubseq, useGpu, seqStartPos, subSeqStartPos, tmp, ends);
testSeqSliceLayer(
hasSubseq, useGpu, seqStartPos, subSeqStartPos, starts, tmp);
testSeqSliceLayer(
hasSubseq, useGpu, seqStartPos, subSeqStartPos, starts, ends);
}
}
}
int main(int argc, char** argv) {
initMain(argc, argv);
hl_start();
hl_init(FLAGS_gpu_id);
FLAGS_thread_local_rand_use_global_seed = true;
srand(1);
testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}
...@@ -43,6 +43,7 @@ endfunction() ...@@ -43,6 +43,7 @@ endfunction()
add_subdirectory(math) add_subdirectory(math)
cc_test(gather_test SRCS gather_test.cc DEPS tensor) cc_test(gather_test SRCS gather_test.cc DEPS tensor)
op_library(gather_op SRCS gather_op.cc gather_op.cu)
cc_test(scatter_test SRCS scatter_test.cc DEPS tensor) cc_test(scatter_test SRCS scatter_test.cc DEPS tensor)
...@@ -68,3 +69,4 @@ op_library(recurrent_op SRCS recurrent_op.cc rnn/recurrent_op_utils.cc ...@@ -68,3 +69,4 @@ op_library(recurrent_op SRCS recurrent_op.cc rnn/recurrent_op_utils.cc
DEPS framework_proto tensor op_registry operator net_op) DEPS framework_proto tensor op_registry operator net_op)
op_library(uniform_random_op op_library(uniform_random_op
SRCS uniform_random_op.cc uniform_random_op.cu) SRCS uniform_random_op.cc uniform_random_op.cu)
op_library(scale_op SRCS scale_op.cc scale_op.cu DEPS net_op)
...@@ -17,6 +17,7 @@ limitations under the License. */ ...@@ -17,6 +17,7 @@ limitations under the License. */
#include <cstring> #include <cstring>
#include "paddle/framework/ddim.h" #include "paddle/framework/ddim.h"
#include "paddle/framework/eigen.h"
#include "paddle/framework/tensor.h" #include "paddle/framework/tensor.h"
#include "paddle/platform/place.h" #include "paddle/platform/place.h"
...@@ -25,13 +26,13 @@ namespace operators { ...@@ -25,13 +26,13 @@ namespace operators {
// Implementation of CPU copy // Implementation of CPU copy
template <typename T> template <typename T>
void CPUGather(const T* params, const int* indices, const int slice_size, void CPUGather(const T* src, const int* indices, const int slice_size,
const int index_size, T* output) { const int index_size, T* output) {
const size_t slice_bytes = slice_size * sizeof(T); const size_t slice_bytes = slice_size * sizeof(T);
for (int i = 0; i < index_size; ++i) { for (int i = 0; i < index_size; ++i) {
int index_ = indices[i]; int index_ = indices[i];
memcpy(output + i * slice_size, params + index_ * slice_size, slice_bytes); memcpy(output + i * slice_size, src + index_ * slice_size, slice_bytes);
} }
} }
...@@ -55,7 +56,7 @@ void Gather(const platform::Place& place, const paddle::framework::Tensor* src, ...@@ -55,7 +56,7 @@ void Gather(const platform::Place& place, const paddle::framework::Tensor* src,
int index_size = index->dims()[0]; int index_size = index->dims()[0];
auto src_dims = src->dims(); auto src_dims = src->dims();
paddle::framework::DDim output_dims(src_dims); framework::DDim output_dims(src_dims);
output_dims[0] = index_size; output_dims[0] = index_size;
// slice size // slice size
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/gather_op.h"
#include "paddle/framework/ddim.h"
namespace paddle {
namespace operators {
class GatherOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
int batch_size = ctx.Input<Tensor>("Index")->dims()[0];
PADDLE_ENFORCE_GE(batch_size, 0, "Batch size must be >0");
framework::DDim output_dims(ctx.Input<Tensor>("X")->dims());
output_dims[0] = batch_size;
ctx.Output<Tensor>("Out")->Resize(output_dims);
}
};
class GatherGradOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
auto X_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
auto X = ctx.Input<Tensor>("X");
X_grad->Resize(X->dims());
}
};
class GatherOpMaker : public framework::OpProtoAndCheckerMaker {
public:
GatherOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "The source input of gather op");
AddInput("Index", "The index input of gather op");
AddOutput("Out", "The output of add op");
AddComment(R"DOC(
Gather Operator by selecting from the first axis,
Out = X[Index]
)DOC");
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP(gather, ops::GatherOp, ops::GatherOpMaker, gather_grad,
ops::GatherGradOp);
REGISTER_OP_CPU_KERNEL(gather,
ops::GatherOpKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
gather_grad,
ops::GatherGradientOpKernel<paddle::platform::CPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#define EIGEN_USE_GPU
#include "paddle/operators/gather_op.h"
namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL(gather,
ops::GatherOpKernel<paddle::platform::GPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "gather.h"
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
#include "scatter.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename Place, typename T>
class GatherOpKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext &ctx) const override {
auto *X = ctx.Input<Tensor>("X");
auto *Index = ctx.Input<Tensor>("Index");
auto *Y = ctx.Output<Tensor>("Out");
Y->mutable_data<T>(ctx.GetPlace());
Gather<T>(ctx.GetPlace(), X, Index, Y);
}
};
template <typename Place, typename T>
class GatherGradientOpKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext &ctx) const override {
auto *Index = ctx.Input<Tensor>("Index");
auto *dX = ctx.Output<Tensor>(framework::GradVarName("X"));
auto *dO = ctx.Input<Tensor>(framework::GradVarName("Out"));
dX->mutable_data<T>(ctx.GetPlace());
ScatterUpdate<T>(ctx.GetPlace(), dO, Index, dX);
}
};
} // namespace operators
} // namespace paddle
...@@ -68,10 +68,15 @@ std::string NetOp::DebugString() const { ...@@ -68,10 +68,15 @@ std::string NetOp::DebugString() const {
bool NetOp::IsNetOp() const { return true; } bool NetOp::IsNetOp() const { return true; }
std::vector<std::string> NetOp::OutputVars(bool has_intermediate) const { std::vector<std::string> NetOp::OutputVars(bool has_intermediate) const {
std::vector<std::string> all;
for (auto& pair : this->outputs_) {
for (auto& var_name : pair.second) {
all.push_back(var_name);
}
}
if (has_intermediate) { if (has_intermediate) {
return this->outputs_.at(kAll); return all;
} }
auto& all = this->outputs_.at(kAll);
std::vector<std::string> ret_val; std::vector<std::string> ret_val;
for (auto& each : all) { for (auto& each : all) {
if (!Contains(intermediate_outputs_, each)) { if (!Contains(intermediate_outputs_, each)) {
...@@ -81,9 +86,8 @@ std::vector<std::string> NetOp::OutputVars(bool has_intermediate) const { ...@@ -81,9 +86,8 @@ std::vector<std::string> NetOp::OutputVars(bool has_intermediate) const {
return ret_val; return ret_val;
} }
NetOp::NetOp(const std::string& type, NetOp::NetOp(const std::string& type, const framework::VariableNameMap& inputs,
const framework::OperatorBase::VarNameMap& inputs, const framework::VariableNameMap& outputs,
const framework::OperatorBase::VarNameMap& outputs,
const framework::AttributeMap& attrs) const framework::AttributeMap& attrs)
: framework::OperatorBase(type, inputs, outputs, attrs) {} : framework::OperatorBase(type, inputs, outputs, attrs) {}
......
...@@ -38,8 +38,10 @@ class NetOp : public framework::OperatorBase { ...@@ -38,8 +38,10 @@ class NetOp : public framework::OperatorBase {
public: public:
static const char kAll[]; static const char kAll[];
NetOp() : framework::OperatorBase("plain_net", {}, {}, {}) {} NetOp() : framework::OperatorBase("plain_net", {}, {}, {}) {}
NetOp(const std::string& type, const VarNameMap& inputs,
const VarNameMap& outputs, const framework::AttributeMap& attrs); NetOp(const std::string& type, const framework::VariableNameMap& inputs,
const framework::VariableNameMap& outputs,
const framework::AttributeMap& attrs);
NetOp(const NetOp& o) : framework::OperatorBase(o.type_, {}, {}, o.attrs_) { NetOp(const NetOp& o) : framework::OperatorBase(o.type_, {}, {}, o.attrs_) {
this->ops_.reserve(o.ops_.size()); this->ops_.reserve(o.ops_.size());
......
...@@ -131,8 +131,8 @@ const rnn::ArgumentName RecurrentGradientOp::kArgName{ ...@@ -131,8 +131,8 @@ const rnn::ArgumentName RecurrentGradientOp::kArgName{
"memories", "pre_memories", "boot_memories@grad"}; "memories", "pre_memories", "boot_memories@grad"};
RecurrentOp::RecurrentOp(const std::string& type, RecurrentOp::RecurrentOp(const std::string& type,
const framework::OperatorBase::VarNameMap& inputs, const framework::VariableNameMap& inputs,
const framework::OperatorBase::VarNameMap& outputs, const framework::VariableNameMap& outputs,
const framework::AttributeMap& attrs) const framework::AttributeMap& attrs)
: OperatorBase(type, inputs, outputs, attrs) { : OperatorBase(type, inputs, outputs, attrs) {
rnn::InitArgument(kArgName, &arg_, *this); rnn::InitArgument(kArgName, &arg_, *this);
...@@ -223,8 +223,8 @@ void RecurrentGradientAlgorithm::InferShape(const Scope& scope) const { ...@@ -223,8 +223,8 @@ void RecurrentGradientAlgorithm::InferShape(const Scope& scope) const {
} }
RecurrentGradientOp::RecurrentGradientOp( RecurrentGradientOp::RecurrentGradientOp(
const std::string& type, const framework::OperatorBase::VarNameMap& inputs, const std::string& type, const framework::VariableNameMap& inputs,
const framework::OperatorBase::VarNameMap& outputs, const framework::VariableNameMap& outputs,
const framework::AttributeMap& attrs) const framework::AttributeMap& attrs)
: OperatorBase(type, inputs, outputs, attrs) { : OperatorBase(type, inputs, outputs, attrs) {
rnn::InitArgument(kArgName, &arg_, *this); rnn::InitArgument(kArgName, &arg_, *this);
......
...@@ -114,8 +114,9 @@ class RecurrentGradientAlgorithm { ...@@ -114,8 +114,9 @@ class RecurrentGradientAlgorithm {
class RecurrentOp : public framework::OperatorBase { class RecurrentOp : public framework::OperatorBase {
public: public:
RecurrentOp(const std::string& type, const VarNameMap& inputs, RecurrentOp(const std::string& type, const framework::VariableNameMap& inputs,
const VarNameMap& outputs, const framework::AttributeMap& attrs); const framework::VariableNameMap& outputs,
const framework::AttributeMap& attrs);
RecurrentOp(const RecurrentOp& o) RecurrentOp(const RecurrentOp& o)
: framework::OperatorBase( : framework::OperatorBase(
...@@ -150,8 +151,9 @@ class RecurrentOp : public framework::OperatorBase { ...@@ -150,8 +151,9 @@ class RecurrentOp : public framework::OperatorBase {
class RecurrentGradientOp : public framework::OperatorBase { class RecurrentGradientOp : public framework::OperatorBase {
public: public:
RecurrentGradientOp(const std::string& type, const VarNameMap& inputs, RecurrentGradientOp(const std::string& type,
const VarNameMap& outputs, const framework::VariableNameMap& inputs,
const framework::VariableNameMap& outputs,
const framework::AttributeMap& attrs); const framework::AttributeMap& attrs);
RecurrentGradientOp(const RecurrentGradientOp& o) RecurrentGradientOp(const RecurrentGradientOp& o)
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/scale_op.h"
#include "paddle/operators/net_op.h"
namespace paddle {
namespace operators {
class ScaleOp : public framework::OperatorWithKernel {
public:
ScaleOp(const std::string &type, const framework::VariableNameMap &inputs,
const framework::VariableNameMap &outputs,
const framework::AttributeMap &attrs)
: OperatorWithKernel(type, inputs, outputs, attrs) {}
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
auto *in = ctx.Input<framework::Tensor>("X");
auto *out = ctx.Output<framework::Tensor>("Out");
out->Resize(in->dims());
}
};
template <typename AttrType>
class ScaleOpMaker : public framework::OpProtoAndCheckerMaker {
public:
ScaleOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "The input tensor of scale operator.").NotInGradient();
AddOutput("Out", "The output tensor of scale operator.").NotInGradient();
AddComment(R"DOC(Scale operator
The equation is: Out = scale*X
)DOC");
AddAttr<AttrType>("scale", "scale of scale operator.").SetDefault(1.0);
}
};
// Identity Op's gradient is identity op, too.
// Grad(Out=scale(X)) => Grad(X) = scale(Grad(Out))
template <typename AttrType>
class ScaleGradOp : public NetOp {
public:
ScaleGradOp(const std::string &type, const framework::VariableNameMap &inputs,
const framework::VariableNameMap &outputs,
const framework::AttributeMap &attrs)
: NetOp(type, inputs, outputs, attrs) {
AppendOp(framework::OpRegistry::CreateOp(
"scale", {{"X", {Input(framework::GradVarName("Out"))}}},
{{"Out", {Output(framework::GradVarName("X"))}}},
{{"scale", GetAttr<AttrType>("scale")}}));
CompleteAddOp(false);
}
};
// identity is a alias of scale op. This is also a example for creating a alias
// operator.
template <typename AttrType>
class IdentityOpMaker : public framework::OpProtoAndCheckerMaker {
public:
IdentityOpMaker(framework::OpProto *proto,
framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "input tensor of identity op");
AddOutput("Out", "output tensor of identity op");
AddComment("identity operator. Just a alias of scale op which scale = 1.0");
}
};
template <typename AttrType>
class IdentityOp : public NetOp {
public:
IdentityOp(const std::string &type, const framework::VariableNameMap &inputs,
const framework::VariableNameMap &outputs,
const framework::AttributeMap &attrs)
: NetOp(type, inputs, outputs, attrs) {
AppendOp(framework::OpRegistry::CreateOp(
"scale", {{"X", {Input("X")}}}, {{"Out", {Output("Out")}}},
{{"scale", static_cast<AttrType>(1)}}));
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP(scale, ops::ScaleOp, ops::ScaleOpMaker<float>, scale_grad,
ops::ScaleGradOp<float>);
REGISTER_OP_CPU_KERNEL(scale,
ops::ScaleKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_WITHOUT_GRADIENT(identity, ops::IdentityOp<float>,
ops::IdentityOpMaker<float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/scale_op.h"
REGISTER_OP_GPU_KERNEL(
scale, paddle::operators::ScaleKernel<paddle::platform::GPUPlace, float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
namespace paddle {
namespace operators {
template <typename Place, typename T, typename AttrType = T>
class ScaleKernel : public framework::OpKernel {
public:
virtual void Compute(const framework::ExecutionContext& context) const {
auto* tensor = context.Output<framework::Tensor>("Out");
auto* in = context.Input<framework::Tensor>("X");
tensor->mutable_data<T>(in->place());
auto scale = static_cast<T>(context.op_.GetAttr<AttrType>("scale"));
auto eigen_out = framework::EigenVector<T>::Flatten(*tensor);
auto eigen_in = framework::EigenVector<T>::Flatten(*in);
auto& dev = context.GetEigenDevice<Place>();
eigen_out.device(dev) = scale * eigen_in;
}
};
} // namespace operators
} // namespace paddle
...@@ -276,17 +276,21 @@ int32_t Argument::resizeAndCopyFrom(const Argument& src, ...@@ -276,17 +276,21 @@ int32_t Argument::resizeAndCopyFrom(const Argument& src,
void Argument::concat(const std::vector<Argument>& args, void Argument::concat(const std::vector<Argument>& args,
const std::vector<int>& selectRows, const std::vector<int>& selectRows,
const std::vector<int>& seqStartPos, const std::vector<int>& seqStartPos,
const std::vector<int>& copySize,
bool useGpu, bool useGpu,
hl_stream_t stream, hl_stream_t stream,
PassType passType) { PassType passType) {
CHECK(!subSequenceStartPositions) CHECK(!subSequenceStartPositions)
<< "undefined behavior for subsequence positions"; << "undefined behavior for subsequence positions";
size_t batchSize = selectRows.size(); size_t batchSize = 0;
for (size_t i = 0; i < copySize.size(); ++i)
batchSize += copySize[i] * (seqStartPos[i + 1] - seqStartPos[i]);
auto copyArg = [batchSize, stream](MatrixPtr& dst, auto copyArg = [batchSize, stream](MatrixPtr& dst,
MatrixPtr src, MatrixPtr src,
int startRow, int desStartRow,
int pos, int srcStartRow,
int size, int size,
bool useGpu) { bool useGpu) {
if (!src) { if (!src) {
...@@ -300,14 +304,14 @@ void Argument::concat(const std::vector<Argument>& args, ...@@ -300,14 +304,14 @@ void Argument::concat(const std::vector<Argument>& args,
dst->resize(batchSize, width); dst->resize(batchSize, width);
} }
MatrixPtr tmpMatrix = dst->subMatrix(startRow, size); MatrixPtr tmpMatrix = dst->subMatrix(desStartRow, size);
tmpMatrix->copyFrom(*src->subMatrix(pos, size), stream); tmpMatrix->copyFrom(*src->subMatrix(srcStartRow, size), stream);
}; };
auto copyIds = [batchSize, stream](IVectorPtr& dst, auto copyIds = [batchSize, stream](IVectorPtr& dst,
const IVectorPtr& src, const IVectorPtr& src,
int startRow, int desStartRow,
int pos, int srcStartRow,
int size, int size,
bool useGpu) { bool useGpu) {
if (!src) { if (!src) {
...@@ -315,13 +319,14 @@ void Argument::concat(const std::vector<Argument>& args, ...@@ -315,13 +319,14 @@ void Argument::concat(const std::vector<Argument>& args,
return; return;
} }
IVector::resizeOrCreate(dst, batchSize, useGpu); IVector::resizeOrCreate(dst, batchSize, useGpu);
dst->subVec(startRow, size)->copyFrom(*src->subVec(pos, size), stream); dst->subVec(desStartRow, size)
->copyFrom(*src->subVec(srcStartRow, size), stream);
}; };
auto copyStrs = [batchSize, stream](SVectorPtr& dst, auto copyStrs = [batchSize, stream](SVectorPtr& dst,
const SVectorPtr& src, const SVectorPtr& src,
int startRow, int desStartRow,
int pos, int srcStartRow,
int size, int size,
bool useGpu) { bool useGpu) {
if (!src) { if (!src) {
...@@ -333,30 +338,31 @@ void Argument::concat(const std::vector<Argument>& args, ...@@ -333,30 +338,31 @@ void Argument::concat(const std::vector<Argument>& args,
} else { } else {
dst->resize(batchSize); dst->resize(batchSize);
} }
std::copy( std::copy(src->begin() + srcStartRow,
src->begin() + pos, src->begin() + pos + size, dst->begin() + startRow); src->begin() + srcStartRow + size,
dst->begin() + desStartRow);
}; };
dataId = args[0].dataId; dataId = args[0].dataId;
CHECK_NE(seqStartPos.size(), 0UL); CHECK_NE(seqStartPos.size(), 0UL);
size_t sampleNum = seqStartPos.size() - 1; int desStartRow = 0;
for (size_t i = 0; i < sampleNum; ++i) { for (size_t i = 0; i < copySize.size(); ++i) {
int startPos = seqStartPos[i]; int startPos = seqStartPos[i];
int endPos = seqStartPos[i + 1]; int endPos = seqStartPos[i + 1];
CHECK_GE(args.size(), static_cast<size_t>(endPos - startPos)); CHECK_GE(args.size(), static_cast<size_t>(endPos - startPos));
for (int j = startPos; j < endPos; ++j) { for (int j = startPos; j < endPos; ++j) {
const Argument& arg = args[j - startPos]; const Argument& arg = args[j - startPos];
CHECK_EQ(arg.dataId, dataId) << "Arguments in concat should have" CHECK_EQ(arg.dataId, dataId) << "Arguments to concatenate should have "
<< " same dataId"; << "the same dataId.";
const int copySize = 1; const int srcStartRow = selectRows[j];
const int rowIdx = selectRows[j]; copyArg(in, arg.in, desStartRow, srcStartRow, copySize[i], useGpu);
copyArg(in, arg.in, j, rowIdx, copySize, useGpu); copyArg(value, arg.value, desStartRow, srcStartRow, copySize[i], useGpu);
copyArg(value, arg.value, j, rowIdx, copySize, useGpu);
if (passType != PASS_TEST) { if (passType != PASS_TEST) {
copyArg(grad, arg.grad, j, rowIdx, copySize, useGpu); copyArg(grad, arg.grad, desStartRow, srcStartRow, copySize[i], useGpu);
} }
copyIds(ids, arg.ids, j, rowIdx, copySize, useGpu); copyIds(ids, arg.ids, desStartRow, srcStartRow, copySize[i], useGpu);
copyStrs(strs, arg.strs, j, rowIdx, copySize, useGpu); copyStrs(strs, arg.strs, desStartRow, srcStartRow, copySize[i], useGpu);
desStartRow += copySize[i];
} }
} }
ICpuGpuVector::resizeOrCreate( ICpuGpuVector::resizeOrCreate(
...@@ -670,10 +676,13 @@ void Argument::reorganizeSeqInfo( ...@@ -670,10 +676,13 @@ void Argument::reorganizeSeqInfo(
const ICpuGpuVectorPtr seqStartPos, const ICpuGpuVectorPtr seqStartPos,
const ICpuGpuVectorPtr subSeqStartPos, const ICpuGpuVectorPtr subSeqStartPos,
std::vector<std::vector<int>>& reorganizedSeqInfo) { std::vector<std::vector<int>>& reorganizedSeqInfo) {
int* seqStarts = seqStartPos->getMutableData(false); CHECK(seqStartPos);
int* subSeqStarts = subSeqStartPos->getMutableData(false);
int seqNum = seqStartPos->getSize() - 1; int seqNum = seqStartPos->getSize() - 1;
int* seqStarts = seqStartPos->getMutableData(false);
if (subSeqStartPos) {
int* subSeqStarts = subSeqStartPos->getMutableData(false);
reorganizedSeqInfo.resize(seqNum, std::vector<int>()); reorganizedSeqInfo.resize(seqNum, std::vector<int>());
int seqIdx = 0; int seqIdx = 0;
for (size_t i = 0; i < subSeqStartPos->getSize(); ++i) { for (size_t i = 0; i < subSeqStartPos->getSize(); ++i) {
...@@ -684,6 +693,12 @@ void Argument::reorganizeSeqInfo( ...@@ -684,6 +693,12 @@ void Argument::reorganizeSeqInfo(
reorganizedSeqInfo[seqIdx].push_back(subSeqStarts[i]); reorganizedSeqInfo[seqIdx].push_back(subSeqStarts[i]);
} }
} }
} else {
reorganizedSeqInfo.resize(1, std::vector<int>(seqNum + 1, 0));
memcpy(reorganizedSeqInfo[0].data(),
seqStarts,
sizeof(int) * seqStartPos->getSize());
}
} }
} // namespace paddle } // namespace paddle
...@@ -240,6 +240,7 @@ struct Argument { ...@@ -240,6 +240,7 @@ struct Argument {
void concat(const std::vector<Argument>& args, void concat(const std::vector<Argument>& args,
const std::vector<int>& selectRows, const std::vector<int>& selectRows,
const std::vector<int>& seqStartPos, const std::vector<int>& seqStartPos,
const std::vector<int>& copySize,
bool useGpu, bool useGpu,
hl_stream_t stream, hl_stream_t stream,
PassType passType); PassType passType);
......
if(WITH_PYTHON)
cc_library(paddle_pybind SHARED
SRCS pybind.cc
DEPS pybind python backward
sgd_op
gather_op
add_op
mul_op
rowwise_add_op
sigmoid_op
softmax_op
mean_op
cross_entropy_op
recurrent_op
uniform_random_op
gaussian_random_op
fill_zeros_like_op
scale_op)
endif(WITH_PYTHON)
...@@ -18,11 +18,11 @@ limitations under the License. */ ...@@ -18,11 +18,11 @@ limitations under the License. */
#include "paddle/framework/backward.h" #include "paddle/framework/backward.h"
#include "paddle/framework/op_registry.h" #include "paddle/framework/op_registry.h"
#include "paddle/framework/tensor_py.h"
#include "paddle/operators/net_op.h" #include "paddle/operators/net_op.h"
#include "paddle/operators/recurrent_op.h" #include "paddle/operators/recurrent_op.h"
#include "paddle/platform/enforce.h" #include "paddle/platform/enforce.h"
#include "paddle/platform/place.h" #include "paddle/platform/place.h"
#include "paddle/pybind/tensor_py.h"
#include "paddle/string/to_string.h" #include "paddle/string/to_string.h"
#include "pybind11/numpy.h" #include "pybind11/numpy.h"
#include "pybind11/pybind11.h" #include "pybind11/pybind11.h"
...@@ -42,6 +42,9 @@ USE_OP(fill_zeros_like); ...@@ -42,6 +42,9 @@ USE_OP(fill_zeros_like);
USE_OP_ITSELF(recurrent_op); USE_OP_ITSELF(recurrent_op);
USE_OP(gaussian_random); USE_OP(gaussian_random);
USE_OP(uniform_random); USE_OP(uniform_random);
USE_OP(scale);
USE_OP_ITSELF(identity);
USE_CPU_ONLY_OP(gather);
namespace paddle { namespace paddle {
namespace framework { namespace framework {
...@@ -131,26 +134,24 @@ All parameter, weight, gradient are variables in Paddle. ...@@ -131,26 +134,24 @@ All parameter, weight, gradient are variables in Paddle.
py::return_value_policy::reference) py::return_value_policy::reference)
.def("find_var", &Scope::FindVar, py::return_value_policy::reference) .def("find_var", &Scope::FindVar, py::return_value_policy::reference)
.def(py::init<>()) .def(py::init<>())
.def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); }, .def("new_scope",
[](Scope &self) -> Scope * { return &self.NewScope(); },
py::return_value_policy::reference) py::return_value_policy::reference)
.def("drop_kids", &Scope::DropKids); .def("drop_kids", &Scope::DropKids);
//! @note: Be careful! PyBind will return std::string as an unicode, not //! @note: Be careful! PyBind will return std::string as an unicode, not
//! Python str. If you want a str object, you should cast them in Python. //! Python str. If you want a str object, you should cast them in Python.
m.def("get_all_op_protos", []() -> std::vector<py::bytes> { m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
auto &op_info_map = OpRegistry::op_info_map();
std::vector<py::bytes> ret_values; std::vector<py::bytes> ret_values;
for (auto it = op_info_map.begin(); it != op_info_map.end(); ++it) {
const OpProto *proto = it->second.proto_; OpInfoMap::Instance().IterAllInfo([&ret_values](const std::string &type,
if (proto == nullptr) { const OpInfo &info) {
continue; if (!info.HasOpProtoAndChecker()) return;
}
PADDLE_ENFORCE(proto->IsInitialized(), "OpProto must all be initialized");
std::string str; std::string str;
PADDLE_ENFORCE(proto->SerializeToString(&str), PADDLE_ENFORCE(info.Proto().SerializeToString(&str),
"Serialize OpProto Error. This could be a bug of Paddle."); "Serialize OpProto Error. This could be a bug of Paddle.");
ret_values.push_back(py::bytes(str)); ret_values.emplace_back(str);
} });
return ret_values; return ret_values;
}); });
m.def_submodule( m.def_submodule(
...@@ -222,8 +223,10 @@ All parameter, weight, gradient are variables in Paddle. ...@@ -222,8 +223,10 @@ All parameter, weight, gradient are variables in Paddle.
retv->SetType("plain_net"); retv->SetType("plain_net");
return retv; return retv;
}) })
.def("append_op", [](operators::NetOp &self, .def("append_op",
const OperatorBase &op) { self.AppendOp(op); }) [](operators::NetOp &self, const OperatorBase &op) {
self.AppendOp(op);
})
.def("complete_add_op", &operators::NetOp::CompleteAddOp) .def("complete_add_op", &operators::NetOp::CompleteAddOp)
.def("complete_add_op", [](std::shared_ptr<operators::NetOp> &self) { .def("complete_add_op", [](std::shared_ptr<operators::NetOp> &self) {
self->CompleteAddOp(); self->CompleteAddOp();
...@@ -243,10 +246,9 @@ All parameter, weight, gradient are variables in Paddle. ...@@ -243,10 +246,9 @@ All parameter, weight, gradient are variables in Paddle.
auto rnn_op = OpRegistry::CreateOp(desc); auto rnn_op = OpRegistry::CreateOp(desc);
return static_cast<operators::RecurrentOp *>(rnn_op.release()); return static_cast<operators::RecurrentOp *>(rnn_op.release());
}) })
.def("set_stepnet", [](operators::RecurrentOp &self, .def("set_stepnet",
const operators::NetOp &net) -> void { [](operators::RecurrentOp &self, const operators::NetOp &net)
self.set_stepnet(net.Clone()); -> void { self.set_stepnet(net.Clone()); });
});
m.def("unique_integer", UniqueIntegerGenerator); m.def("unique_integer", UniqueIntegerGenerator);
......
...@@ -63,8 +63,11 @@ struct CastToPyBufferImpl<true, I, ARGS...> { ...@@ -63,8 +63,11 @@ struct CastToPyBufferImpl<true, I, ARGS...> {
} }
return py::buffer_info( return py::buffer_info(
dst_tensor.mutable_data<CUR_TYPE>(dst_tensor.holder_->place()), dst_tensor.mutable_data<CUR_TYPE>(dst_tensor.holder_->place()),
sizeof(CUR_TYPE), py::format_descriptor<CUR_TYPE>::format(), sizeof(CUR_TYPE),
(size_t)framework::arity(dst_tensor.dims()), dims_outside, strides); py::format_descriptor<CUR_TYPE>::format(),
(size_t)framework::arity(dst_tensor.dims()),
dims_outside,
strides);
} else { } else {
constexpr bool less = I + 1 < std::tuple_size<std::tuple<ARGS...>>::value; constexpr bool less = I + 1 < std::tuple_size<std::tuple<ARGS...>>::value;
return CastToPyBufferImpl<less, I + 1, ARGS...>()(tensor); return CastToPyBufferImpl<less, I + 1, ARGS...>()(tensor);
...@@ -107,8 +110,8 @@ void PyCUDATensorSetFromArray( ...@@ -107,8 +110,8 @@ void PyCUDATensorSetFromArray(
self.Resize(framework::make_ddim(dims)); self.Resize(framework::make_ddim(dims));
auto *dst = self.mutable_data<T>(place); auto *dst = self.mutable_data<T>(place);
paddle::platform::GpuMemcpySync(dst, array.data(), sizeof(T) * array.size(), paddle::platform::GpuMemcpySync(
cudaMemcpyHostToDevice); dst, array.data(), sizeof(T) * array.size(), cudaMemcpyHostToDevice);
} }
#endif #endif
......
...@@ -338,7 +338,8 @@ def RecurrentLayerGroupWithoutOutLinksBegin(name, ...@@ -338,7 +338,8 @@ def RecurrentLayerGroupWithoutOutLinksBegin(name,
in_links_count += 1 in_links_count += 1
layer_name = MakeLayerNameInParentSubmodel(name) layer_name = MakeLayerNameInParentSubmodel(name)
layer = g_layer_map[layer_name] layer = g_layer_map[layer_name]
ScatterAgentLayer(name=name, size=layer.size) ScatterAgentLayer(
name=name, size=layer.size, width=layer.width, height=layer.height)
pair = g_current_submodel.in_links.add() pair = g_current_submodel.in_links.add()
pair.layer_name = layer_name pair.layer_name = layer_name
...@@ -2212,8 +2213,8 @@ class MaxOutLayer(LayerBase): ...@@ -2212,8 +2213,8 @@ class MaxOutLayer(LayerBase):
maxout_conf = self.config.inputs[0].maxout_conf maxout_conf = self.config.inputs[0].maxout_conf
parse_maxout(self.inputs[0].maxout, input_layer.name, maxout_conf) parse_maxout(self.inputs[0].maxout, input_layer.name, maxout_conf)
out_channels = maxout_conf.image_conf.channels / maxout_conf.groups out_channels = maxout_conf.image_conf.channels / maxout_conf.groups
self.set_cnn_layer(name, g_layer_map[input_layer.name].height, self.set_cnn_layer(name, maxout_conf.image_conf.img_size_y,
g_layer_map[input_layer.name].width, out_channels) maxout_conf.image_conf.img_size, out_channels)
@config_layer('row_conv') @config_layer('row_conv')
...@@ -2421,9 +2422,11 @@ class GatherAgentLayer(LayerBase): ...@@ -2421,9 +2422,11 @@ class GatherAgentLayer(LayerBase):
@config_layer('scatter_agent') @config_layer('scatter_agent')
class ScatterAgentLayer(LayerBase): class ScatterAgentLayer(LayerBase):
def __init__(self, name, size, device=None): def __init__(self, name, size, width=None, height=None, device=None):
super(ScatterAgentLayer, self).__init__( super(ScatterAgentLayer, self).__init__(
name, 'scatter_agent', size, inputs=[], device=device) name, 'scatter_agent', size, inputs=[], device=device)
if height and width:
self.set_layer_height_width(height, width)
@config_layer('multiplex') @config_layer('multiplex')
...@@ -2707,6 +2710,49 @@ class SubSequenceLayer(LayerBase): ...@@ -2707,6 +2710,49 @@ class SubSequenceLayer(LayerBase):
self.create_bias_parameter(bias, size) self.create_bias_parameter(bias, size)
@config_layer('seq_slice')
class SeqSliceLayer(LayerBase):
def __init__(self, name, inputs, starts, ends, bias=False, **xargs):
if isinstance(inputs, list):
assert len(inputs) == 1, ('the first input of sequence slice layer '
'is a single sequence input.')
else:
inputs = [inputs]
if starts is not None:
if isinstance(starts, list):
assert len(starts) == 1, (
'the start indices for sequence slice layer cannot '
'be a list having more than one element.')
starts = starts[0]
inputs.append(starts)
if ends is not None:
if isinstance(ends, list):
assert len(ends) == 1, (
'the end indices for sequence slice layer cannot '
'be a list having more than one element.')
ends = ends[0]
inputs.append(ends)
assert len(inputs) >= 2, (
'the sequence slice layer has at least two inputs.')
super(SeqSliceLayer, self).__init__(
name, 'seq_slice', 0, inputs=inputs, **xargs)
input_layer0 = self.get_input_layer(0)
size = input_layer0.size
self.set_layer_size(size)
if len(inputs) == 3:
assert (
self.get_input_layer(1).size == self.get_input_layer(2).size), (
'If start and end indices are both given to'
'sequence slice layer, they should have the same width.')
elif len(inputs) == 2:
self.config.select_first = (starts is not None)
@config_layer('sub_nested_seq') @config_layer('sub_nested_seq')
class SubNestedSequenceLayer(LayerBase): class SubNestedSequenceLayer(LayerBase):
def __init__(self, name, inputs, selected_indices, bias=False, **xargs): def __init__(self, name, inputs, selected_indices, bias=False, **xargs):
......
...@@ -15,11 +15,13 @@ import functools ...@@ -15,11 +15,13 @@ import functools
import collections import collections
import inspect import inspect
import paddle.trainer.config_parser as cp
from paddle.trainer.config_parser import * from paddle.trainer.config_parser import *
from .activations import LinearActivation, SigmoidActivation, TanhActivation, \ from .activations import LinearActivation, SigmoidActivation, TanhActivation, \
ReluActivation, IdentityActivation, SoftmaxActivation, BaseActivation ReluActivation, IdentityActivation, SoftmaxActivation, BaseActivation
from .evaluators import * from .evaluators import *
from .poolings import MaxPooling, AvgPooling, BasePoolingType from .poolings import MaxPooling, AvgPooling, BasePoolingType, \
CudnnAvgPooling, CudnnMaxPooling
from .attrs import * from .attrs import *
from .default_decorators import * from .default_decorators import *
...@@ -133,6 +135,7 @@ __all__ = [ ...@@ -133,6 +135,7 @@ __all__ = [
'sub_nested_seq_layer', 'sub_nested_seq_layer',
'clip_layer', 'clip_layer',
'slice_projection', 'slice_projection',
'seq_slice_layer',
'kmax_sequence_score_layer', 'kmax_sequence_score_layer',
'scale_shift_layer', 'scale_shift_layer',
] ]
...@@ -231,6 +234,7 @@ class LayerType(object): ...@@ -231,6 +234,7 @@ class LayerType(object):
CROP_LAYER = 'crop' CROP_LAYER = 'crop'
SUB_NESTED_SEQ = 'sub_nested_seq' SUB_NESTED_SEQ = 'sub_nested_seq'
CLIP_LAYER = 'clip' CLIP_LAYER = 'clip'
SEQ_SLICE = 'seq_slice'
KMAX_SEQ_SCORE = 'kmax_seq_score' KMAX_SEQ_SCORE = 'kmax_seq_score'
SCALE_SHIFT_LAYER = 'scale_shift' SCALE_SHIFT_LAYER = 'scale_shift'
...@@ -332,6 +336,14 @@ class LayerOutput(object): ...@@ -332,6 +336,14 @@ class LayerOutput(object):
self.outputs = outputs self.outputs = outputs
self.reverse = reverse self.reverse = reverse
@property
def width(self):
return cp.g_layer_map[self.full_name].width
@property
def height(self):
return cp.g_layer_map[self.full_name].height
def set_input(self, input): def set_input(self, input):
""" """
Set the input for a memory layer. Can only be used for memory layer Set the input for a memory layer. Can only be used for memory layer
...@@ -913,7 +925,13 @@ def data_layer(name, size, height=None, width=None, layer_attr=None): ...@@ -913,7 +925,13 @@ def data_layer(name, size, height=None, width=None, layer_attr=None):
width=width, width=width,
**ExtraLayerAttribute.to_kwargs(layer_attr)) **ExtraLayerAttribute.to_kwargs(layer_attr))
return LayerOutput(name, LayerType.DATA, size=size) num_filters = None
if height is not None and width is not None:
num_filters = size / (width * height)
assert num_filters * width * height == size, \
"size=%s width=%s height=%s" % (size, width, height)
return LayerOutput(name, LayerType.DATA, size=size, num_filters=num_filters)
@wrap_name_default("embedding") @wrap_name_default("embedding")
...@@ -2573,6 +2591,10 @@ def img_pool_layer(input, ...@@ -2573,6 +2591,10 @@ def img_pool_layer(input,
assert input.num_filters is not None assert input.num_filters is not None
num_channels = input.num_filters num_channels = input.num_filters
assert type(pool_type) in [AvgPooling, MaxPooling, CudnnAvgPooling,
CudnnMaxPooling], \
"only (Cudnn)AvgPooling, (Cudnn)MaxPooling are supported"
if pool_type is None: if pool_type is None:
pool_type = MaxPooling() pool_type = MaxPooling()
elif isinstance(pool_type, AvgPooling): elif isinstance(pool_type, AvgPooling):
...@@ -2582,7 +2604,6 @@ def img_pool_layer(input, ...@@ -2582,7 +2604,6 @@ def img_pool_layer(input,
if ( if (
isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)) \ isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)) \
else pool_type.name else pool_type.name
pool_size_y = pool_size if pool_size_y is None else pool_size_y pool_size_y = pool_size if pool_size_y is None else pool_size_y
stride_y = stride if stride_y is None else stride_y stride_y = stride if stride_y is None else stride_y
padding_y = padding if padding_y is None else padding_y padding_y = padding if padding_y is None else padding_y
...@@ -4210,8 +4231,7 @@ def conv_operator(img, ...@@ -4210,8 +4231,7 @@ def conv_operator(img,
num_channels = img.num_filters num_channels = img.num_filters
assert isinstance(filter, LayerOutput) assert isinstance(filter, LayerOutput)
if filter.size is not None: assert filter.size is not None
filter.size = filter_size * filter_size_y * num_filters * num_channels
opCls = ConvTransOperator if trans else ConvOperator opCls = ConvTransOperator if trans else ConvOperator
...@@ -4922,7 +4942,6 @@ def maxout_layer(input, groups, num_channels=None, name=None, layer_attr=None): ...@@ -4922,7 +4942,6 @@ def maxout_layer(input, groups, num_channels=None, name=None, layer_attr=None):
:return: LayerOutput object. :return: LayerOutput object.
:rtype: LayerOutput :rtype: LayerOutput
""" """
assert input.layer_type == LayerType.CONV_LAYER
assert isinstance(input.activation, LinearActivation) assert isinstance(input.activation, LinearActivation)
assert groups > 1 assert groups > 1
if num_channels is None: if num_channels is None:
...@@ -6289,6 +6308,72 @@ def clip_layer(input, min, max, name=None): ...@@ -6289,6 +6308,72 @@ def clip_layer(input, min, max, name=None):
name, LayerType.CLIP_LAYER, parents=[input], size=input.size) name, LayerType.CLIP_LAYER, parents=[input], size=input.size)
@wrap_name_default()
def seq_slice_layer(input, starts, ends, name=None):
"""
seq_slice_layer will return one or several sub-sequences from the
input sequence layer given start and end indices.
- If only start indices are given, and end indices are set to None,
this layer slices the input sequence from the given start indices
to its end.
- If only end indices are given, and start indices are set to None,
this layer slices the input sequence from its beginning to the
given end indices.
- If start and end indices are both given, they should have the same
number of elements.
If start or end indices contains more than one elements, the input sequence
will be sliced for multiple times.
.. code-block:: python
seq_silce = seq_slice_layer(input=input_seq,
starts=start_pos, ends=end_pos)
:param name: name of this layer.
:type name: basestring
:param input: input for this layer, it should be a sequence.
:type input: LayerOutput
:param starts: start indices to slice the input sequence.
:type starts: LayerOutput|None
:param ends: end indices to slice the input sequence.
:type ends: LayerOutput|None
:return: LayerOutput object.
:rtype: LayerOutput
"""
assert isinstance(input, LayerOutput), (
'The first input of seq_slice layer must be a PaddlePaddle layer.')
if starts is not None:
assert isinstance(starts, LayerOutput), (
'The start indices for seq_slice layer '
'must be a PaddlePaddle layer.')
if ends is not None:
assert isinstance(ends, LayerOutput), (
'The end indices for seq_slice layer must be a PaddlePaddle layer.')
assert starts is not None or ends is not None, (
'start and end indices '
'cannot be set to None at the same time, at least one of '
'them should be given.')
if starts is not None and ends is not None:
assert starts.size == ends.size, (
'If start and end indices are both given to seq_slice_layer, '
'they should have the same width.')
Layer(
name=name,
type=LayerType.SEQ_SLICE,
inputs=input.name,
starts=starts.name if starts is not None else None,
ends=ends.name if ends is not None else None)
return LayerOutput(
name, LayerType.SEQ_SLICE, parents=[input], size=input.size)
@wrap_name_default() @wrap_name_default()
@layer_support() @layer_support()
def kmax_sequence_score_layer(input, name=None, beam_size=1): def kmax_sequence_score_layer(input, name=None, beam_size=1):
......
...@@ -9,6 +9,6 @@ test_seq_concat_reshape test_pad test_smooth_l1 test_multiplex_layer ...@@ -9,6 +9,6 @@ test_seq_concat_reshape test_pad test_smooth_l1 test_multiplex_layer
test_prelu_layer test_row_conv test_detection_output_layer test_multibox_loss_layer test_prelu_layer test_row_conv test_detection_output_layer test_multibox_loss_layer
test_recursive_topology test_gated_unit_layer test_clip_layer test_row_l2_norm_layer test_recursive_topology test_gated_unit_layer test_clip_layer test_row_l2_norm_layer
test_kmax_seq_socre_layer test_seq_select_layers test_scale_shift_layer test_kmax_seq_socre_layer test_seq_select_layers test_scale_shift_layer
test_cross_entropy_over_beam) test_seq_slice_layer test_cross_entropy_over_beam)
export whole_configs=(test_split_datasource) export whole_configs=(test_split_datasource)
type: "nn" type: "nn"
layers { layers {
name: "input" name: "input_seq"
type: "data"
size: 300
active_type: ""
}
layers {
name: "data"
type: "data" type: "data"
size: 128 size: 128
active_type: "" active_type: ""
...@@ -17,7 +11,7 @@ layers { ...@@ -17,7 +11,7 @@ layers {
size: 1 size: 1
active_type: "exponential" active_type: "exponential"
inputs { inputs {
input_layer_name: "data" input_layer_name: "input_seq"
input_parameter_name: "___fc_layer_0__.w0" input_parameter_name: "___fc_layer_0__.w0"
} }
bias_parameter_name: "___fc_layer_0__.wbias" bias_parameter_name: "___fc_layer_0__.wbias"
...@@ -51,15 +45,14 @@ parameters { ...@@ -51,15 +45,14 @@ parameters {
initial_strategy: 0 initial_strategy: 0
initial_smart: false initial_smart: false
} }
input_layer_names: "data" input_layer_names: "input_seq"
output_layer_names: "__kmax_sequence_score_layer_0__" output_layer_names: "__kmax_sequence_score_layer_0__"
sub_models { sub_models {
name: "root" name: "root"
layer_names: "input" layer_names: "input_seq"
layer_names: "data"
layer_names: "__fc_layer_0__" layer_names: "__fc_layer_0__"
layer_names: "__kmax_sequence_score_layer_0__" layer_names: "__kmax_sequence_score_layer_0__"
input_layer_names: "data" input_layer_names: "input_seq"
output_layer_names: "__kmax_sequence_score_layer_0__" output_layer_names: "__kmax_sequence_score_layer_0__"
is_recurrent_layer_group: false is_recurrent_layer_group: false
} }
......
type: "nn"
layers {
name: "word"
type: "data"
size: 128
active_type: ""
}
layers {
name: "starts"
type: "data"
size: 5
active_type: ""
}
layers {
name: "ends"
type: "data"
size: 5
active_type: ""
}
layers {
name: "__seq_slice_layer_0__"
type: "seq_slice"
size: 128
active_type: ""
inputs {
input_layer_name: "word"
}
inputs {
input_layer_name: "starts"
}
inputs {
input_layer_name: "ends"
}
}
layers {
name: "__seq_slice_layer_1__"
type: "seq_slice"
size: 128
active_type: ""
inputs {
input_layer_name: "word"
}
inputs {
input_layer_name: "starts"
}
select_first: true
}
layers {
name: "__seq_slice_layer_2__"
type: "seq_slice"
size: 128
active_type: ""
inputs {
input_layer_name: "word"
}
inputs {
input_layer_name: "ends"
}
select_first: false
}
input_layer_names: "word"
output_layer_names: "__seq_slice_layer_0__"
output_layer_names: "__seq_slice_layer_1__"
output_layer_names: "__seq_slice_layer_2__"
sub_models {
name: "root"
layer_names: "word"
layer_names: "starts"
layer_names: "ends"
layer_names: "__seq_slice_layer_0__"
layer_names: "__seq_slice_layer_1__"
layer_names: "__seq_slice_layer_2__"
input_layer_names: "word"
output_layer_names: "__seq_slice_layer_0__"
output_layer_names: "__seq_slice_layer_1__"
output_layer_names: "__seq_slice_layer_2__"
is_recurrent_layer_group: false
}
...@@ -2,9 +2,7 @@ ...@@ -2,9 +2,7 @@
#coding=utf-8 #coding=utf-8
from paddle.trainer_config_helpers import * from paddle.trainer_config_helpers import *
data = data_layer(name='input', size=300) data = data_layer(name="input_seq", size=128)
data = data_layer(name="data", size=128)
scores = fc_layer(input=data, size=1, act=ExpActivation()) scores = fc_layer(input=data, size=1, act=ExpActivation())
kmax_seq_id = kmax_sequence_score_layer(input=scores, beam_size=5) kmax_seq_id = kmax_sequence_score_layer(input=scores, beam_size=5)
......
#!/usr/bin/env python
#coding=utf-8
from paddle.trainer_config_helpers import *
input_seq = data_layer("word", size=128)
starts = data_layer("starts", size=5)
ends = data_layer("ends", size=5)
seq_slice1 = seq_slice_layer(input=input_seq, starts=starts, ends=ends)
seq_slice2 = seq_slice_layer(input=input_seq, starts=starts, ends=None)
seq_slice3 = seq_slice_layer(input=input_seq, starts=None, ends=ends)
outputs(seq_slice1, seq_slice2, seq_slice3)
...@@ -13,6 +13,7 @@ py_test(test_add_two_op SRCS test_add_two_op.py) ...@@ -13,6 +13,7 @@ py_test(test_add_two_op SRCS test_add_two_op.py)
py_test(test_sigmoid_op SRCS test_sigmoid_op.py) py_test(test_sigmoid_op SRCS test_sigmoid_op.py)
py_test(test_softmax_op SRCS test_softmax_op.py) py_test(test_softmax_op SRCS test_softmax_op.py)
py_test(test_cross_entropy_op SRCS test_cross_entropy_op.py) py_test(test_cross_entropy_op SRCS test_cross_entropy_op.py)
py_test(test_gather_op SRCS test_gather_op.py)
py_test(test_fill_zeros_like_op SRCS test_fill_zeros_like_op.py) py_test(test_fill_zeros_like_op SRCS test_fill_zeros_like_op.py)
py_test(gradient_checker SRCS gradient_checker.py) py_test(gradient_checker SRCS gradient_checker.py)
...@@ -27,3 +28,4 @@ py_test(test_uniform_random_op SRCS test_uniform_random_op.py) ...@@ -27,3 +28,4 @@ py_test(test_uniform_random_op SRCS test_uniform_random_op.py)
py_test(test_recurrent_op SRCS test_recurrent_op.py) py_test(test_recurrent_op SRCS test_recurrent_op.py)
py_test(test_sgd_op SRCS test_sgd_op.py) py_test(test_sgd_op SRCS test_sgd_op.py)
py_test(test_gradient_checker SRCS test_gradient_checker.py) py_test(test_gradient_checker SRCS test_gradient_checker.py)
py_test(test_scale_and_identity_op SRCS test_scale_and_identity_op.py)
...@@ -160,8 +160,13 @@ class GradientChecker(unittest.TestCase): ...@@ -160,8 +160,13 @@ class GradientChecker(unittest.TestCase):
grad_tensor.set(data, place) grad_tensor.set(data, place)
# run backward op # run backward op
for name in backward_op.outputs(): backward_outs = backward_op.outputs()
backward_names = [
item for key in backward_outs for item in backward_outs[key]
]
for name in backward_names:
scope.new_var(name) scope.new_var(name)
backward_op.infer_shape(scope) backward_op.infer_shape(scope)
backward_op.run(scope, ctx) backward_op.run(scope, ctx)
......
import unittest
from op_test_util import OpTestMeta
from gradient_checker import GradientChecker, create_op
import numpy
import paddle.v2.framework.core as core
from paddle.v2.framework.op import Operator
class TestGatherOp(unittest.TestCase):
__metaclass__ = OpTestMeta
def setUp(self):
self.type = "gather"
xnp = numpy.random.random((10, 20)).astype("float32")
self.inputs = {
'X': xnp,
'Index': numpy.array([1, 3, 5]).astype("int32")
}
self.outputs = {'Out': self.inputs['X'][self.inputs['Index']]}
class TestGatherGradOp(GradientChecker):
def test_gather_grad(self):
print 'creating op'
op = create_op("gather")
print 'creating op done'
xnp = numpy.random.random((10, 20)).astype("float32")
inputs = {'X': xnp, 'Index': numpy.array([1, 3, 5]).astype("int32")}
print 'correct before check gradient'
self.check_grad(op, inputs, set("X"), "Out")
if __name__ == "__main__":
unittest.main()
import unittest
from op_test_util import OpTestMeta
from gradient_checker import GradientChecker, create_op
import numpy as np
from paddle.v2.framework.op import Operator
class IdentityTest(unittest.TestCase):
__metaclass__ = OpTestMeta
def setUp(self):
self.type = "identity"
self.inputs = {'X': np.random.random((32, 784)).astype("float32")}
self.outputs = {'Out': self.inputs['X']}
class IdentityGradOpTest(GradientChecker):
def test_normal(self):
op = create_op("identity")
inputs = {"X": np.random.random((10, 10)).astype("float32")}
self.check_grad(op, inputs, set("X"), "Out")
class ScaleTest(unittest.TestCase):
__metaclass__ = OpTestMeta
def setUp(self):
self.type = "scale"
self.inputs = {'X': np.random.random((32, 784)).astype("float32")}
self.attrs = {'scale': -2.3}
self.outputs = {'Out': self.inputs['X'] * self.attrs['scale']}
class ScaleGradTest(GradientChecker):
def test_normal(self):
op = Operator("scale", X="X", Out="Out", scale=3.2)
self.check_grad(op,
{"X": np.random.random((10, 10)).astype("float32")},
set("X"), "Out")
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册