(lower_bound));
+    return *this;
+  }
+
   // we can add more common limits, like LessThan(), Between()...
 
   TypedAttrChecker& SetDefault(const T& default_value) {
diff --git a/paddle/framework/backward.md b/paddle/framework/backward.md
index 8aa6728a95bc464ab8884986f0cec6c817d3303b..c762811dfc190b255e0a3389885a081ce8315caf 100644
--- a/paddle/framework/backward.md
+++ b/paddle/framework/backward.md
@@ -2,20 +2,20 @@
 
 ## Motivation
 
-In Neural Network, the backpropagation algorithm follows the chain rule, so we need to compound the fundmental gradient operators/expressions together with chain rule . Every forward network need a backward network to construct the full computation graph, the operator/expression's backward pass will be generated respect to forward pass.
-  
+In Neural Network, the backpropagation algorithm follows the chain rule, so we need to compound the gradient operators/expressions together with the chain rule. Every forward network needs a backward network to construct the full computation graph, the operator/expression's backward pass will be generated respect to forward pass.
+
 ## Backward Operator Registry
 
-A backward network is built up with several backward operators. Backward operators take forward operators' inputs, outputs and output gradients and then calculate its input gradients.
+A backward network is built up with several backward operators. Backward operators take forward operators' inputs outputs, and output gradients and then calculate its input gradients.
 
 |                        | forward operator | backward operator 
 | ---------------------- | ---------------- |------------------------- |		
 | **Operator::inputs_**  | Inputs       | Inputs, Outputs, OutputGradients |	
 | **Operator::outputs_** | Outputs          | InputGradients            |
 
- In most cases, there is a one-to-one correspondence between forward and backward operators. These correspondences are recorded by a global hash map(`OpInfoMap`). To follow the philosophy of minimum core and make operators pluggable, the registry mechanism is introduced.
+ In most cases, there is a one-to-one correspondence between the forward and backward operators. These correspondences are recorded by a global hash map(`OpInfoMap`). To follow the philosophy of minimum core and make operators pluggable, the registry mechanism is introduced.
 
-For example, we have got a `mul_op`, and we can register it's information and corresponding backward operator by the following macro:
+For example, we have got a `mul_op`, and we can register its information and corresponding backward operator by the following macro:
 
 ```cpp
 REGISTER_OP(mul, MulOp, MulOpMaker, mul_grad, MulOpGrad);
@@ -27,17 +27,17 @@ REGISTER_OP(mul, MulOp, MulOpMaker, mul_grad, MulOpGrad);
 
 ## Backward Opeartor Creating
 
-Given a certain forward operator, we can get its corresponding backward opeartor by calling:
+Given a certain forward operator, we can get its corresponding backward operator by calling:
 
 ```cpp
 OperatorBase* bwd_op = BuildGradOp(const OperatorBase* fwd_op);
-``` 
+```
 
 The function `BuildGradOp` will sequentially execute following processes:
 
 1. Get the `type_` of given forward operator, and then get the corresponding backward operator's type by looking up the `OpInfoMap`.
 
-2. Build two maps named `inputs` and `outputs` to temporary storage backward operator's inputs and outputs. Copy forward operator's `inputs_` and `outputs_` to map `inputs`, except these are not necessary for gradient computing.
+2. Build two maps named `inputs` and `outputs` to temporary storage backward operator's inputs and outputs. Copy forward operator's `inputs_` and `outputs_` to map `inputs`, except these, are not necessary for gradient computing.
 
 3. Add forward inputs' gradient variables into map `output`, adding forward outputs' gradient variables into map `input`.
 
@@ -49,31 +49,31 @@ A backward network is a series of backward operators. The main idea of building
 
 In our design, the network itself is also a kind of operator. So the operators contained by a big network may be some small network. 
 
-given a forward network, it generates the backward network. We only care about the Gradients—`OutputGradients`,`InputGradients`.
+given a forward network, it generates the backward network. We only care about the Gradients—`OutputGradients`, `InputGradients`.
 
 1. Op 
 
-   when the input forward network is a Op, return its gradient Operator Immediately.
+   when the input forward network is an Op, return its gradient Operator Immediately.
 
 2. NetOp 
 
-   when the input forward network is a NetOp, it need to call the sub NetOp/Operators backward function recursively. During the process, we need to collect the `OutputGradients` name according to forward NetOp.
+   when the input forward network is a NetOp, it needs to call the sub NetOp/Operators backward function recursively. During the process, we need to collect the `OutputGradients` name according to the forward NetOp.
 
-   **shared variable**. As illustrated in the pictures, two operator's `Output` `Gradient` will overwirte their shared input variable.  
+   **shared variable**. As illustrated in the pictures, two operator's `Output` `Gradient` will overwrite their shared input variable.  
 
    
-   
+   
 
-   1. shared variable in two operators. 
+   1. Shared variable in operators. 
 
    
 
-   Share variable between operators or same input variable used in multiple operators lead to a duplicate gradient variable. As demo show above, we need to rename gradient name recursively, and add a generic add operator replace the overwirte links. 
+   Share variable between operators or same input variable used in multiple operators leads to a duplicate gradient variable. As demo show above, we need to rename gradient name recursively and add a generic add operator replace the overwrite links. 
 
    
-   
+   
 
-   2. replace shared variable gradient with `Add` Operator
+   2. Replace shared variable's gradient with `Add` operator.
 
    
 
diff --git a/paddle/framework/ddim.cc b/paddle/framework/ddim.cc
index 85b7de79743bb0390d66b8999f2e8342a51d14a9..fc3d508553c0e966978b28d58127bdbff10d45f1 100644
--- a/paddle/framework/ddim.cc
+++ b/paddle/framework/ddim.cc
@@ -283,5 +283,14 @@ std::ostream& operator<<(std::ostream& os, const DDim& ddim) {
 DDim::DDim(std::initializer_list init_list) {
   *this = make_ddim(init_list);
 }
+
+DDim flatten_to_2d(const DDim& src, int num_col_dims) {
+  int rank = src.size();
+  return make_ddim({product(slice_ddim(src, 0, num_col_dims)),
+                    product(slice_ddim(src, num_col_dims, rank))});
+}
+
+DDim flatten_to_1d(const DDim& src) { return make_ddim({product(src)}); }
+
 }  // namespace framework
 }  // namespace paddle
diff --git a/paddle/framework/ddim.h b/paddle/framework/ddim.h
index db30c523948b1d437615aa0e9bfecb5e25569296..ca29e7e8c7776de6adf3e3b0e8f11f0d4d8487c3 100644
--- a/paddle/framework/ddim.h
+++ b/paddle/framework/ddim.h
@@ -115,6 +115,12 @@ int arity(const DDim& ddim);
 
 std::ostream& operator<<(std::ostream&, const DDim&);
 
+// Reshape a tensor to a matrix. The matrix's first dimension(column length)
+// will be the product of tensor's first `num_col_dims` dimensions.
+DDim flatten_to_2d(const DDim& src, int num_col_dims);
+
+DDim flatten_to_1d(const DDim& src);
+
 }  // namespace framework
 }  // namespace paddle
 
diff --git a/paddle/framework/eigen.h b/paddle/framework/eigen.h
index 2d8d9ae10c56e0632414a5bbc754d35bfa9ce6a5..54bbeafcabdeeb1e2c1017c156b3512c83dada3a 100644
--- a/paddle/framework/eigen.h
+++ b/paddle/framework/eigen.h
@@ -63,20 +63,35 @@ struct EigenTensor {
 
 template 
-struct EigenMatrix : public EigenTensor {};
+struct EigenMatrix : public EigenTensor {
+  static typename EigenMatrix::Type Reshape(Tensor& tensor, int num_col_dims) {
+    int rank = tensor.dims_.size();
+    PADDLE_ENFORCE(num_col_dims > 0 && num_col_dims < rank,
+                   "`num_col_dims` must be between (0, rank_of_tensor).");
+    return EigenMatrix::From(tensor,
+                             flatten_to_2d(tensor.dims(), num_col_dims));
+  }
+
+  static typename EigenMatrix::ConstType Reshape(const Tensor& tensor,
+                                                 int num_col_dims) {
+    int rank = tensor.dims_.size();
+    PADDLE_ENFORCE(num_col_dims > 0 && num_col_dims < rank,
+                   "`num_col_dims` must be between (0, rank_of_tensor).");
+    return EigenMatrix::From(tensor,
+                             flatten_to_2d(tensor.dims(), num_col_dims));
+  }
+};
 
 template 
 struct EigenVector : public EigenTensor {
   // Flatten reshapes a Tensor into an EigenVector.
   static typename EigenVector::Type Flatten(Tensor& tensor) {
-    return EigenVector::From(
-        tensor, make_ddim({static_cast(product(tensor.dims_))}));
+    return EigenVector::From(tensor, {product(tensor.dims_)});
   }
 
   static typename EigenVector::ConstType Flatten(const Tensor& tensor) {
-    return EigenVector::From(
-        tensor, make_ddim({static_cast(product(tensor.dims_))}));
+    return EigenVector::From(tensor, {product(tensor.dims_)});
   }
 };
 
diff --git a/paddle/framework/eigen_test.cc b/paddle/framework/eigen_test.cc
index dc1957691b1a202826e10e84c21ac8874df9e378..bc4a2db32cfba66bef2c444e1f822e0d2a57b91e 100644
--- a/paddle/framework/eigen_test.cc
+++ b/paddle/framework/eigen_test.cc
@@ -108,5 +108,24 @@ TEST(Eigen, Matrix) {
   }
 }
 
+TEST(Eigen, MatrixReshape) {
+  Tensor t;
+  float* p = t.mutable_data({2, 3, 6, 4}, platform::CPUPlace());
+  for (int i = 0; i < 2 * 3 * 6 * 4; ++i) {
+    p[i] = static_cast(i);
+  }
+
+  EigenMatrix::Type em = EigenMatrix::Reshape(t, 2);
+
+  ASSERT_EQ(2 * 3, em.dimension(0));
+  ASSERT_EQ(6 * 4, em.dimension(1));
+
+  for (int i = 0; i < 2 * 3; i++) {
+    for (int j = 0; j < 6 * 4; j++) {
+      ASSERT_NEAR(i * 6 * 4 + j, em(i, j), 1e-6f);
+    }
+  }
+}
+
 }  // namespace framework
 }  // namespace paddle
diff --git a/paddle/framework/images/duplicate_op2.graffle b/paddle/framework/images/duplicate_op2.graffle
index 2b658085d6a55d368c320051ba7f94ec2900f13c..ede3bca30ae17d5af52505fd94dc2f79b23b57e0 100644
Binary files a/paddle/framework/images/duplicate_op2.graffle and b/paddle/framework/images/duplicate_op2.graffle differ
diff --git a/paddle/framework/images/duplicate_op2.png b/paddle/framework/images/duplicate_op2.png
index c5588015d1450fd8c1bda3580680d884494868bb..4e872dc2caf3b0cbd0d5176f11a14801b538dc86 100644
Binary files a/paddle/framework/images/duplicate_op2.png and b/paddle/framework/images/duplicate_op2.png differ
diff --git a/paddle/framework/operator.cc b/paddle/framework/operator.cc
index 790cfc4746b1d34da413fa3c29a266f962c6dde6..e1e122091f7759b1a68f1f982bc2a35e8241f9f0 100644
--- a/paddle/framework/operator.cc
+++ b/paddle/framework/operator.cc
@@ -123,6 +123,15 @@ OperatorBase::OperatorBase(const std::string& type,
   CheckAllInputOutputSet();
 }
 
+std::vector OperatorBase::InputVars() const {
+  std::vector ret_val;
+  for (auto& o : outputs_) {
+    ret_val.reserve(ret_val.size() + o.second.size());
+    ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
+  }
+  return ret_val;
+}
+
 std::vector OperatorBase::OutputVars(bool has_intermediate) const {
   std::vector ret_val;
   if (has_intermediate) {
diff --git a/paddle/framework/operator.h b/paddle/framework/operator.h
index 9a98d4d3be0d1cb875d614b263f1e4365ede4113..4600b06009bcef7d0774d25b816aac4733f30795 100644
--- a/paddle/framework/operator.h
+++ b/paddle/framework/operator.h
@@ -94,11 +94,14 @@ class OperatorBase {
 
   const VariableNameMap& Inputs() const { return inputs_; }
   const VariableNameMap& Outputs() const { return outputs_; }
+
   //! Get a input with argument's name described in `op_proto`
   std::string Input(const std::string& name) const;
   //! Get a input which has multiple variables.
   const std::vector& Inputs(const std::string& name) const;
 
+  std::vector InputVars() const;
+
   //! Get a output with argument's name described in `op_proto`
   std::string Output(const std::string& name) const;
   //! Get an output which has multiple variables.
@@ -311,9 +314,9 @@ class InferShapeContext {
   }
 
   template 
-  std::vector MultiOutput(const std::string& name) const {
+  std::vector MultiOutput(const std::string& name) const {
     auto names = op_.Outputs(name);
-    std::vector res;
+    std::vector res;
     res.reserve(names.size());
     std::transform(names.begin(), names.end(), std::back_inserter(res),
                    [&](const std::string& sub_name) {
diff --git a/paddle/framework/tensor.h b/paddle/framework/tensor.h
index 643f875491724bf443bd7727391734377ee6180c..ce938b21437195fed8c1adad4329fd139f3f96ab 100644
--- a/paddle/framework/tensor.h
+++ b/paddle/framework/tensor.h
@@ -43,6 +43,9 @@ class Tensor {
   template 
   friend struct EigenTensor;
 
+  template 
+  friend struct EigenMatrix;
+
   template 
   friend struct EigenVector;
 
diff --git a/paddle/framework/tensor_impl.h b/paddle/framework/tensor_impl.h
index 94f436294f350e2a39785a09959efb3b17bd00a5..637f04ae0037bd402d855b8bcde8087bfe8328d1 100644
--- a/paddle/framework/tensor_impl.h
+++ b/paddle/framework/tensor_impl.h
@@ -148,5 +148,13 @@ inline Tensor& Tensor::Resize(const DDim& dims) {
 
 inline const DDim& Tensor::dims() const { return dims_; }
 
+template 
+inline Tensor ReshapeToMatrix(const Tensor& src, int num_col_dims) {
+  Tensor res;
+  res.ShareDataWith(src);
+  res.Resize(flatten_to_2d(src.dims(), num_col_dims));
+  return res;
+}
+
 }  // namespace framework
 }  // namespace paddle
diff --git a/paddle/framework/tensor_test.cc b/paddle/framework/tensor_test.cc
index 7db38d5caeebccf710334e854faf785ef0f64063..55302ea47120f420e952b26830c8ea4cbcce6435 100644
--- a/paddle/framework/tensor_test.cc
+++ b/paddle/framework/tensor_test.cc
@@ -262,3 +262,16 @@ TEST(Tensor, CopyFrom) {
   }
 #endif
 }
+
+TEST(Tensor, ReshapeToMatrix) {
+  using namespace paddle::framework;
+  using namespace paddle::platform;
+  Tensor src;
+  int* src_ptr = src.mutable_data({2, 3, 4, 9}, CPUPlace());
+  for (int i = 0; i < 2 * 3 * 4 * 9; ++i) {
+    src_ptr[i] = i;
+  }
+  Tensor res = ReshapeToMatrix(src, 2);
+  ASSERT_EQ(res.dims()[0], 2 * 3);
+  ASSERT_EQ(res.dims()[1], 4 * 9);
+}
\ No newline at end of file
diff --git a/paddle/gserver/layers/BatchNormBaseLayer.cpp b/paddle/gserver/layers/BatchNormBaseLayer.cpp
index 1ceaaaa206ee3cbc5421238574c7f310011ccaa5..f7a80e23e1bd49549bec57b360587adc6b423794 100644
--- a/paddle/gserver/layers/BatchNormBaseLayer.cpp
+++ b/paddle/gserver/layers/BatchNormBaseLayer.cpp
@@ -62,14 +62,18 @@ void BatchNormBaseLayer::calFeatureMapSize() {
   const ImageConfig& conf = config_.inputs(0).image_conf();
   imageH_ = inputLayers_[0]->getOutput().getFrameHeight();
   imageW_ = inputLayers_[0]->getOutput().getFrameWidth();
+  imageD_ = inputLayers_[0]->getOutput().getFrameDepth();
+
+  if (0 == imageD_) imageD_ = conf.img_size_z();
   if (imageH_ == 0 && imageW_ == 0) {
     imageH_ = conf.has_img_size_y() ? conf.img_size_y() : conf.img_size();
     imageW_ = conf.img_size();
   } else {
     getOutput().setFrameHeight(imageH_);
     getOutput().setFrameWidth(imageW_);
+    getOutput().setFrameDepth(imageD_);
   }
-  imgPixels_ = imageH_ * imageW_;
+  imgPixels_ = imageH_ * imageW_ * imageD_;
 }
 
 }  // namespace paddle
diff --git a/paddle/gserver/layers/BatchNormBaseLayer.h b/paddle/gserver/layers/BatchNormBaseLayer.h
index 230bafc31d96bbd49481a7ed135be6888688627e..e721d2d267a31cae46407673b8b1281e87055608 100644
--- a/paddle/gserver/layers/BatchNormBaseLayer.h
+++ b/paddle/gserver/layers/BatchNormBaseLayer.h
@@ -80,6 +80,7 @@ protected:
 
   /// Height or width of input image feature.
   /// Both of them are 1 if the input is fully-connected layer.
+  int imageD_;
   int imageH_;
   int imageW_;
   /// Height * Width.
diff --git a/paddle/gserver/layers/CudnnBatchNormLayer.cpp b/paddle/gserver/layers/CudnnBatchNormLayer.cpp
index 44ba2c4b7d1562d2ce839b5f4b4de1af35e6925f..49a9540c0b6e36b59ed786287ff5c4569b69a6a5 100644
--- a/paddle/gserver/layers/CudnnBatchNormLayer.cpp
+++ b/paddle/gserver/layers/CudnnBatchNormLayer.cpp
@@ -37,7 +37,7 @@ bool CudnnBatchNormLayer::init(const LayerMap& layerMap,
 }
 
 void CudnnBatchNormLayer::reshape(int batchSize) {
-  hl_tensor_reshape(ioDesc_, batchSize, channels_, imageH_, imageW_);
+  hl_tensor_reshape(ioDesc_, batchSize, channels_, imageH_ * imageD_, imageW_);
 }
 
 void CudnnBatchNormLayer::forward(PassType passType) {
@@ -104,7 +104,7 @@ void CudnnBatchNormLayer::forward(PassType passType) {
                                    EPS,
                                    batchSize,
                                    channels_,
-                                   imageH_,
+                                   imageH_ * imageD_,
                                    imageW_);
     }
   }
diff --git a/paddle/gserver/layers/DetectionOutputLayer.cpp b/paddle/gserver/layers/DetectionOutputLayer.cpp
index 8ab838e191314ab25469631626c0b0564d7fffda..0cf0a92bf4bd8f9b8eba2016b2377d9dfb18c70a 100644
--- a/paddle/gserver/layers/DetectionOutputLayer.cpp
+++ b/paddle/gserver/layers/DetectionOutputLayer.cpp
@@ -139,7 +139,13 @@ void DetectionOutputLayer::forward(PassType passType) {
                                        allDecodedBBoxes,
                                        &allIndices);
 
-  resetOutput(numKept, 7);
+  if (numKept > 0) {
+    resetOutput(numKept, 7);
+  } else {
+    MatrixPtr outV = getOutputValue();
+    outV = NULL;
+    return;
+  }
   MatrixPtr outV = getOutputValue();
   getDetectionOutput(confBuffer_->getData(),
                      numKept,
diff --git a/paddle/gserver/layers/DetectionUtil.cpp b/paddle/gserver/layers/DetectionUtil.cpp
index 3e61adc66e60c54250e4f323452aa13045310879..d83674f45a70212a8adc94a31ff58eb0e01baa00 100644
--- a/paddle/gserver/layers/DetectionUtil.cpp
+++ b/paddle/gserver/layers/DetectionUtil.cpp
@@ -469,7 +469,7 @@ size_t getDetectionIndices(
     const size_t numClasses,
     const size_t backgroundId,
     const size_t batchSize,
-    const size_t confThreshold,
+    const real confThreshold,
     const size_t nmsTopK,
     const real nmsThreshold,
     const size_t keepTopK,
diff --git a/paddle/gserver/layers/DetectionUtil.h b/paddle/gserver/layers/DetectionUtil.h
index fe4f9f075e4cf011c97f68f49598a828d62327b3..641ed873b4c8645b6455e5ef5e63593e3005b770 100644
--- a/paddle/gserver/layers/DetectionUtil.h
+++ b/paddle/gserver/layers/DetectionUtil.h
@@ -275,7 +275,7 @@ size_t getDetectionIndices(
     const size_t numClasses,
     const size_t backgroundId,
     const size_t batchSize,
-    const size_t confThreshold,
+    const real confThreshold,
     const size_t nmsTopK,
     const real nmsThreshold,
     const size_t keepTopK,
diff --git a/paddle/gserver/layers/SwitchOrderLayer.cpp b/paddle/gserver/layers/SwitchOrderLayer.cpp
index 6a91042f628920a9986763531fb4c633307b43b8..d7eee6eaf078dab8d48adc4c7ee758a433672ac6 100644
--- a/paddle/gserver/layers/SwitchOrderLayer.cpp
+++ b/paddle/gserver/layers/SwitchOrderLayer.cpp
@@ -24,19 +24,21 @@ bool SwitchOrderLayer::init(const LayerMap& layerMap,
   /* Initialize the basic parent class */
   Layer::init(layerMap, parameterMap);
   auto& img_conf = config_.inputs(0).image_conf();
+  size_t inD = img_conf.img_size_z();
   size_t inH =
       img_conf.has_img_size_y() ? img_conf.img_size_y() : img_conf.img_size();
   size_t inW = img_conf.img_size();
   size_t inC = img_conf.channels();
+  inH = inH * inD;
   inDims_ = TensorShape({0, inC, inH, inW});
   outDims_ = TensorShape(4);
 
   auto& reshape_conf = config_.reshape_conf();
-  for (size_t i = 0; i < reshape_conf.heightaxis_size(); i++) {
-    heightAxis_.push_back(reshape_conf.heightaxis(i));
+  for (int i = 0; i < reshape_conf.height_axis_size(); i++) {
+    heightAxis_.push_back(reshape_conf.height_axis(i));
   }
-  for (size_t i = 0; i < reshape_conf.widthaxis_size(); i++) {
-    widthAxis_.push_back(reshape_conf.widthaxis(i));
+  for (int i = 0; i < reshape_conf.width_axis_size(); i++) {
+    widthAxis_.push_back(reshape_conf.width_axis(i));
   }
   createFunction(nchw2nhwc_, "NCHW2NHWC", FuncConfig());
   createFunction(nhwc2nchw_, "NHWC2NCHW", FuncConfig());
@@ -64,9 +66,10 @@ void SwitchOrderLayer::setInDims() {
   MatrixPtr input = inputLayers_[0]->getOutputValue();
   size_t batchSize = input->getHeight();
   inDims_.setDim(0, batchSize);
-
+  int d = inputLayers_[0]->getOutput().getFrameDepth();
+  d = (d == 0 ? 1 : d);
   int h = inputLayers_[0]->getOutput().getFrameHeight();
-  if (h != 0) inDims_.setDim(2, h);
+  if (h != 0) inDims_.setDim(2, h * d);
   int w = inputLayers_[0]->getOutput().getFrameWidth();
   if (w != 0) inDims_.setDim(3, w);
   int totalCount = input->getElementCnt();
diff --git a/paddle/gserver/tests/test_LayerGrad.cpp b/paddle/gserver/tests/test_LayerGrad.cpp
index e0c14ad5b512c7329062a5426ef34844ec268020..0e6be2df9ef5f0fae8ed2b0c65ac6c032fe45ab1 100644
--- a/paddle/gserver/tests/test_LayerGrad.cpp
+++ b/paddle/gserver/tests/test_LayerGrad.cpp
@@ -1703,6 +1703,55 @@ TEST(Layer, BatchNormalizationLayer) {
 #endif
 }
 
+void testBatchNorm3DLayer(const string& type, bool trans, bool useGpu) {
+  TestConfig config;
+  const int CHANNELS = 10;
+  const int IMG_SIZE = 16;
+  const int IMG_SIZE_Y = 8;
+  const int IMG_SIZE_Z = 8;
+  size_t size = CHANNELS * IMG_SIZE * IMG_SIZE_Y * IMG_SIZE_Z;
+  config.layerConfig.set_type(type);
+  config.layerConfig.set_size(size);
+  config.layerConfig.set_active_type("sigmoid");
+  config.biasSize = CHANNELS;
+  config.inputDefs.push_back({INPUT_DATA,
+                              "layer_0",
+                              /* dim= */ size,
+                              /* paraSize= */ CHANNELS});
+
+  config.inputDefs.push_back({INPUT_DATA, "layer_1_running_mean", 1, CHANNELS});
+  config.inputDefs.back().isStatic = true;
+  config.inputDefs.push_back({INPUT_DATA, "layer_2_running_var", 1, CHANNELS});
+  config.inputDefs.back().isStatic = true;
+
+  LayerInputConfig* input = config.layerConfig.add_inputs();
+  config.layerConfig.add_inputs();
+  config.layerConfig.add_inputs();
+
+  ImageConfig* img_conf = input->mutable_image_conf();
+  img_conf->set_channels(CHANNELS);
+  img_conf->set_img_size(IMG_SIZE);
+  img_conf->set_img_size_y(IMG_SIZE_Y);
+  img_conf->set_img_size_z(IMG_SIZE_Z);
+
+  testLayerGrad(config,
+                "batch_norm",
+                64,
+                /* trans= */ trans,
+                useGpu,
+                /* useWeight */ true);
+}
+
+TEST(Layer, testBatchNorm3DLayer) {
+  testBatchNorm3DLayer("batch_norm", false, false);
+#ifndef PADDLE_ONLY_CPU
+  testBatchNorm3DLayer("batch_norm", false, true);
+  if (hl_get_cudnn_lib_version() >= int(4000)) {
+    testBatchNorm3DLayer("cudnn_batch_norm", false, true);
+  }
+#endif
+}
+
 void testConvOperator(bool isDeconv) {
   TestConfig config;
   const int NUM_FILTERS = 16;
@@ -2019,10 +2068,10 @@ TEST(Layer, SwitchOrderLayer) {
   img->set_img_size_y(16);
 
   ReshapeConfig* reshape = config.layerConfig.mutable_reshape_conf();
-  reshape->add_heightaxis(0);
-  reshape->add_heightaxis(1);
-  reshape->add_heightaxis(2);
-  reshape->add_widthaxis(3);
+  reshape->add_height_axis(0);
+  reshape->add_height_axis(1);
+  reshape->add_height_axis(2);
+  reshape->add_width_axis(3);
 
   // config softmax layer
   config.layerConfig.set_type("switch_order");
diff --git a/paddle/operators/mul_op.cc b/paddle/operators/mul_op.cc
index 28a47cdff2e9b7a965ff9f99e787bb8315010823..710a56a0e8e2d17162d7d000df226f1537104eb9 100644
--- a/paddle/operators/mul_op.cc
+++ b/paddle/operators/mul_op.cc
@@ -25,18 +25,27 @@ class MulOp : public framework::OperatorWithKernel {
 
  protected:
   void InferShape(const framework::InferShapeContext &ctx) const override {
-    auto dim0 = ctx.Input("X")->dims();
-    auto dim1 = ctx.Input("Y")->dims();
-    PADDLE_ENFORCE_EQ(dim0.size(), 2,
-                      "input X(%s) should be a tensor with 2 dims, a matrix",
-                      ctx.op().Input("X"));
-    PADDLE_ENFORCE_EQ(dim1.size(), 2,
-                      "input Y(%s) should be a tensor with 2 dims, a matrix",
-                      ctx.op().Input("Y"));
+    auto x_dims = ctx.Input("X")->dims();
+    auto y_dims = ctx.Input("Y")->dims();
+    int x_num_col_dims = Attr("x_num_col_dims");
+    int y_num_col_dims = Attr("y_num_col_dims");
+
+    PADDLE_ENFORCE(x_dims.size() > x_num_col_dims,
+                   "The rank of input tensor X(%s) should be larger than "
+                   "`mul_op`'s `x_num_col_dims`.",
+                   ctx.op().Input("X"));
+    PADDLE_ENFORCE(y_dims.size() > y_num_col_dims,
+                   "The rank of input tensor Y(%s) should be larger than "
+                   "`mul_op`'s `y_num_col_dims`.",
+                   ctx.op().Input("Y"));
+
+    auto x_mat_dims = framework::flatten_to_2d(x_dims, x_num_col_dims);
+    auto y_mat_dims = framework::flatten_to_2d(y_dims, y_num_col_dims);
+
     PADDLE_ENFORCE_EQ(
-        dim0[1], dim1[0],
+        x_mat_dims[1], y_mat_dims[0],
         "First matrix's width must be equal with second matrix's height.");
-    ctx.Output("Out")->Resize({dim0[0], dim1[1]});
+    ctx.Output("Out")->Resize({x_mat_dims[0], y_mat_dims[1]});
   }
 };
 
@@ -47,6 +56,23 @@ class MulOpMaker : public framework::OpProtoAndCheckerMaker {
     AddInput("X", "The first input of mul op");
     AddInput("Y", "The second input of mul op");
     AddOutput("Out", "The output of mul op");
+    AddAttr(
+        "x_num_col_dims",
+        R"DOC(mul_op can take tensors with more than two dimensions as input `X`, 
+            in that case, tensors will be reshaped to a matrix. The matrix's first 
+            dimension(column length) will be the product of tensor's last 
+            `num_col_dims` dimensions, and the matrix's second dimension(row length)
+            will be the product of tensor's first `rank - num_col_dims` dimensions.
+        )DOC")
+        .SetDefault(1)
+        .EqualGreaterThan(1);
+    AddAttr(
+        "y_num_col_dims",
+        R"DOC(mul_op can take tensors with more than two dimensions as input `Y`,
+             in that case, tensors will be reshaped to a matrix. Just like input `X`.
+        )DOC")
+        .SetDefault(1)
+        .EqualGreaterThan(1);
     AddComment(R"DOC(
 Two Element Mul Operator.
 
@@ -70,10 +96,20 @@ class MulOpGrad : public framework::OperatorWithKernel {
     auto out_dims = ctx.Input(framework::GradVarName("Out"))->dims();
     auto *x_grad = ctx.Output(framework::GradVarName("X"));
     auto *y_grad = ctx.Output(framework::GradVarName("Y"));
-    PADDLE_ENFORCE(x_dims[0] == out_dims[0],
-                   "Out@GRAD M X N must equal to X dims 0, M ");
-    PADDLE_ENFORCE(y_dims[1] == out_dims[1],
-                   "Out@GRAD M X N must equal to Y dims 1, N ");
+
+    auto x_mat_dims =
+        framework::flatten_to_2d(x_dims, Attr("x_num_col_dims"));
+    auto y_mat_dims =
+        framework::flatten_to_2d(y_dims, Attr("y_num_col_dims"));
+
+    PADDLE_ENFORCE_EQ(
+        x_mat_dims[0], out_dims[0],
+        "The first dimension of Out@GRAD must equal to the first dimension of "
+        "the first operand.");
+    PADDLE_ENFORCE_EQ(
+        y_mat_dims[1], out_dims[1],
+        "The second dimension of Out@GRAD must equal to the second "
+        "dimension of the second operand.");
 
     if (x_grad) x_grad->Resize(x_dims);
     if (y_grad) y_grad->Resize(y_dims);
diff --git a/paddle/operators/mul_op.h b/paddle/operators/mul_op.h
index 05a79e13b3470e39a5ebd0394ba05629553a5075..3c01f868bda8cba488b3403df456d63d6b082fa6 100644
--- a/paddle/operators/mul_op.h
+++ b/paddle/operators/mul_op.h
@@ -1,7 +1,7 @@
 /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
 
    Licensed under the Apache License, Version 2.0 (the "License");
-   you may not use this file except in compliance with the License.
+   You may not use this file except in compliance with the License.
    You may obtain a copy of the License at
 
    http://www.apache.org/licenses/LICENSE-2.0
@@ -31,13 +31,25 @@ template 
 class MulKernel : public framework::OpKernel {
  public:
   void Compute(const framework::ExecutionContext& context) const override {
-    auto* x = context.Input("X");
-    auto* y = context.Input("Y");
-    auto* z = context.Output("Out");
+    const Tensor* x = context.Input("X");
+    const Tensor* y = context.Input("Y");
+    Tensor* z = context.Output("Out");
+    const Tensor x_matrix =
+        x->dims().size() > 2
+            ? framework::ReshapeToMatrix(
+                  *x, context.template Attr("x_num_col_dims"))
+            : *x;
+    const Tensor y_matrix =
+        y->dims().size() > 2
+            ? framework::ReshapeToMatrix(
+                  *y, context.template Attr("y_num_col_dims"))
+            : *y;
+
     z->mutable_data(context.GetPlace());
     auto* device_context =
         const_cast(context.device_context_);
-    math::matmul(*x, false, *y, false, 1, z, 0, device_context);
+    math::matmul(x_matrix, false, y_matrix, false, 1, z, 0,
+                           device_context);
   }
 };
 
@@ -45,23 +57,39 @@ template 
 class MulGradKernel : public framework::OpKernel {
  public:
   void Compute(const framework::ExecutionContext& ctx) const override {
-    auto* x = ctx.Input("X");
-    auto* y = ctx.Input("Y");
-    auto* dout = ctx.Input(framework::GradVarName("Out"));
+    int x_num_col_dims = ctx.template Attr("x_num_col_dims");
+    int y_num_col_dims = ctx.template Attr("y_num_col_dims");
+    const Tensor* x = ctx.Input("X");
+    const Tensor* y = ctx.Input("Y");
+    const Tensor x_matrix =
+        x->dims().size() > 2 ? framework::ReshapeToMatrix(*x, x_num_col_dims)
+                             : *x;
+    const Tensor y_matrix =
+        y->dims().size() > 2 ? framework::ReshapeToMatrix(*y, y_num_col_dims)
+                             : *y;
+    const Tensor* dout = ctx.Input(framework::GradVarName("Out"));
 
-    auto* dx = ctx.Output(framework::GradVarName("X"));
-    auto* dy = ctx.Output(framework::GradVarName("Y"));
+    Tensor* dx = ctx.Output(framework::GradVarName("X"));
+    Tensor* dy = ctx.Output(framework::GradVarName("Y"));
     auto* device_context =
         const_cast(ctx.device_context_);
     if (dx) {
       dx->mutable_data(ctx.GetPlace());
+      Tensor dx_matrix = dx->dims().size() > 2 ? framework::ReshapeToMatrix(
+                                                     *dx, x_num_col_dims)
+                                               : *dx;
       // dx = dout * y'. dx: M x K, dout : M x N, y : K x N
-      math::matmul(*dout, false, *y, true, 1, dx, 0, device_context);
+      math::matmul(*dout, false, y_matrix, true, 1, &dx_matrix, 0,
+                             device_context);
     }
     if (dy) {
       dy->mutable_data(ctx.GetPlace());
+      Tensor dy_matrix = dy->dims().size() > 2 ? framework::ReshapeToMatrix(
+                                                     *dy, y_num_col_dims)
+                                               : *dy;
       // dy = x' * dout. dy K x N, dout : M x N, x : M x K
-      math::matmul(*x, true, *dout, false, 1, dy, 0, device_context);
+      math::matmul(x_matrix, true, *dout, false, 1, &dy_matrix, 0,
+                             device_context);
     }
   }
 };
diff --git a/paddle/operators/rowwise_add_op.cc b/paddle/operators/rowwise_add_op.cc
index 30b4b404315a9f041e21d79b75fd06307e33f7f9..fa8f0ff1a858143af427b51025279c726f1628e0 100644
--- a/paddle/operators/rowwise_add_op.cc
+++ b/paddle/operators/rowwise_add_op.cc
@@ -25,14 +25,19 @@ class RowwiseAddOp : public framework::OperatorWithKernel {
 
  protected:
   void InferShape(const framework::InferShapeContext &ctx) const override {
-    auto dim0 = ctx.Input("X")->dims();
-    auto dim1 = ctx.Input("b")->dims();
-
-    PADDLE_ENFORCE(dim0.size() == 2, "Input 0 must be matrix");
-    PADDLE_ENFORCE(dim1.size() == 1, "The second input must be vector");
-    PADDLE_ENFORCE(dim0[1] == dim1[0], "The width of two input must be same");
-    PADDLE_ENFORCE(ctx.OutputSize("Out") == 1, "The output size must be 1");
-    ctx.Output("Out")->Resize(ctx.Input("X")->dims());
+    auto x_dims = ctx.Input("X")->dims();
+    auto b_dims = ctx.Input("b")->dims();
+    PADDLE_ENFORCE_GT(
+        x_dims.size(), b_dims.size(),
+        "The rank of input `X` must be larger than the one of input `b`.");
+
+    int num_col_dims = x_dims.size() - b_dims.size();
+
+    PADDLE_ENFORCE_EQ(
+        framework::slice_ddim(x_dims, num_col_dims, x_dims.size()), b_dims,
+        "The width of two operands must be same");
+    PADDLE_ENFORCE_EQ(ctx.OutputSize("Out"), 1, "The output size must be 1");
+    ctx.Output("Out")->Resize(x_dims);
   }
 };
 
@@ -61,13 +66,20 @@ class RowwiseAddGradOp : public framework::OperatorWithKernel {
     PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("b"), "b should not be null");
     PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Out")),
                             "Input(Out@GRAD) should not be null");
-    auto dims0 = ctx.Input("X")->dims();
-    auto dims1 = ctx.Input("b")->dims();
-    PADDLE_ENFORCE_EQ(1, dims1.size(), "b dims should be 1")
+    auto x_dims = ctx.Input("X")->dims();
+    auto b_dims = ctx.Input("b")->dims();
+    PADDLE_ENFORCE_GT(
+        x_dims.size(), b_dims.size(),
+        "The rank of input `X` must be larger than the one of input `b`.");
+
+    int num_col_dims = x_dims.size() - b_dims.size();
+    PADDLE_ENFORCE_EQ(
+        framework::slice_ddim(x_dims, num_col_dims, x_dims.size()), b_dims,
+        "The width of two operands must be same");
     auto *dx = ctx.Output(framework::GradVarName("X"));
     auto *db = ctx.Output(framework::GradVarName("b"));
-    if (dx) dx->Resize(dims0);
-    if (db) db->Resize(dims1);
+    if (dx) dx->Resize(x_dims);
+    if (db) db->Resize(b_dims);
   }
 };
 
diff --git a/paddle/operators/rowwise_add_op.h b/paddle/operators/rowwise_add_op.h
index 4e926d9f2947f37b71e81c0fa592b0c66b19c640..35774b940926f77167b8f19597027e74d3477e5b 100644
--- a/paddle/operators/rowwise_add_op.h
+++ b/paddle/operators/rowwise_add_op.h
@@ -33,10 +33,12 @@ class RowwiseAddKernel : public framework::OpKernel {
   void Compute(const framework::ExecutionContext& context) const override {
     auto out = context.Output("Out");
     out->mutable_data(context.GetPlace());
-
-    auto input = EigenMatrix::From(*context.Input("X"));
-    auto bias = EigenVector::From(*context.Input("b"));
-    auto output = EigenMatrix::From(*out);
+    int num_col_dims = context.Input("X")->dims().size() -
+                       context.Input("b")->dims().size();
+    auto input =
+        EigenMatrix::Reshape(*context.Input("X"), num_col_dims);
+    auto bias = EigenVector::Flatten(*context.Input("b"));
+    auto output = EigenMatrix::Reshape(*out, num_col_dims);
 
     const int bias_size = bias.dimension(0);
     const int rest_size = input.size() / bias_size;
@@ -54,12 +56,15 @@ class RowwiseAddGradKernel : public framework::OpKernel {
     auto* dout = context.Input(framework::GradVarName("Out"));
     auto* dx = context.Output(framework::GradVarName("X"));
     auto* db = context.Output(framework::GradVarName("b"));
+    int num_col_dims = context.Input("X")->dims().size() -
+                       context.Input("b")->dims().size();
 
-    auto out_grad = EigenMatrix::From(*dout);
+    auto out_grad = EigenMatrix::Reshape(*dout, num_col_dims);
     auto place = context.GetEigenDevice();
+
     if (dx) {
       dx->mutable_data(context.GetPlace());
-      EigenMatrix::From(*dx).device(place) = out_grad;
+      EigenMatrix::Reshape(*dx, num_col_dims).device(place) = out_grad;
     }
 
     if (db) {
diff --git a/paddle/operators/sum_op.cc b/paddle/operators/sum_op.cc
new file mode 100644
index 0000000000000000000000000000000000000000..5805826ee8a555ca6dfc1ca81feaadffea9e1012
--- /dev/null
+++ b/paddle/operators/sum_op.cc
@@ -0,0 +1,73 @@
+/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+http://www.apache.org/licenses/LICENSE-2.0
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License. */
+
+#include "paddle/operators/sum_op.h"
+#include 
+
+namespace paddle {
+namespace operators {
+using framework::Tensor;
+
+class SumOp : public framework::OperatorWithKernel {
+ public:
+  using framework::OperatorWithKernel::OperatorWithKernel;
+
+ protected:
+  void InferShape(const framework::InferShapeContext &ctx) const override {
+    auto ins = ctx.MultiInput("X");
+    auto *out = ctx.Output("Out");
+    int N = ins.size();
+
+    auto in_dim = ins[0]->dims();
+
+    PADDLE_ENFORCE_GT(N, 1, "Input tensors count should > 1.");
+    for (int i = 1; i < N; i++) {
+      auto dim = ins[i]->dims();
+      PADDLE_ENFORCE(in_dim == dim, "Input tensors must have same shape");
+    }
+    out->Resize(in_dim);
+  }
+};
+
+class SumOpMaker : public framework::OpProtoAndCheckerMaker {
+ public:
+  SumOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
+      : OpProtoAndCheckerMaker(proto, op_checker) {
+    AddInput("X", "the input tensors of sum operator.").AsDuplicable();
+    AddOutput("Out", "the output tensor of sum operator.");
+    AddComment(R"DOC(
+            Sum the input tensors.
+        )DOC");
+  }
+};
+
+class SumGradOp : public framework::OperatorWithKernel {
+ public:
+  using framework::OperatorWithKernel::OperatorWithKernel;
+
+ protected:
+  void InferShape(const framework::InferShapeContext &ctx) const override {
+    auto outputs = ctx.MultiOutput(framework::GradVarName("X"));
+    auto dims = ctx.Input(framework::GradVarName("Out"))->dims();
+    for (auto output : outputs) {
+      output->Resize(dims);
+    }
+  }
+};
+
+}  // namespace operators
+}  // namespace paddle
+
+namespace ops = paddle::operators;
+REGISTER_OP(sum, ops::SumOp, ops::SumOpMaker, sum_grad, ops::SumGradOp);
+REGISTER_OP_CPU_KERNEL(sum, ops::SumKernel);
+REGISTER_OP_CPU_KERNEL(sum_grad,
+                       ops::SumGradKernel);
diff --git a/paddle/operators/sum_op.cu b/paddle/operators/sum_op.cu
new file mode 100644
index 0000000000000000000000000000000000000000..a465cf3659ba7c51338abadfc62962fb6755a39d
--- /dev/null
+++ b/paddle/operators/sum_op.cu
@@ -0,0 +1,18 @@
+/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+http://www.apache.org/licenses/LICENSE-2.0
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License. */
+
+#define EIGEN_USE_GPU
+#include "paddle/operators/sum_op.h"
+
+namespace ops = paddle::operators;
+REGISTER_OP_GPU_KERNEL(sum, ops::SumKernel);
+REGISTER_OP_GPU_KERNEL(sum_grad,
+                       ops::SumGradKernel);
diff --git a/paddle/operators/sum_op.h b/paddle/operators/sum_op.h
new file mode 100644
index 0000000000000000000000000000000000000000..0b1e9ebaa38d455fb5e3ce8c1a39cbbcdad9a940
--- /dev/null
+++ b/paddle/operators/sum_op.h
@@ -0,0 +1,65 @@
+/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+http://www.apache.org/licenses/LICENSE-2.0
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License. */
+
+#pragma once
+#include "paddle/framework/eigen.h"
+#include "paddle/framework/op_registry.h"
+
+namespace paddle {
+namespace operators {
+
+using Tensor = framework::Tensor;
+template 
+using EigenVector = framework::EigenVector;
+
+template 
+class SumKernel : public framework::OpKernel {
+ public:
+  void Compute(const framework::ExecutionContext& context) const override {
+    auto ins = context.MultiInput("X");
+    auto* out = context.Output("Out");
+    out->mutable_data(context.GetPlace());
+
+    auto place = context.GetEigenDevice();
+    auto result = EigenVector::Flatten(*out);
+
+    int N = ins.size();
+    auto in = EigenVector::Flatten(*(ins[0]));
+    result.device(place) = in;
+    for (int i = 1; i < N; i++) {
+      auto in = EigenVector::Flatten(*(ins[i]));
+      result.device(place) = result + in;
+    }
+  }
+};
+
+template 
+class SumGradKernel : public framework::OpKernel {
+ public:
+  void Compute(const framework::ExecutionContext& context) const override {
+    auto* input = context.Input(framework::GradVarName("Out"));
+    auto outs = context.MultiOutput(framework::GradVarName("X"));
+    for (auto out : outs) {
+      out->mutable_data(context.GetPlace());
+    }
+
+    auto place = context.GetEigenDevice();
+    auto in = EigenVector::Flatten(*input);
+    for (auto out : outs) {
+      auto result = EigenVector::Flatten(*out);
+      result.device(place) = in;
+    }
+  }
+};
+
+}  // namespace operators
+}  // namespace paddle
diff --git a/paddle/operators/top_k_op.cc b/paddle/operators/top_k_op.cc
new file mode 100644
index 0000000000000000000000000000000000000000..38d2f0a09aec751734864947a2f3cfa20107e22f
--- /dev/null
+++ b/paddle/operators/top_k_op.cc
@@ -0,0 +1,67 @@
+/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+
+    http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License. */
+
+#include "paddle/operators/top_k_op.h"
+
+namespace paddle {
+namespace operators {
+
+class TopkOp : public framework::OperatorWithKernel {
+ public:
+  using framework::OperatorWithKernel::OperatorWithKernel;
+
+ protected:
+  void InferShape(const framework::InferShapeContext &ctx) const override {
+    PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"),
+                            "Input of TopkOP must be initialized.");
+    auto *input = ctx.Input("X");
+    const int k = static_cast(ctx.Attr("k"));
+
+    PADDLE_ENFORCE_GE(k, 1, "k must >= 1");
+    PADDLE_ENFORCE_GE(input->dims().size(), 1, "input must have >= 1d shape");
+    PADDLE_ENFORCE_GE(input->dims()[input->dims().size() - 1], k,
+                      "input must have >= k columns");
+
+    framework::DDim dims = input->dims();
+    dims[dims.size() - 1] = k;
+    ctx.Output("Out")->Resize(dims);
+    ctx.Output("Indices")->Resize(dims);
+  }
+};
+
+class TopkOpMaker : public framework::OpProtoAndCheckerMaker {
+ public:
+  TopkOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
+      : OpProtoAndCheckerMaker(proto, op_checker) {
+    AddInput("X", "The input of Topk op");
+    AddOutput("Out", "The output tensor of Topk op");
+    AddOutput("Indices", "The indices of Topk elements of input");
+    AddComment(
+        R"DOC(If the input is a vector (1d tensor), finds the k largest entries in the vector and outputs their values and indices as vectors. Thus values[j] is the j-th largest entry in input, and its index is indices[j].
+
+    For matrices, computes the top k entries in each row. )DOC");
+    AddAttr("k",
+                 "Number of top elements to look for along the last "
+                 "dimension (along each row for matrices).")
+        .SetDefault(1);
+  }
+};
+
+}  // namespace operators
+}  // namespace paddle
+
+namespace ops = paddle::operators;
+REGISTER_OP_WITHOUT_GRADIENT(top_k, ops::TopkOp, ops::TopkOpMaker);
+REGISTER_OP_CPU_KERNEL(top_k,
+                       ops::TopkKernel);
diff --git a/paddle/operators/top_k_op.cu b/paddle/operators/top_k_op.cu
new file mode 100644
index 0000000000000000000000000000000000000000..afe4d149c53819c45e20353bc9d16393f3f61e0f
--- /dev/null
+++ b/paddle/operators/top_k_op.cu
@@ -0,0 +1,318 @@
+/* Copyright (c) 2016 PaddlePaddle Authors All Rights Reserve.
+
+   Licensed under the Apache License, Version 2.0 (the "License");
+   you may not use this file except in compliance with the License.
+   You may obtain a copy of the License at
+
+   http://www.apache.org/licenses/LICENSE-2.0
+
+   Unless required by applicable law or agreed to in writing, software
+   distributed under the License is distributed on an "AS IS" BASIS,
+   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+   See the License for the specific language governing permissions and
+   limitations under the License. */
+
+#include "paddle/framework/op_registry.h"
+#include "paddle/platform/assert.h"
+
+namespace paddle {
+namespace operators {
+
+using Tensor = framework::Tensor;
+
+template 
+struct Pair {
+  __device__ __forceinline__ Pair() {}
+  __device__ __forceinline__ Pair(T value, int id) : v(value), id(id) {}
+
+  __device__ __forceinline__ void set(T value, int id) {
+    v = value;
+    id = id;
+  }
+
+  __device__ __forceinline__ void operator=(const Pair& in) {
+    v = in.v;
+    id = in.id;
+  }
+
+  __device__ __forceinline__ bool operator<(const T value) const {
+    return (v < value);
+  }
+
+  __device__ __forceinline__ bool operator<(const Pair& in) const {
+    return (v < in.v) || ((v == in.v) && (id > in.id));
+  }
+
+  __device__ __forceinline__ bool operator>(const Pair& in) const {
+    return (v > in.v) || ((v == in.v) && (id < in.id));
+  }
+
+  T v;
+  int id;
+};
+
+template 
+__device__ __forceinline__ void AddTo(Pair topk[], const Pair& p,
+                                      int beam_size) {
+  for (int k = beam_size - 2; k >= 0; k--) {
+    if (topk[k] < p) {
+      topk[k + 1] = topk[k];
+    } else {
+      topk[k + 1] = p;
+      return;
+    }
+  }
+  topk[0] = p;
+}
+
+template 
+__device__ __forceinline__ void AddTo(Pair topk[], const Pair& p) {
+  for (int k = beam_size - 2; k >= 0; k--) {
+    if (topk[k] < p) {
+      topk[k + 1] = topk[k];
+    } else {
+      topk[k + 1] = p;
+      return;
+    }
+  }
+  topk[0] = p;
+}
+
+template 
+__device__ __forceinline__ void GetTopK(Pair topk[], const T* src, int idx,
+                                        int dim, int beam_size) {
+  while (idx < dim) {
+    if (topk[beam_size - 1] < src[idx]) {
+      Pair tmp(src[idx], idx);
+      AddTo(topk, tmp, beam_size);
+    }
+    idx += BlockSize;
+  }
+}
+
+template 
+__device__ __forceinline__ void GetTopK(Pair topk[], const T* src, int idx,
+                                        int dim, const Pair& max,
+                                        int beam_size) {
+  while (idx < dim) {
+    if (topk[beam_size - 1] < src[idx]) {
+      Pair tmp(src[idx], idx);
+      if (tmp < max) {
+        AddTo(topk, tmp, beam_size);
+      }
+    }
+    idx += BlockSize;
+  }
+}
+
+template 
+__device__ __forceinline__ void GetTopK(Pair topk[], const T* val, int* col,
+                                        int idx, int dim, int beam_size) {
+  while (idx < dim) {
+    if (topk[beam_size - 1] < val[idx]) {
+      Pair tmp(val[idx], col[idx]);
+      AddTo(topk, tmp, beam_size);
+    }
+    idx += BlockSize;
+  }
+}
+
+template 
+__device__ __forceinline__ void GetTopK(Pair topk[], const T* val, int* col,
+                                        int idx, int dim, const Pair& max,
+                                        int beam_size) {
+  while (idx < dim) {
+    if (topk[beam_size - 1] < val[idx]) {
+      Pair tmp(val[idx], col[idx]);
+      if (tmp < max) {
+        AddTo(topk, tmp, beam_size);
+      }
+    }
+    idx += BlockSize;
+  }
+}
+
+template 
+__device__ __forceinline__ void ThreadGetTopK(Pair topk[], int& beam,
+                                              int beam_size, const T* src,
+                                              bool& firstStep, bool& is_empty,
+                                              Pair& max, int dim,
+                                              const int tid) {
+  if (beam > 0) {
+    int length = beam < beam_size ? beam : beam_size;
+    if (firstStep) {
+      firstStep = false;
+      GetTopK(topk, src, tid, dim, length);
+    } else {
+      for (int k = 0; k < MaxLength; k++) {
+        if (k < MaxLength - beam) {
+          topk[k] = topk[k + beam];
+        } else {
+          topk[k].set(-INFINITY, -1);
+        }
+      }
+      if (!is_empty) {
+        GetTopK(topk + MaxLength - beam, src, tid, dim, max,
+                              length);
+      }
+    }
+
+    max = topk[MaxLength - 1];
+    if (max.v == -1) is_empty = true;
+    beam = 0;
+  }
+}
+
+template 
+__device__ __forceinline__ void ThreadGetTopK(Pair topk[], int& beam,
+                                              int beam_size, const T* val,
+                                              int* col, bool& firstStep,
+                                              bool& is_empty, Pair& max,
+                                              int dim, const int tid) {
+  if (beam > 0) {
+    int length = beam < beam_size ? beam : beam_size;
+    if (firstStep) {
+      firstStep = false;
+      GetTopK(topk, val, col, tid, dim, length);
+    } else {
+      for (int k = 0; k < MaxLength; k++) {
+        if (k < MaxLength - beam) {
+          topk[k] = topk[k + beam];
+        } else {
+          topk[k].set(-INFINITY, -1);
+        }
+      }
+      if (!is_empty) {
+        GetTopK(topk + MaxLength - beam, val, col, tid, dim, max,
+                              length);
+      }
+    }
+
+    max = topk[MaxLength - 1];
+    if (max.v == -1) is_empty = true;
+    beam = 0;
+  }
+}
+
+template 
+__device__ __forceinline__ void BlockReduce(Pair* sh_topk, int* maxid,
+                                            Pair topk[], T** topVal,
+                                            int** topIds, int& beam, int& k,
+                                            const int tid, const int warp) {
+  while (true) {
+    __syncthreads();
+    if (tid < BlockSize / 2) {
+      if (sh_topk[tid] < sh_topk[tid + BlockSize / 2]) {
+        maxid[tid] = tid + BlockSize / 2;
+      } else {
+        maxid[tid] = tid;
+      }
+    }
+    __syncthreads();
+    for (int stride = BlockSize / 4; stride > 0; stride = stride / 2) {
+      if (tid < stride) {
+        if (sh_topk[maxid[tid]] < sh_topk[maxid[tid + stride]]) {
+          maxid[tid] = maxid[tid + stride];
+        }
+      }
+      __syncthreads();
+    }
+    __syncthreads();
+
+    if (tid == 0) {
+      **topVal = sh_topk[maxid[0]].v;
+      **topIds = sh_topk[maxid[0]].id;
+      (*topVal)++;
+      (*topIds)++;
+    }
+    if (tid == maxid[0]) beam++;
+    if (--k == 0) break;
+    __syncthreads();
+
+    if (tid == maxid[0]) {
+      if (beam < MaxLength) {
+        sh_topk[tid] = topk[beam];
+      }
+    }
+    if (maxid[0] / 32 == warp) {
+      if (__shfl(beam, (maxid[0]) % 32, 32) == MaxLength) break;
+    }
+  }
+}
+
+/**
+ * Each block compute one sample.
+ * In a block:
+ * 1. every thread get top MaxLength value;
+ * 2. merge to sh_topk, block reduce and get max value;
+ * 3. go to the second setp, until one thread's topk value is null;
+ * 4. go to the first setp, until get the topk value.
+ */
+template 
+__global__ void KeMatrixTopK(T* output, int output_stride, int* indices,
+                             const T* src, int lds, int dim, int k) {
+  __shared__ Pair sh_topk[BlockSize];
+  __shared__ int maxid[BlockSize / 2];
+  const int tid = threadIdx.x;
+  const int warp = threadIdx.x / 32;
+  output += blockIdx.x * output_stride;
+  indices += blockIdx.x * k;
+
+  Pair topk[MaxLength];
+  int beam = MaxLength;
+  Pair max;
+  bool is_empty = false;
+  bool firststep = true;
+
+  for (int k = 0; k < MaxLength; k++) {
+    topk[k].set(-INFINITY, -1);
+  }
+  while (k) {
+    ThreadGetTopK(topk, beam, k,
+                                           src + blockIdx.x * lds, firststep,
+                                           is_empty, max, dim, tid);
+
+    sh_topk[tid] = topk[0];
+    BlockReduce(sh_topk, maxid, topk, &output,
+                                         &indices, beam, k, tid, warp);
+  }
+}
+
+template 
+class TopkOpCUDAKernel : public framework::OpKernel {
+ public:
+  void Compute(const framework::ExecutionContext& ctx) const override {
+    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
+                   "It must use GPUPlace.");
+    auto* input = ctx.Input("X");
+    auto* output = ctx.Output("Out");
+    auto* indices = ctx.Output("Indices");
+    size_t k = static_cast(ctx.Attr("k"));
+
+    const T* input_data = input->data();
+
+    T* output_data = output->mutable_data(ctx.GetPlace());
+    // FIXME(typhoonzero): data is always converted to type T?
+    int* indices_data = indices->mutable_data(ctx.GetPlace());
+
+    size_t input_height = input->dims()[0];
+    size_t input_width = input->dims()[1];
+    if (k > input_width) k = input_width;
+
+    // NOTE: pass lds and dim same to input width.
+    // NOTE: old matrix implementation of stride is different to eigen.
+    // TODO(typhoonzero): launch kernel on specified stream.
+    // TODO(typhoonzero): refine this kernel.
+    dim3 threads(256, 1);
+    dim3 grid(input_height, 1);
+
+    KeMatrixTopK<<>>(
+        output_data, output->dims()[1], indices_data, input_data, input_width,
+        input_width, int(k));
+  }
+};
+
+}  // namespace operators
+}  // namespace paddle
+
+REGISTER_OP_GPU_KERNEL(top_k, paddle::operators::TopkOpCUDAKernel);
diff --git a/paddle/operators/top_k_op.h b/paddle/operators/top_k_op.h
new file mode 100644
index 0000000000000000000000000000000000000000..ef66acc1d569282a42be64b7a5e90f3fbdb20690
--- /dev/null
+++ b/paddle/operators/top_k_op.h
@@ -0,0 +1,76 @@
+/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+
+    http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License. */
+
+#pragma once
+#include 
+#include 
+#include "paddle/framework/eigen.h"
+#include "paddle/framework/op_registry.h"
+
+namespace paddle {
+namespace operators {
+
+using Tensor = framework::Tensor;
+
+template 
+using EigenMatrix = framework::EigenMatrix;
+
+template 
+class TopkKernel : public framework::OpKernel {
+ public:
+  void Compute(const framework::ExecutionContext& ctx) const override {
+    // Get the top k elements of each row of input tensor
+    // FIXME: only deal with matrix(2d tensor).
+    auto* input = ctx.Input("X");
+    auto* output = ctx.Output("Out");
+    auto* indices = ctx.Output("Indices");
+    // k is determined by Attr
+    const size_t k = static_cast(ctx.Attr("k"));
+
+    T* output_data = output->mutable_data(ctx.GetPlace());
+    T* indices_data = indices->mutable_data(ctx.GetPlace());
+
+    auto eg_input = EigenMatrix::From(*input);
+
+    // reshape input to a flattern matrix(like flat_inner_dims)
+    framework::DDim inputdims = input->dims();
+    const size_t row = framework::product(
+        framework::slice_ddim(inputdims, 0, inputdims.size() - 1));
+    const size_t col = inputdims[inputdims.size() - 1];
+    Eigen::DSizes flat2dims(row, col);
+    // NOTE: eigen shape doesn't affect paddle tensor.
+    eg_input.reshape(flat2dims);
+
+    for (size_t i = 0; i < row; i++) {
+      std::vector> vec;
+      for (size_t j = 0; j < col; j++) {
+        vec.push_back(std::pair(eg_input(i, j), j));
+      }
+
+      std::partial_sort(
+          vec.begin(), vec.begin() + k, vec.end(),
+          [](const std::pair& l, const std::pair& r) {
+            return l.first > r.first;
+          });
+      for (size_t j = 0; j < k; j++) {
+        output_data[i * k + j] = vec[j].first;
+        indices_data[i * k + j] = vec[j].second;
+      }
+    }
+  }
+};
+
+}  // namespace operators
+}  // namespace paddle
diff --git a/paddle/platform/enforce.h b/paddle/platform/enforce.h
index 81448897e95eb05f4ce7de8683d98e05bade77cb..64fcbd93b6c4d5d9b36f2636c3ef4f7327f08d25 100644
--- a/paddle/platform/enforce.h
+++ b/paddle/platform/enforce.h
@@ -25,10 +25,6 @@ limitations under the License. */
 #include "paddle/string/printf.h"
 #include "paddle/string/to_string.h"
 
-#ifdef __GNUC__
-#include   // for __cxa_demangle
-#endif
-
 #ifndef PADDLE_ONLY_CPU
 
 #include "paddle/platform/dynload/cublas.h"
@@ -46,19 +42,6 @@ limitations under the License. */
 namespace paddle {
 namespace platform {
 
-namespace {
-#ifdef __GNUC__
-inline std::string demangle(std::string name) {
-  int status = -4;  // some arbitrary value to eliminate the compiler warning
-  std::unique_ptr res{
-      abi::__cxa_demangle(name.c_str(), NULL, NULL, &status), std::free};
-  return (status == 0) ? res.get() : name;
-}
-#else
-inline std::string demangle(std::string name) { return name; }
-#endif
-}
-
 struct EnforceNotMet : public std::exception {
   std::exception_ptr exp_;
   std::string err_str_;
@@ -79,7 +62,7 @@ struct EnforceNotMet : public std::exception {
       Dl_info info;
       for (int i = 0; i < size; ++i) {
         if (dladdr(call_stack[i], &info)) {
-          auto demangled = demangle(info.dli_sname);
+          auto demangled = info.dli_sname;
           auto addr_offset = static_cast(call_stack[i]) -
                              static_cast(info.dli_saddr);
           sout << string::Sprintf("%-3d %*0p %s + %zd\n", i,
diff --git a/paddle/pybind/pybind.cc b/paddle/pybind/pybind.cc
index c708f471e3a856af3425bb6e15bc217142e9b4da..c85fffb559568eaba8a434b16aa35f0a33b13ce8 100644
--- a/paddle/pybind/pybind.cc
+++ b/paddle/pybind/pybind.cc
@@ -50,7 +50,9 @@ USE_OP(minus);
 USE_OP(cos_sim);
 USE_CPU_ONLY_OP(gather);
 USE_CPU_ONLY_OP(scatter);
+USE_OP(top_k);
 USE_OP(squared_l2_distance);
+USE_OP(sum);
 
 namespace paddle {
 namespace framework {
@@ -216,7 +218,10 @@ All parameter, weight, gradient are variables in Paddle.
                -> std::map> {
                  return op.Outputs();
                })
+      .def("output_vars",
+           [](const OperatorBase &op) { return op.OutputVars(true); })
       .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
+      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
       .def("__str__", &OperatorBase::DebugString)
       .def("no_intermediate_outputs",
            [](const OperatorBase &op) { return op.OutputVars(false); })
diff --git a/paddle/scripts/docker/build.sh b/paddle/scripts/docker/build.sh
index 17986420220fec173bbf3ecff240d4c504f8adbd..2ac455d771bf78377ce4ee7d921393d3b3958e3c 100644
--- a/paddle/scripts/docker/build.sh
+++ b/paddle/scripts/docker/build.sh
@@ -30,6 +30,8 @@ Configuring cmake in /paddle/build ...
       -DCMAKE_BUILD_TYPE=Release
       -DWITH_DOC=OFF
       -DWITH_GPU=${WITH_GPU:-OFF}
+      -DWITH_MKLDNN=${WITH_MKLDNN:-ON}
+      -DWITH_MKLML=${WITH_MKLML:-ON}
       -DWITH_AVX=${WITH_AVX:-OFF}
       -DWITH_GOLANG=${WITH_GOLANG:-ON}
       -DWITH_SWIG_PY=ON
@@ -37,7 +39,7 @@ Configuring cmake in /paddle/build ...
       -DWITH_PYTHON=${WITH_PYTHON:-ON}
       -DWITH_SWIG_PY=${WITH_SWIG_PY:-ON}
       -DCUDNN_ROOT=/usr/
-      -DWITH_STYLE_CHECK=${WITH_STYLE_CHECK:-OFF}
+      -DWITH_STYLE_CHECK=${WITH_STYLE_CHECK:-ON}
       -DWITH_TESTING=${WITH_TESTING:-ON}
       -DCMAKE_EXPORT_COMPILE_COMMANDS=ON
 ========================================
@@ -50,6 +52,8 @@ cmake .. \
       -DCMAKE_BUILD_TYPE=Release \
       -DWITH_DOC=OFF \
       -DWITH_GPU=${WITH_GPU:-OFF} \
+      -DWITH_MKLDNN=${WITH_MKLDNN:-ON} \
+      -DWITH_MKLML=${WITH_MKLML:-ON} \
       -DWITH_AVX=${WITH_AVX:-OFF} \
       -DWITH_GOLANG=${WITH_GOLANG:-ON} \
       -DWITH_SWIG_PY=${WITH_SWIG_PY:-ON} \
diff --git a/paddle/utils/Util.cpp b/paddle/utils/Util.cpp
index b18b73e06a6c39c3bf9717280bc6323917c80efb..2755fdd9cd1c2509cad996557c6fb24363d42d8a 100644
--- a/paddle/utils/Util.cpp
+++ b/paddle/utils/Util.cpp
@@ -320,6 +320,9 @@ void loadFileList(const std::string& fileListFileName,
 }
 
 double getMemoryUsage() {
+#if defined(__ANDROID__)
+  return 0.0;
+#else
   FILE* fp = fopen("/proc/meminfo", "r");
   CHECK(fp) << "failed to fopen /proc/meminfo";
   size_t bufsize = 256 * sizeof(char);
@@ -357,6 +360,7 @@ double getMemoryUsage() {
   delete[] buf;
   double usedMem = 1.0 - 1.0 * (freeMem + bufMem + cacheMem) / totalMem;
   return usedMem;
+#endif
 }
 
 SyncThreadPool* getGlobalSyncThreadPool() {
diff --git a/paddle/utils/Util.h b/paddle/utils/Util.h
index 613844669d2495ada7b8f7a841f47b821b7fdeba..22ce2534d3468ded36221810aa61c15b37f13f3d 100644
--- a/paddle/utils/Util.h
+++ b/paddle/utils/Util.h
@@ -33,6 +33,13 @@ limitations under the License. */
 #include "Flags.h"
 #include "hl_gpu.h"
 
+#if defined(__ANDROID__) && (__ANDROID_API__ < 21)
+inline int rand_r(unsigned int* seedp) {
+  (void)seedp;
+  return rand();
+}
+#endif
+
 /**
  * Loop over the elements in a container
  * TODO(yuyang18): It's this foreach useful? Why not use C++ 11 foreach,
diff --git a/proto/ModelConfig.proto b/proto/ModelConfig.proto
index 0f44d8cb8d78ed23cc1105ac7aff37de5faeffa1..ebf0911d6ea0b39d51447859ae2aef485b50b0e6 100644
--- a/proto/ModelConfig.proto
+++ b/proto/ModelConfig.proto
@@ -271,6 +271,7 @@ message ImageConfig {
   // The size of input feature map.
   required uint32 img_size = 8;
   optional uint32 img_size_y = 9;
+  optional uint32 img_size_z = 10 [ default = 1 ];
 }
 
 message PriorBoxConfig {
@@ -288,8 +289,8 @@ message PadConfig {
 }
 
 message ReshapeConfig {
-  repeated uint32 heightAxis = 1;
-  repeated uint32 widthAxis = 2;
+  repeated uint32 height_axis = 1;
+  repeated uint32 width_axis = 2;
 }
 
 message MultiBoxLossConfig {
@@ -519,6 +520,7 @@ message LayerConfig {
   // for HuberRegressionLoss
   optional double delta = 57 [ default = 1.0 ];
 
+  // for 3D data
   optional uint64 depth = 58 [ default = 1 ];
 
   // for switch order layer
diff --git a/python/paddle/trainer/config_parser.py b/python/paddle/trainer/config_parser.py
index 11dc84ae20679bb73735f9119739fca5ea7fa673..356e1d8b6fa9173db33a340744afd8d513a83a96 100644
--- a/python/paddle/trainer/config_parser.py
+++ b/python/paddle/trainer/config_parser.py
@@ -1332,6 +1332,12 @@ def parse_image(image, input_layer_name, image_conf):
         get_img_size(input_layer_name, image_conf.channels)
 
 
+def parse_image3d(image, input_layer_name, image_conf):
+    image_conf.channels = image.channels
+    image_conf.img_size, image_conf.img_size_y, image_conf.img_size_z = \
+        get_img3d_size(input_layer_name, image_conf.channels)
+
+
 def parse_norm(norm, input_layer_name, norm_conf):
     norm_conf.norm_type = norm.norm_type
     config_assert(
@@ -2365,9 +2371,11 @@ class BatchNormLayer(LayerBase):
                  name,
                  inputs,
                  bias=True,
+                 img3D=False,
                  use_global_stats=True,
                  moving_average_fraction=0.9,
                  batch_norm_type=None,
+                 mean_var_names=None,
                  **xargs):
         if inputs is None:
             inputs = []
@@ -2409,24 +2417,69 @@ class BatchNormLayer(LayerBase):
 
         input_layer = self.get_input_layer(0)
         image_conf = self.config.inputs[0].image_conf
-        parse_image(self.inputs[0].image, input_layer.name, image_conf)
-
-        # Only pass the width and height of input to batch_norm layer
-        # when either of it is non-zero.
-        if input_layer.width != 0 or input_layer.height != 0:
-            self.set_cnn_layer(name, image_conf.img_size_y, image_conf.img_size,
-                               image_conf.channels, False)
+        if img3D:
+            parse_image3d(self.inputs[0].image, input_layer.name, image_conf)
+            # Only pass the width and height of input to batch_norm layer
+            # when either of it is non-zero.
+            if input_layer.width != 0 or input_layer.height != 0:
+                self.set_cnn_layer(
+                    input_layer_name=name,
+                    depth=image_conf.img_size_z,
+                    height=image_conf.img_size_y,
+                    width=image_conf.img_size,
+                    channels=image_conf.channels,
+                    is_print=True)
+            else:
+                self.set_layer_size(input_layer.size)
         else:
-            self.set_layer_size(input_layer.size)
+            parse_image(self.inputs[0].image, input_layer.name, image_conf)
+            # Only pass the width and height of input to batch_norm layer
+            # when either of it is non-zero.
+            if input_layer.width != 0 or input_layer.height != 0:
+                self.set_cnn_layer(
+                    input_layer_name=name,
+                    height=image_conf.img_size_y,
+                    width=image_conf.img_size,
+                    channels=image_conf.channels,
+                    is_print=True)
+            else:
+                self.set_layer_size(input_layer.size)
 
         psize = self.calc_parameter_size(image_conf)
         dims = [1, psize]
+        if mean_var_names is not None:
+            assert len(mean_var_names) == 2
+            self.inputs[1].parameter_name = mean_var_names[0]
+            self.inputs[2].parameter_name = mean_var_names[1]
+
         self.create_input_parameter(0, psize)
         self.create_input_parameter(1, psize, dims)
         self.create_input_parameter(2, psize, dims)
 
         self.create_bias_parameter(bias, psize)
 
+    def set_cnn_layer(self,
+                      input_layer_name,
+                      depth=None,
+                      height=None,
+                      width=None,
+                      channels=None,
+                      is_print=True):
+        depthIsNone = False
+        if depth is None:
+            depth = 1
+            depthIsNone = True
+        size = depth * height * width * channels
+        self.set_layer_size(size)
+        self.set_layer_height_width(height, width)
+        self.set_layer_depth(depth)
+        if is_print and depthIsNone:
+            print("output for %s: c = %d, h = %d, w = %d, size = %d" %
+                  (input_layer_name, channels, height, width, size))
+        elif is_print:
+            print("output for %s: c = %d, d = %d, h = %d, w = %d, size = %d" %
+                  (input_layer_name, channels, depth, height, width, size))
+
     def calc_parameter_size(self, image_conf):
         return image_conf.channels
 
@@ -2688,9 +2741,20 @@ class AddToLayer(LayerBase):
         super(AddToLayer, self).__init__(
             name, 'addto', 0, inputs=inputs, **xargs)
         config_assert(len(inputs) > 0, 'inputs cannot be empty for AddToLayer')
-        for input_index in xrange(len(self.inputs)):
-            input_layer = self.get_input_layer(input_index)
-            self.set_layer_size(input_layer.size)
+
+        if len(self.inputs) > 1:
+            for input_index in xrange(len(self.inputs)):
+                assert self.get_input_layer(0).height == self.get_input_layer(
+                    input_index).height
+                assert self.get_input_layer(0).width == self.get_input_layer(
+                    input_index).width
+                assert self.get_input_layer(0).depth == self.get_input_layer(
+                    input_index).depth
+
+        self.set_layer_size(self.get_input_layer(0).size)
+        self.set_layer_height_width(self.get_input_layer(0).height, \
+                                        self.get_input_layer(0).width)
+        self.set_layer_depth(self.get_input_layer(0).depth)
         self.create_bias_parameter(bias, self.config.size)
 
 
@@ -3370,11 +3434,20 @@ class ConcatenateLayer(LayerBase):
             name, 'concat', 0, inputs=inputs, **xargs)
         size = 0
         for input_index in xrange(len(self.inputs)):
+            assert self.get_input_layer(0).height == self.get_input_layer(
+                input_index).height
+            assert self.get_input_layer(0).width == self.get_input_layer(
+                input_index).width
+            assert self.get_input_layer(0).depth == self.get_input_layer(
+                input_index).depth
             input_layer = self.get_input_layer(input_index)
             input = self.inputs[input_index]
             if self.config.size == 0:
                 size += input_layer.size
 
+        self.set_layer_height_width(self.get_input_layer(0).height, \
+                                    self.get_input_layer(0).width)
+        self.set_layer_depth(self.get_input_layer(0).depth)
         self.set_layer_size(size)
 
 
@@ -3675,8 +3748,8 @@ class SwitchOrderLayer(LayerBase):
     def __init__(self, name, inputs, reshape, **xargs):
         super(SwitchOrderLayer, self).__init__(
             name, 'switch_order', 0, inputs=inputs, **xargs)
-        self.config.reshape_conf.heightAxis.extend(reshape['height'])
-        self.config.reshape_conf.widthAxis.extend(reshape['width'])
+        self.config.reshape_conf.height_axis.extend(reshape['height'])
+        self.config.reshape_conf.width_axis.extend(reshape['width'])
 
 
 # Deprecated, use a new layer specific class instead
diff --git a/python/paddle/trainer_config_helpers/layers.py b/python/paddle/trainer_config_helpers/layers.py
index cba45bd3afa178ab4dd3a50f0947b144e7466e53..4b1d80d3db924bfa2ad0e081f785d8f5dd719fce 100644
--- a/python/paddle/trainer_config_helpers/layers.py
+++ b/python/paddle/trainer_config_helpers/layers.py
@@ -354,6 +354,10 @@ class LayerOutput(object):
     def height(self):
         return cp.g_layer_map[self.full_name].height
 
+    @property
+    def depth(self):
+        return cp.g_layer_map[self.full_name].depth
+
     def set_input(self, input):
         """
         Set the input for a memory layer. Can only be used for memory layer
@@ -943,7 +947,7 @@ def data_layer(name, size, depth=None, height=None, width=None,
     if height is not None and width is not None:
         num_filters = size / (width * height * depth)
         assert num_filters * width * height * depth == size, \
-                "size=%s width=%s height=%s depth=%s"  % (size, width, height, depth)
+                "size=%s width=%s height=%s depth=%s" % (size, width, height, depth)
 
     return LayerOutput(name, LayerType.DATA, size=size, num_filters=num_filters)
 
@@ -1219,7 +1223,8 @@ def detection_output_layer(input_loc,
                            name=None):
     """
     Apply the NMS to the output of network and compute the predict bounding
-    box location.
+    box location. The output of this layer could be None if there is no valid
+    bounding box.
 
     :param name: The Layer Name.
     :type name: basestring
@@ -2953,13 +2958,15 @@ def img_cmrnorm_layer(input,
 def batch_norm_layer(input,
                      act=None,
                      name=None,
+                     img3D=False,
                      num_channels=None,
                      bias_attr=None,
                      param_attr=None,
                      layer_attr=None,
                      batch_norm_type=None,
                      moving_average_fraction=0.9,
-                     use_global_stats=None):
+                     use_global_stats=None,
+                     mean_var_names=None):
     """
     Batch Normalization Layer. The notation of this layer as follow.
 
@@ -3026,6 +3033,8 @@ def batch_norm_layer(input,
                                    :math:`runningMean = newMean*(1-factor)
                                    + runningMean*factor`
     :type moving_average_fraction: float.
+    :param mean_var_names: [mean name, variance name]
+    :type mean_var_names: string list
     :return: LayerOutput object.
     :rtype: LayerOutput
     """
@@ -3039,6 +3048,7 @@ def batch_norm_layer(input,
            (batch_norm_type == "cudnn_batch_norm")
     l = Layer(
         name=name,
+        img3D=img3D,
         inputs=Input(
             input.name, image=Image(channels=num_channels), **param_attr.attr),
         active_type=act.name,
@@ -3047,6 +3057,7 @@ def batch_norm_layer(input,
         bias=ParamAttr.to_bias(bias_attr),
         moving_average_fraction=moving_average_fraction,
         use_global_stats=use_global_stats,
+        mean_var_names=mean_var_names,
         **ExtraLayerAttribute.to_kwargs(layer_attr))
 
     return LayerOutput(
@@ -6410,7 +6421,7 @@ def gated_unit_layer(input,
 @wrap_name_default('switch_order')
 def switch_order_layer(input,
                        name=None,
-                       reshape=None,
+                       reshape_axis=None,
                        act=None,
                        layer_attr=None):
     """
@@ -6421,8 +6432,9 @@ def switch_order_layer(input,
     The example usage is:
 
     .. code-block:: python
+       reshape_axis = 3
+       switch = switch_order(input=layer, name='switch', reshape_axis=reshape_axis)
        reshape = {'height':[ 0, 1, 2], 'width':[3]}
-       switch = switch_order(input=layer, name='switch', reshape=reshape)
 
     :param input: The input layer.
     :type input: LayerOutput
@@ -6434,6 +6446,11 @@ def switch_order_layer(input,
     :rtype: LayerOutput
     """
     assert isinstance(input, LayerOutput)
+    assert reshape_axis != None and (reshape_axis > 0 and reshape_axis < 4)
+    height = [ele for ele in xrange(reshape_axis)]
+    width = [ele for ele in range(reshape_axis, 4)]
+    reshape = {'height': height, 'width': width}
+
     l = Layer(
         name=name,
         inputs=input.name,
@@ -6444,6 +6461,7 @@ def switch_order_layer(input,
     return LayerOutput(
         name=name,
         layer_type=LayerType.SWITCH_ORDER_LAYER,
+        activation=act,
         parents=input,
         size=l.config.size)
 
diff --git a/python/paddle/trainer_config_helpers/tests/configs/file_list.sh b/python/paddle/trainer_config_helpers/tests/configs/file_list.sh
index df872a90ff388f0d96cef44763dbd076bc768ab9..8a204a96f3ef57673cef65306d0bf8e8c3409751 100755
--- a/python/paddle/trainer_config_helpers/tests/configs/file_list.sh
+++ b/python/paddle/trainer_config_helpers/tests/configs/file_list.sh
@@ -10,6 +10,6 @@ test_prelu_layer test_row_conv test_detection_output_layer test_multibox_loss_la
 test_recursive_topology test_gated_unit_layer test_clip_layer test_row_l2_norm_layer
 test_kmax_seq_socre_layer test_sub_nested_seq_select_layer test_scale_shift_layer
 test_seq_slice_layer test_cross_entropy_over_beam test_pooling3D_layer
-test_conv3d_layer test_deconv3d_layer)
+test_conv3d_layer test_deconv3d_layer test_BatchNorm3D)
 
 export whole_configs=(test_split_datasource)
diff --git a/python/paddle/trainer_config_helpers/tests/configs/protostr/img_layers.protostr b/python/paddle/trainer_config_helpers/tests/configs/protostr/img_layers.protostr
index 1a577b8d9b1e1915236ba6afcfa97040d70c707a..5ddf6052df021b055390a42c25ce6c0d650e4aee 100644
--- a/python/paddle/trainer_config_helpers/tests/configs/protostr/img_layers.protostr
+++ b/python/paddle/trainer_config_helpers/tests/configs/protostr/img_layers.protostr
@@ -62,6 +62,7 @@ layers {
   moving_average_fraction: 0.9
   height: 227
   width: 227
+  depth: 1
 }
 layers {
   name: "__crmnorm_0__"
diff --git a/python/paddle/trainer_config_helpers/tests/configs/protostr/img_trans_layers.protostr b/python/paddle/trainer_config_helpers/tests/configs/protostr/img_trans_layers.protostr
index 2818389b16cca75f5030b75fc4de8c89c06c5e02..c0252b945b4c7fd6b4dad8770e3e1dccb88df28a 100644
--- a/python/paddle/trainer_config_helpers/tests/configs/protostr/img_trans_layers.protostr
+++ b/python/paddle/trainer_config_helpers/tests/configs/protostr/img_trans_layers.protostr
@@ -62,6 +62,7 @@ layers {
   moving_average_fraction: 0.9
   height: 256
   width: 256
+  depth: 1
 }
 layers {
   name: "__crmnorm_0__"
diff --git a/python/paddle/trainer_config_helpers/tests/configs/protostr/test_BatchNorm3D.protostr b/python/paddle/trainer_config_helpers/tests/configs/protostr/test_BatchNorm3D.protostr
new file mode 100644
index 0000000000000000000000000000000000000000..832ed24a31dd2bedba9a4fce77d7a088d1796fdb
--- /dev/null
+++ b/python/paddle/trainer_config_helpers/tests/configs/protostr/test_BatchNorm3D.protostr
@@ -0,0 +1,92 @@
+type: "nn"
+layers {
+  name: "data3D"
+  type: "data"
+  size: 360
+  active_type: ""
+  height: 6
+  width: 20
+  depth: 3
+}
+layers {
+  name: "__batch_norm_0__"
+  type: "batch_norm"
+  size: 360
+  active_type: "relu"
+  inputs {
+    input_layer_name: "data3D"
+    input_parameter_name: "___batch_norm_0__.w0"
+    image_conf {
+      channels: 1
+      img_size: 20
+      img_size_y: 6
+      img_size_z: 3
+    }
+  }
+  inputs {
+    input_layer_name: "data3D"
+    input_parameter_name: "___batch_norm_0__.w1"
+  }
+  inputs {
+    input_layer_name: "data3D"
+    input_parameter_name: "___batch_norm_0__.w2"
+  }
+  bias_parameter_name: "___batch_norm_0__.wbias"
+  moving_average_fraction: 0.9
+  height: 6
+  width: 20
+  depth: 3
+}
+parameters {
+  name: "___batch_norm_0__.w0"
+  size: 1
+  initial_mean: 1.0
+  initial_std: 0.0
+  initial_strategy: 0
+  initial_smart: false
+}
+parameters {
+  name: "___batch_norm_0__.w1"
+  size: 1
+  initial_mean: 0.0
+  initial_std: 0.0
+  dims: 1
+  dims: 1
+  initial_strategy: 0
+  initial_smart: false
+  is_static: true
+  is_shared: true
+}
+parameters {
+  name: "___batch_norm_0__.w2"
+  size: 1
+  initial_mean: 0.0
+  initial_std: 0.0
+  dims: 1
+  dims: 1
+  initial_strategy: 0
+  initial_smart: false
+  is_static: true
+  is_shared: true
+}
+parameters {
+  name: "___batch_norm_0__.wbias"
+  size: 1
+  initial_mean: 0.0
+  initial_std: 0.0
+  dims: 1
+  dims: 1
+  initial_strategy: 0
+  initial_smart: false
+}
+input_layer_names: "data3D"
+output_layer_names: "__batch_norm_0__"
+sub_models {
+  name: "root"
+  layer_names: "data3D"
+  layer_names: "__batch_norm_0__"
+  input_layer_names: "data3D"
+  output_layer_names: "__batch_norm_0__"
+  is_recurrent_layer_group: false
+}
+
diff --git a/python/paddle/trainer_config_helpers/tests/configs/protostr/test_bi_grumemory.protostr b/python/paddle/trainer_config_helpers/tests/configs/protostr/test_bi_grumemory.protostr
index b110e91498ce7d112987714bd769868179141c54..8a1399efad0ff339e35f69400ac654a4787a6018 100644
--- a/python/paddle/trainer_config_helpers/tests/configs/protostr/test_bi_grumemory.protostr
+++ b/python/paddle/trainer_config_helpers/tests/configs/protostr/test_bi_grumemory.protostr
@@ -74,6 +74,9 @@ layers {
   inputs {
     input_layer_name: "__bidirectional_gru_0___bw"
   }
+  height: 0
+  width: 0
+  depth: 1
 }
 parameters {
   name: "___bidirectional_gru_0___fw_transform.w0"
diff --git a/python/paddle/trainer_config_helpers/tests/configs/protostr/test_recursive_topology.protostr b/python/paddle/trainer_config_helpers/tests/configs/protostr/test_recursive_topology.protostr
index 8133aa9c8d3e7c6843d1b27b70e87d394a1e0e47..046037936a6d85f54095c65f206e468aa69065d7 100644
--- a/python/paddle/trainer_config_helpers/tests/configs/protostr/test_recursive_topology.protostr
+++ b/python/paddle/trainer_config_helpers/tests/configs/protostr/test_recursive_topology.protostr
@@ -16,6 +16,9 @@ layers {
   inputs {
     input_layer_name: "data"
   }
+  height: 0
+  width: 0
+  depth: 1
 }
 layers {
   name: "__addto_1__"
@@ -28,6 +31,9 @@ layers {
   inputs {
     input_layer_name: "__addto_0__"
   }
+  height: 0
+  width: 0
+  depth: 1
 }
 layers {
   name: "__addto_2__"
@@ -40,6 +46,9 @@ layers {
   inputs {
     input_layer_name: "__addto_1__"
   }
+  height: 0
+  width: 0
+  depth: 1
 }
 layers {
   name: "__addto_3__"
@@ -52,6 +61,9 @@ layers {
   inputs {
     input_layer_name: "__addto_2__"
   }
+  height: 0
+  width: 0
+  depth: 1
 }
 layers {
   name: "__addto_4__"
@@ -64,6 +76,9 @@ layers {
   inputs {
     input_layer_name: "__addto_3__"
   }
+  height: 0
+  width: 0
+  depth: 1
 }
 layers {
   name: "__addto_5__"
@@ -76,6 +91,9 @@ layers {
   inputs {
     input_layer_name: "__addto_4__"
   }
+  height: 0
+  width: 0
+  depth: 1
 }
 layers {
   name: "__addto_6__"
@@ -88,6 +106,9 @@ layers {
   inputs {
     input_layer_name: "__addto_5__"
   }
+  height: 0
+  width: 0
+  depth: 1
 }
 layers {
   name: "__addto_7__"
@@ -100,6 +121,9 @@ layers {
   inputs {
     input_layer_name: "__addto_6__"
   }
+  height: 0
+  width: 0
+  depth: 1
 }
 layers {
   name: "__addto_8__"
@@ -112,6 +136,9 @@ layers {
   inputs {
     input_layer_name: "__addto_7__"
   }
+  height: 0
+  width: 0
+  depth: 1
 }
 layers {
   name: "__addto_9__"
@@ -124,6 +151,9 @@ layers {
   inputs {
     input_layer_name: "__addto_8__"
   }
+  height: 0
+  width: 0
+  depth: 1
 }
 layers {
   name: "__addto_10__"
@@ -136,6 +166,9 @@ layers {
   inputs {
     input_layer_name: "__addto_9__"
   }
+  height: 0
+  width: 0
+  depth: 1
 }
 layers {
   name: "__addto_11__"
@@ -148,6 +181,9 @@ layers {
   inputs {
     input_layer_name: "__addto_10__"
   }
+  height: 0
+  width: 0
+  depth: 1
 }
 layers {
   name: "__addto_12__"
@@ -160,6 +196,9 @@ layers {
   inputs {
     input_layer_name: "__addto_11__"
   }
+  height: 0
+  width: 0
+  depth: 1
 }
 layers {
   name: "__addto_13__"
@@ -172,6 +211,9 @@ layers {
   inputs {
     input_layer_name: "__addto_12__"
   }
+  height: 0
+  width: 0
+  depth: 1
 }
 layers {
   name: "__addto_14__"
@@ -184,6 +226,9 @@ layers {
   inputs {
     input_layer_name: "__addto_13__"
   }
+  height: 0
+  width: 0
+  depth: 1
 }
 layers {
   name: "__addto_15__"
@@ -196,6 +241,9 @@ layers {
   inputs {
     input_layer_name: "__addto_14__"
   }
+  height: 0
+  width: 0
+  depth: 1
 }
 layers {
   name: "__addto_16__"
@@ -208,6 +256,9 @@ layers {
   inputs {
     input_layer_name: "__addto_15__"
   }
+  height: 0
+  width: 0
+  depth: 1
 }
 layers {
   name: "__addto_17__"
@@ -220,6 +271,9 @@ layers {
   inputs {
     input_layer_name: "__addto_16__"
   }
+  height: 0
+  width: 0
+  depth: 1
 }
 layers {
   name: "__addto_18__"
@@ -232,6 +286,9 @@ layers {
   inputs {
     input_layer_name: "__addto_17__"
   }
+  height: 0
+  width: 0
+  depth: 1
 }
 layers {
   name: "__addto_19__"
@@ -244,6 +301,9 @@ layers {
   inputs {
     input_layer_name: "__addto_18__"
   }
+  height: 0
+  width: 0
+  depth: 1
 }
 layers {
   name: "__addto_20__"
@@ -256,6 +316,9 @@ layers {
   inputs {
     input_layer_name: "__addto_19__"
   }
+  height: 0
+  width: 0
+  depth: 1
 }
 layers {
   name: "__addto_21__"
@@ -268,6 +331,9 @@ layers {
   inputs {
     input_layer_name: "__addto_20__"
   }
+  height: 0
+  width: 0
+  depth: 1
 }
 layers {
   name: "__addto_22__"
@@ -280,6 +346,9 @@ layers {
   inputs {
     input_layer_name: "__addto_21__"
   }
+  height: 0
+  width: 0
+  depth: 1
 }
 layers {
   name: "__addto_23__"
@@ -292,6 +361,9 @@ layers {
   inputs {
     input_layer_name: "__addto_22__"
   }
+  height: 0
+  width: 0
+  depth: 1
 }
 layers {
   name: "__addto_24__"
@@ -304,6 +376,9 @@ layers {
   inputs {
     input_layer_name: "__addto_23__"
   }
+  height: 0
+  width: 0
+  depth: 1
 }
 layers {
   name: "__addto_25__"
@@ -316,6 +391,9 @@ layers {
   inputs {
     input_layer_name: "__addto_24__"
   }
+  height: 0
+  width: 0
+  depth: 1
 }
 layers {
   name: "__addto_26__"
@@ -328,6 +406,9 @@ layers {
   inputs {
     input_layer_name: "__addto_25__"
   }
+  height: 0
+  width: 0
+  depth: 1
 }
 layers {
   name: "__addto_27__"
@@ -340,6 +421,9 @@ layers {
   inputs {
     input_layer_name: "__addto_26__"
   }
+  height: 0
+  width: 0
+  depth: 1
 }
 layers {
   name: "__addto_28__"
@@ -352,6 +436,9 @@ layers {
   inputs {
     input_layer_name: "__addto_27__"
   }
+  height: 0
+  width: 0
+  depth: 1
 }
 layers {
   name: "__addto_29__"
@@ -364,6 +451,9 @@ layers {
   inputs {
     input_layer_name: "__addto_28__"
   }
+  height: 0
+  width: 0
+  depth: 1
 }
 layers {
   name: "__addto_30__"
@@ -376,6 +466,9 @@ layers {
   inputs {
     input_layer_name: "__addto_29__"
   }
+  height: 0
+  width: 0
+  depth: 1
 }
 layers {
   name: "__addto_31__"
@@ -388,6 +481,9 @@ layers {
   inputs {
     input_layer_name: "__addto_30__"
   }
+  height: 0
+  width: 0
+  depth: 1
 }
 layers {
   name: "__fc_layer_0__"
diff --git a/python/paddle/trainer_config_helpers/tests/configs/protostr/util_layers.protostr b/python/paddle/trainer_config_helpers/tests/configs/protostr/util_layers.protostr
index d0ad388165007b8f96f059e5b003c52f756383e5..7a2f3eab38808a031c27cf7ab9d6273952e389eb 100644
--- a/python/paddle/trainer_config_helpers/tests/configs/protostr/util_layers.protostr
+++ b/python/paddle/trainer_config_helpers/tests/configs/protostr/util_layers.protostr
@@ -22,6 +22,9 @@ layers {
   inputs {
     input_layer_name: "b"
   }
+  height: 0
+  width: 0
+  depth: 1
 }
 layers {
   name: "__concat_0__"
@@ -34,6 +37,9 @@ layers {
   inputs {
     input_layer_name: "b"
   }
+  height: 0
+  width: 0
+  depth: 1
 }
 layers {
   name: "__concat_1__"
diff --git a/python/paddle/trainer_config_helpers/tests/configs/test_BatchNorm3D.py b/python/paddle/trainer_config_helpers/tests/configs/test_BatchNorm3D.py
new file mode 100644
index 0000000000000000000000000000000000000000..a991b22252ba10eed895efd931108c2d8b0e52f1
--- /dev/null
+++ b/python/paddle/trainer_config_helpers/tests/configs/test_BatchNorm3D.py
@@ -0,0 +1,11 @@
+from paddle.trainer_config_helpers import *
+
+settings(batch_size=1000, learning_rate=1e-4)
+
+#data = data_layer(name='data', size=180, width=30, height=6)
+#batchNorm = batch_norm_layer(data, num_channels=1)
+#outputs(batchNorm)
+
+data3D = data_layer(name='data3D', size=120 * 3, width=20, height=6, depth=3)
+batchNorm3D = batch_norm_layer(data3D, num_channels=1, img3D=True)
+outputs(batchNorm3D)
diff --git a/python/paddle/v2/event.py b/python/paddle/v2/event.py
index 7589cc9917f26375d595e200245d5ba099bc38d7..e66bf67d7949057486eb54c46f39128fad5dae55 100644
--- a/python/paddle/v2/event.py
+++ b/python/paddle/v2/event.py
@@ -53,10 +53,13 @@ class BeginPass(object):
 class EndPass(WithMetric):
     """
     Event On One Pass Training Complete.
+    To get the output of a specific layer, add "event.gm.getLayerOutputs('predict_layer')"
+    in your event_handler call back
     """
 
-    def __init__(self, pass_id, evaluator):
+    def __init__(self, pass_id, evaluator, gm):
         self.pass_id = pass_id
+        self.gm = gm
         WithMetric.__init__(self, evaluator)
 
 
@@ -73,10 +76,13 @@ class BeginIteration(object):
 class EndIteration(WithMetric):
     """
     Event On One Batch Training Complete.
+    To get the output of a specific layer, add "event.gm.getLayerOutputs('predict_layer')"
+    in your event_handler call back
     """
 
-    def __init__(self, pass_id, batch_id, cost, evaluator):
+    def __init__(self, pass_id, batch_id, cost, evaluator, gm):
         self.pass_id = pass_id
         self.batch_id = batch_id
         self.cost = cost
+        self.gm = gm
         WithMetric.__init__(self, evaluator)
diff --git a/python/paddle/v2/framework/op.py b/python/paddle/v2/framework/op.py
index c1585bcffcceb75292853018179066c9f614261e..4e91924a50cf6401d4002510e940ddc84edbe61a 100644
--- a/python/paddle/v2/framework/op.py
+++ b/python/paddle/v2/framework/op.py
@@ -142,8 +142,8 @@ def create_op_creation_method(op_proto):
     return OpInfo(
         method=__impl__,
         name=op_proto.type,
-        inputs=[var.name for var in op_proto.inputs],
-        outputs=[var.name for var in op_proto.outputs],
+        inputs=[(var.name, var.duplicable) for var in op_proto.inputs],
+        outputs=[(var.name, var.duplicable) for var in op_proto.outputs],
         attrs=[attr.name for attr in op_proto.attrs])
 
 
@@ -180,9 +180,15 @@ class OperatorFactory(object):
         return self.op_methods.get(t)
 
     def get_op_input_names(self, type):
+        return map(lambda x: x[0], self.get_op_info(type).inputs)
+
+    def get_op_inputs(self, type):
         return self.get_op_info(type).inputs
 
     def get_op_output_names(self, type):
+        return map(lambda x: x[0], self.get_op_info(type).outputs)
+
+    def get_op_outputs(self, type):
         return self.get_op_info(type).outputs
 
     def get_op_attr_names(self, type):
diff --git a/python/paddle/v2/framework/tests/CMakeLists.txt b/python/paddle/v2/framework/tests/CMakeLists.txt
index aceab794bb7e0a7cd4e8013dda88cb554c3d326b..20be26cbddc6d590deb7081e33714b6fc81feb4d 100644
--- a/python/paddle/v2/framework/tests/CMakeLists.txt
+++ b/python/paddle/v2/framework/tests/CMakeLists.txt
@@ -19,6 +19,7 @@ py_test(test_scatter_op SRCS test_scatter_op.py)
 py_test(test_fill_zeros_like_op SRCS test_fill_zeros_like_op.py)
 py_test(test_fc_op SRCS test_fc_op.py)
 py_test(test_minus_op SRCS test_minus_op.py)
+py_test(test_top_k_op SRCS test_top_k_op.py)
 
 py_test(gradient_checker SRCS gradient_checker.py)
 
@@ -34,5 +35,6 @@ py_test(test_sgd_op SRCS test_sgd_op.py)
 py_test(test_gradient_checker SRCS test_gradient_checker.py)
 py_test(test_lookup_table SRCS test_lookup_table.py)
 py_test(test_scale_and_identity_op SRCS test_scale_and_identity_op.py)
+py_test(test_sum_op SRCS test_sum_op.py)
 py_test(mnist SRCS mnist.py)
 py_test(test_squared_l2_distance_op SRCS test_squared_l2_distance_op.py)
diff --git a/python/paddle/v2/framework/tests/op_test.py b/python/paddle/v2/framework/tests/op_test.py
new file mode 100644
index 0000000000000000000000000000000000000000..3a6a5dca4c4ddc1399d80e491e4072f24707c01e
--- /dev/null
+++ b/python/paddle/v2/framework/tests/op_test.py
@@ -0,0 +1,275 @@
+import unittest
+import numpy as np
+import itertools
+import paddle.v2.framework.core as core
+from paddle.v2.framework.op import Operator
+
+
+def grad_var_name(var_name):
+    return var_name + "@GRAD"
+
+
+def create_op(scope, op_type, inputs, outputs, attrs=None):
+    kwargs = dict()
+
+    for in_name, in_dup in Operator.get_op_inputs(op_type):
+        if in_name in inputs:
+            kwargs[in_name] = []
+            if in_dup:
+                sub_in = inputs[in_name]
+                for sub_in_name in sub_in:
+                    var = scope.new_var(sub_in_name)
+                    kwargs[in_name].append(sub_in_name)
+            else:
+                var = scope.new_var(in_name)
+                kwargs[in_name].append(in_name)
+
+    for out_name, out_dup in Operator.get_op_outputs(op_type):
+        if out_name in outputs:
+            kwargs[out_name] = []
+            if out_dup:
+                sub_in = outputs[out_name]
+                for sun_in_name in sub_in:
+                    var = scope.new_var(sun_in_name)
+                    kwargs[out_name].append(sun_in_name)
+            else:
+                var = scope.new_var(out_name)
+                kwargs[out_name].append(out_name)
+
+    for attr_name in Operator.get_op_attr_names(op_type):
+        kwargs[attr_name] = attrs[attr_name]
+    return Operator(op_type, **kwargs)
+
+
+def set_input(scope, op, inputs, place):
+    for in_name, in_dup in Operator.get_op_inputs(op.type()):
+        if in_name in inputs:
+            if in_dup:
+                sub_in = inputs[in_name]
+                for sub_in_name in sub_in:
+                    var = scope.find_var(sub_in_name)
+                    tensor = var.get_tensor()
+                    arr = sub_in[sub_in_name]
+                    tensor.set_dims(arr.shape)
+                    tensor.set(arr, place)
+            else:
+                var = scope.find_var(in_name)
+                tensor = var.get_tensor()
+                arr = inputs[in_name]
+                tensor.set_dims(arr.shape)
+                tensor.set(arr, place)
+
+
+def set_output_grad(scope, op, outputs, place):
+    for out_name, out_dup in Operator.get_op_outputs(op.type()):
+        if out_name in outputs:
+            if out_dup:
+                sub_out = outputs[out_name]
+                for sub_out_name in sub_out:
+                    out_tensor = scope.find_var(sub_out_name).get_tensor()
+                    grad_tensor = scope.new_var(grad_var_name(
+                        sub_out_name)).get_tensor()
+                    grad_tensor.set_dims(out_tensor.shape())
+                    data = np.ones(out_tensor.shape(), dtype=np.float32)
+                    grad_tensor.set(data, place)
+            else:
+                out_tensor = scope.find_var(out_name).get_tensor()
+                grad_tensor = scope.new_var(grad_var_name(out_name)).get_tensor(
+                )
+                grad_tensor.set_dims(out_tensor.shape())
+                data = np.ones(out_tensor.shape(), dtype=np.float32)
+                grad_tensor.set(data, place)
+
+
+def get_numeric_gradient(scope,
+                         op,
+                         inputs,
+                         input_to_check,
+                         output_name,
+                         delta=0.005,
+                         in_place=False):
+
+    set_input(scope, op, inputs, core.CPUPlace())
+    op.infer_shape(scope)
+
+    tensor_to_check = scope.find_var(input_to_check).get_tensor()
+
+    def product(dim):
+        return reduce(lambda a, b: a * b, dim, 1)
+
+    ctx = core.DeviceContext.create(core.CPUPlace())
+
+    def get_output():
+        op.run(scope, ctx)
+        return np.array(scope.find_var(output_name).get_tensor()).sum()
+
+    tensor_to_check = scope.find_var(input_to_check).get_tensor()
+    tensor_size = product(tensor_to_check.get_dims())
+    gradient_flat = np.zeros(shape=(tensor_size, ), dtype='float32')
+    # we only compute gradient of one element each time.
+    # we use a for loop to compute the gradient of every element.
+    for i in xrange(tensor_size):
+        if in_place:
+            set_input(op, inputs, core.CPUPlace())
+
+        # get one input element throw it's index i.
+        origin = tensor_to_check.get_float_element(i)
+        # add delta to it, run op and then get the sum of the result tensor.
+        x_pos = origin + delta
+        tensor_to_check.set_float_element(i, x_pos)
+        y_pos = get_output()
+
+        if in_place:
+            set_input(op, inputs, core.CPUPlace())
+
+        x_neg = origin - delta
+        tensor_to_check.set_float_element(i, x_neg)
+        y_neg = get_output()
+
+        tensor_to_check.set_float_element(i, origin)
+        gradient_flat[i] = (y_pos - y_neg) / delta / 2
+
+    return gradient_flat.reshape(tensor_to_check.get_dims())
+
+
+def get_backward_op(scope, op, no_grad_set):
+    backward_op = core.Operator.backward(op, no_grad_set)
+    for input in backward_op.input_vars():
+        var = scope.new_var(input)
+        var.get_tensor()
+    for output in backward_op.output_vars():
+        var = scope.new_var(output)
+        var.get_tensor()
+    return backward_op
+
+
+def get_gradient(scope, op, inputs, outputs, grad_name, place,
+                 no_grad_set=None):
+    ctx = core.DeviceContext.create(place)
+
+    set_input(scope, op, inputs, place)
+
+    op.infer_shape(scope)
+    op.run(scope, ctx)
+
+    if no_grad_set is None:
+        no_grad_set = set()
+
+    backward_op = get_backward_op(scope, op, no_grad_set)
+    set_output_grad(scope, op, outputs, place)
+
+    backward_op.infer_shape(scope)
+    backward_op.run(scope, ctx)
+
+    out = np.array(scope.find_var(grad_name).get_tensor())
+    return out
+
+
+class OpTest(unittest.TestCase):
+    def check_output_with_place(self, place):
+        self.scope = core.Scope()
+        self.op = create_op(self.scope, self.op_type, self.inputs, self.outputs)
+        if isinstance(place, core.GPUPlace) and not self.op.support_gpu():
+            return
+        set_input(self.scope, self.op, self.inputs, place)
+        self.op.infer_shape(self.scope)
+        ctx = core.DeviceContext.create(place)
+        self.op.run(self.scope, ctx)
+
+        for out_name, out_dup in Operator.get_op_outputs(self.op.type()):
+            if out_dup:
+                sub_out = self.outputs[out_name]
+                for sub_out_name in sub_out:
+                    actual = np.array(
+                        self.scope.find_var(sub_out_name).get_tensor())
+                    expect = sub_out[sub_out_name]
+                    self.assertTrue(
+                        np.allclose(
+                            actual, expect, atol=1e-05),
+                        "output name: " + out_name + "has diff")
+            else:
+                actual = np.array(self.scope.find_var(out_name).get_tensor())
+                expect = self.outputs[out_name]
+                self.assertTrue(
+                    np.allclose(
+                        actual, expect, atol=1e-05),
+                    "output name: " + out_name + "has diff")
+
+    def check_output(self):
+        places = [core.CPUPlace()]
+        if core.is_compile_gpu():
+            places.append(core.GPUPlace(0))
+        for place in places:
+            self.check_output_with_place(place)
+
+    def __assert_is_close(self, numeric_grads, analytic_grads, names,
+                          max_relative_error, msg_prefix):
+
+        for a, b, name in itertools.izip(numeric_grads, analytic_grads, names):
+            abs_a = np.abs(a)
+            abs_a[abs_a < 1e-3] = 1
+
+            diff_mat = np.abs(a - b) / abs_a
+            max_diff = np.max(diff_mat)
+
+            def err_msg():
+                offset = np.argmax(diff_mat > max_relative_error)
+                return "%s Variable %s max gradient diff %f over limit %f, the first " \
+                  "error element is %d" % (
+                   msg_prefix, name, max_diff, max_relative_error, offset)
+
+            self.assertLessEqual(max_diff, max_relative_error, err_msg())
+
+    def check_grad(self,
+                   inputs_to_check,
+                   output_name,
+                   no_grad_set=None,
+                   in_place=False,
+                   max_relative_error=0.005):
+        self.scope = core.Scope()
+        self.op = create_op(self.scope, self.op_type, self.inputs, self.outputs)
+        if no_grad_set is None:
+            no_grad_set = set()
+
+        numeric_grads = [
+            get_numeric_gradient(
+                self.scope,
+                self.op,
+                self.inputs,
+                input_to_check,
+                output_name,
+                in_place=in_place) for input_to_check in inputs_to_check
+        ]
+        grad_names = [
+            grad_var_name(input_to_check) for input_to_check in inputs_to_check
+        ]
+
+        cpu_place = core.CPUPlace()
+        cpu_analytic_grads = [
+            get_gradient(self.scope, self.op, self.inputs, self.outputs,
+                         grad_name, cpu_place, no_grad_set)
+            for grad_name in grad_names
+        ]
+
+        self.__assert_is_close(numeric_grads, cpu_analytic_grads, grad_names,
+                               max_relative_error,
+                               "Gradient Check On %s" % str(cpu_place))
+
+        if core.is_compile_gpu() and self.op.support_gpu():
+            gpu_place = core.GPUPlace(0)
+            gpu_analytic_grads = [
+                get_gradient(self.scope, self.op, self.inputs, self.outputs,
+                             grad_name, gpu_place, no_grad_set)
+                for grad_name in grad_names
+            ]
+
+            self.__assert_is_close(numeric_grads, gpu_analytic_grads,
+                                   grad_names, max_relative_error,
+                                   "Gradient Check On %s" % str(gpu_place))
+
+            for c_grad, g_grad, name in itertools.izip(
+                    cpu_analytic_grads, gpu_analytic_grads, grad_names):
+                self.assertTrue(
+                    np.allclose(
+                        c_grad, g_grad, atol=1e-4),
+                    "output name: " + name + " has diff")
diff --git a/python/paddle/v2/framework/tests/test_cross_entropy_op.py b/python/paddle/v2/framework/tests/test_cross_entropy_op.py
index d4277f2a42ce2e66e37405ccd3b2ee444d403d1a..fb6a440e23c26d1766bdf1fc5f24217afe1150f8 100644
--- a/python/paddle/v2/framework/tests/test_cross_entropy_op.py
+++ b/python/paddle/v2/framework/tests/test_cross_entropy_op.py
@@ -1,36 +1,27 @@
 import unittest
 import numpy
-from op_test_util import OpTestMeta
-from gradient_checker import GradientChecker, create_op
+from op_test import OpTest
 
 
-class TestCrossEntropy(unittest.TestCase):
-    __metaclass__ = OpTestMeta
-
+class TestCrossEntropy(OpTest):
     def setUp(self):
-        self.type = "onehot_cross_entropy"
+        self.op_type = "onehot_cross_entropy"
         batch_size = 30
         class_num = 10
-        X = numpy.random.random((batch_size, class_num)).astype("float32")
-        label = 5 * numpy.ones(batch_size).astype("int32")
+        X = numpy.random.uniform(0.1, 1.0,
+                                 [batch_size, class_num]).astype("float32")
+        label = (class_num / 2) * numpy.ones(batch_size).astype("int32")
         self.inputs = {'X': X, 'label': label}
         Y = []
         for i in range(0, batch_size):
             Y.append(-numpy.log(X[i][label[i]]))
         self.outputs = {'Y': numpy.array(Y).astype("float32")}
 
+    def test_check_output(self):
+        self.check_output()
 
-class CrossEntropyGradOpTest(GradientChecker):
     def test_check_grad(self):
-        op = create_op("onehot_cross_entropy")
-        batch_size = 30
-        class_num = 10
-        inputs = {
-            "X": numpy.random.uniform(
-                0.1, 1.0, [batch_size, class_num]).astype("float32"),
-            "label": (class_num / 2) * numpy.ones(batch_size).astype("int32")
-        }
-        self.check_grad(op, inputs, set("X"), "Y")
+        self.check_grad(["X"], "Y")
 
 
 if __name__ == "__main__":
diff --git a/python/paddle/v2/framework/tests/test_lookup_table.py b/python/paddle/v2/framework/tests/test_lookup_table.py
index 19eb464baa555fb67a994f3cfb4d3ed628367c73..4b7ce92c0f0492a73c158378299933a0b329948b 100644
--- a/python/paddle/v2/framework/tests/test_lookup_table.py
+++ b/python/paddle/v2/framework/tests/test_lookup_table.py
@@ -4,7 +4,7 @@ from op_test_util import OpTestMeta
 from gradient_checker import GradientChecker, create_op
 
 
-class TestSigmoidOp(unittest.TestCase):
+class TestLookupTableOp(unittest.TestCase):
     __metaclass__ = OpTestMeta
 
     def setUp(self):
@@ -15,7 +15,7 @@ class TestSigmoidOp(unittest.TestCase):
         self.outputs = {'Out': table[ids]}
 
 
-class TestSigmoidGradOp(GradientChecker):
+class TestLookupTableGradOp(GradientChecker):
     def test_grad(self):
         op = create_op('lookup_table')
         table = np.random.random((17, 31)).astype('float32')
diff --git a/python/paddle/v2/framework/tests/test_mul_op.py b/python/paddle/v2/framework/tests/test_mul_op.py
index b58e4266d1588a4b6151f5f896537ded6ddd3896..8c827e242e866b267e0fc4b73c31bafa0ccc7c48 100644
--- a/python/paddle/v2/framework/tests/test_mul_op.py
+++ b/python/paddle/v2/framework/tests/test_mul_op.py
@@ -2,6 +2,7 @@ import unittest
 import numpy as np
 from gradient_checker import GradientChecker, create_op
 from op_test_util import OpTestMeta
+from paddle.v2.framework.op import Operator
 
 
 class TestMulOp(unittest.TestCase):
@@ -16,6 +17,22 @@ class TestMulOp(unittest.TestCase):
         self.outputs = {'Out': np.dot(self.inputs['X'], self.inputs['Y'])}
 
 
+class TestMulOp2(unittest.TestCase):
+    __metaclass__ = OpTestMeta
+
+    def setUp(self):
+        self.type = "mul"
+        self.inputs = {
+            'X': np.random.random((15, 4, 12, 10)).astype("float32"),
+            'Y': np.random.random((4, 30, 8, 2, 9)).astype("float32")
+        }
+        self.attrs = {'x_num_col_dims': 2, 'y_num_col_dims': 2}
+        self.outputs = {
+            'Out': np.dot(self.inputs['X'].reshape(15 * 4, 12 * 10),
+                          self.inputs['Y'].reshape(4 * 30, 8 * 2 * 9))
+        }
+
+
 class TestMulGradOp(GradientChecker):
     def setUp(self):
         self.op = create_op("mul")
@@ -49,7 +66,38 @@ class TestMulGradOp(GradientChecker):
             no_grad_set={"Y"})
 
 
-# TODO(dzh,qijun) : mulgrad test case need transpose feature of blas library
+class TestMulGradTest2(GradientChecker):
+    def setUp(self):
+        self.op = Operator(
+            "mul", X="X", Y="Y", Out="Out", x_num_col_dims=2, y_num_col_dims=2)
+        self.inputs = {
+            "X": np.random.random((15, 4, 12, 10)).astype("float32"),
+            "Y": np.random.random((4, 30, 8, 2, 9)).astype("float32")
+        }
+
+    def test_cpu_gpu_compare(self):
+        self.compare_grad(self.op, self.inputs)
+
+    def test_normal(self):
+        self.check_grad(
+            self.op, self.inputs, ["X", "Y"], "Out", max_relative_error=0.5)
+
+    def test_ignore_x(self):
+        self.check_grad(
+            self.op,
+            self.inputs, ["Y"],
+            "Out",
+            max_relative_error=0.5,
+            no_grad_set={"X"})
+
+    def test_ignore_y(self):
+        self.check_grad(
+            self.op,
+            self.inputs, ["X"],
+            "Out",
+            max_relative_error=0.5,
+            no_grad_set={"Y"})
+
 
 if __name__ == '__main__':
     unittest.main()
diff --git a/python/paddle/v2/framework/tests/test_rowwise_add_op.py b/python/paddle/v2/framework/tests/test_rowwise_add_op.py
index 2ddb85e2e7a98a08bd1d6e24e6f812f6021142e8..8378c1cd21c21fd31da9b82d2cdaaff332f291d7 100644
--- a/python/paddle/v2/framework/tests/test_rowwise_add_op.py
+++ b/python/paddle/v2/framework/tests/test_rowwise_add_op.py
@@ -16,6 +16,18 @@ class TestRowwiseAddOp(unittest.TestCase):
         self.outputs = {'Out': np.add(self.inputs['X'], self.inputs['b'])}
 
 
+class TestRowwiseAddOp2(unittest.TestCase):
+    __metaclass__ = OpTestMeta
+
+    def setUp(self):
+        self.type = "rowwise_add"
+        self.inputs = {
+            'X': np.random.random((13, 6, 7, 8)).astype("float32"),
+            'b': np.random.random((7, 8)).astype("float32")
+        }
+        self.outputs = {'Out': np.add(self.inputs['X'], self.inputs['b'])}
+
+
 class TestRowwiseAddGradOp(GradientChecker):
     def setUp(self):
         self.op = create_op("rowwise_add")
@@ -34,5 +46,23 @@ class TestRowwiseAddGradOp(GradientChecker):
         self.check_grad(self.op, self.inputs, ["b"], "Out", no_grad_set={"X"})
 
 
+class TestRowwiseAddGradOp2(GradientChecker):
+    def setUp(self):
+        self.op = create_op("rowwise_add")
+        self.inputs = {
+            "X": np.random.uniform(0.1, 1, [2, 3, 2, 5]).astype("float32"),
+            "b": np.random.uniform(0.1, 1, [2, 5]).astype("float32")
+        }
+
+    def test_normal(self):
+        self.check_grad(self.op, self.inputs, ["X", "b"], "Out")
+
+    def test_ignore_b(self):
+        self.check_grad(self.op, self.inputs, ["X"], "Out", no_grad_set={"b"})
+
+    def test_ignore_x(self):
+        self.check_grad(self.op, self.inputs, ["b"], "Out", no_grad_set={"X"})
+
+
 if __name__ == '__main__':
     unittest.main()
diff --git a/python/paddle/v2/framework/tests/test_sigmoid_op.py b/python/paddle/v2/framework/tests/test_sigmoid_op.py
index 273c2e5ab1a84d12621fe9568c4cf22073b6aed4..2316e49eff7bb1cdb53acb3889a6ef05060b59f3 100644
--- a/python/paddle/v2/framework/tests/test_sigmoid_op.py
+++ b/python/paddle/v2/framework/tests/test_sigmoid_op.py
@@ -1,27 +1,21 @@
 import unittest
 import numpy as np
-from op_test_util import OpTestMeta
-from gradient_checker import GradientChecker, create_op
+from op_test import OpTest
 
 
-class TestSigmoidOp(unittest.TestCase):
-    __metaclass__ = OpTestMeta
-
+class TestSigmoid(OpTest):
     def setUp(self):
-        self.type = "sigmoid"
-        self.inputs = {'X': np.random.random((15, 31)).astype("float32")}
+        self.op_type = "sigmoid"
+        self.inputs = {
+            'X': np.random.uniform(0.1, 1, [11, 17]).astype("float32")
+        }
         self.outputs = {'Y': 1 / (1 + np.exp(-self.inputs['X']))}
 
+    def test_check_output(self):
+        self.check_output()
 
-class TestSigmoidGradOp(GradientChecker):
-    def test_grad(self):
-        op = create_op("sigmoid")
-        inputs = {"X": np.random.uniform(0.1, 1, [11, 17]).astype("float32")}
-        # compare gpu and cpu results for backward op.
-        # this test will be skiped if only compiling CPU version.
-        self.compare_grad(op, inputs)
-        # check gradients 
-        self.check_grad(op, inputs, set("X"), "Y", max_relative_error=0.007)
+    def test_check_grad(self):
+        self.check_grad(["X"], "Y", max_relative_error=0.007)
 
 
 if __name__ == '__main__':
diff --git a/python/paddle/v2/framework/tests/test_sum_op.py b/python/paddle/v2/framework/tests/test_sum_op.py
new file mode 100644
index 0000000000000000000000000000000000000000..66417d70e81186465e6f59a17fb62255afeddea5
--- /dev/null
+++ b/python/paddle/v2/framework/tests/test_sum_op.py
@@ -0,0 +1,24 @@
+import unittest
+import numpy as np
+from op_test import OpTest
+
+
+class TestSumOp(OpTest):
+    def setUp(self):
+        self.op_type = "sum"
+        x0 = np.random.random((3, 4)).astype('float32')
+        x1 = np.random.random((3, 4)).astype('float32')
+        x2 = np.random.random((3, 4)).astype('float32')
+        self.inputs = {"X": {"x0": x0, "x1": x1, "x2": x2}}
+        y = x0 + x1 + x2
+        self.outputs = {'Out': y}
+
+    def test_check_output(self):
+        self.check_output()
+
+    def test_check_grad(self):
+        self.check_grad(["x0"], "Out")
+
+
+if __name__ == '__main__':
+    unittest.main()
diff --git a/python/paddle/v2/framework/tests/test_top_k_op.py b/python/paddle/v2/framework/tests/test_top_k_op.py
new file mode 100644
index 0000000000000000000000000000000000000000..e841d96d26bba13b2780c41ea7a209fd470cad3b
--- /dev/null
+++ b/python/paddle/v2/framework/tests/test_top_k_op.py
@@ -0,0 +1,52 @@
+import unittest
+import numpy as np
+from gradient_checker import GradientChecker, create_op
+from op_test_util import OpTestMeta
+
+
+class TestTopkOp(unittest.TestCase):
+    __metaclass__ = OpTestMeta
+
+    def setUp(self):
+        self.type = "top_k"
+        k = 1
+        input = np.random.random((32, 84)).astype("float32")
+        output = np.ndarray((32, k))
+        indices = np.ndarray((32, k))
+
+        self.inputs = {'X': input}
+        self.attrs = {'k': k}
+
+        for rowid in xrange(32):
+            row = input[rowid]
+            output[rowid] = np.sort(row)[-k:]
+            indices[rowid] = row.argsort()[-k:]
+
+        self.outputs = {'Out': output, 'Indices': indices}
+
+
+class TestTopkOp3d(unittest.TestCase):
+    __metaclass__ = OpTestMeta
+
+    def setUp(self):
+        self.type = "top_k"
+        k = 1
+        input = np.random.random((32, 2, 84)).astype("float32")
+        input_flat_2d = input.reshape(64, 84)
+        output = np.ndarray((64, k))
+        indices = np.ndarray((64, k)).astype("int")
+
+        # FIXME: should use 'X': input for a 3d input
+        self.inputs = {'X': input_flat_2d}
+        self.attrs = {'k': k}
+
+        for rowid in xrange(64):
+            row = input_flat_2d[rowid]
+            output[rowid] = np.sort(row)[-k:]
+            indices[rowid] = row.argsort()[-k:]
+
+        self.outputs = {'Out': output, 'Indices': indices}
+
+
+if __name__ == '__main__':
+    unittest.main()
diff --git a/python/paddle/v2/trainer.py b/python/paddle/v2/trainer.py
index 0654a301049dcb347b79879076a869a0c14a07ae..ca95ef13bd440ac0ba3d46f6e4680d4d7aa94c42 100644
--- a/python/paddle/v2/trainer.py
+++ b/python/paddle/v2/trainer.py
@@ -174,13 +174,18 @@ class SGD(object):
                         pass_id=pass_id,
                         batch_id=batch_id,
                         cost=cost,
-                        evaluator=batch_evaluator))
+                        evaluator=batch_evaluator,
+                        gm=self.__gradient_machine__))
                 self.__parameter_updater__.finishBatch(cost)
                 batch_evaluator.finish()
 
             self.__parameter_updater__.finishPass()
             pass_evaluator.finish()
-            event_handler(v2_event.EndPass(pass_id, evaluator=pass_evaluator))
+            event_handler(
+                v2_event.EndPass(
+                    pass_id,
+                    evaluator=pass_evaluator,
+                    gm=self.__gradient_machine__))
         self.__gradient_machine__.finish()
 
     def test(self, reader, feeding=None):