Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
703b26e6
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
703b26e6
编写于
11月 21, 2018
作者:
P
peizhilin
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add profiler, parallel_executor back
上级
935387f3
变更
14
隐藏空白更改
内联
并排
Showing
14 changed file
with
293 addition
and
308 deletion
+293
-308
paddle/fluid/framework/CMakeLists.txt
paddle/fluid/framework/CMakeLists.txt
+0
-9
paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.h
...luid/framework/details/fast_threaded_ssa_graph_executor.h
+1
-1
paddle/fluid/memory/allocation/cpu_allocator.h
paddle/fluid/memory/allocation/cpu_allocator.h
+2
-1
paddle/fluid/platform/CMakeLists.txt
paddle/fluid/platform/CMakeLists.txt
+8
-4
paddle/fluid/platform/device_tracer.h
paddle/fluid/platform/device_tracer.h
+1
-11
paddle/fluid/platform/enforce.h
paddle/fluid/platform/enforce.h
+1
-1
paddle/fluid/platform/port.h
paddle/fluid/platform/port.h
+21
-0
paddle/fluid/platform/profiler.cc
paddle/fluid/platform/profiler.cc
+3
-3
paddle/fluid/platform/profiler.h
paddle/fluid/platform/profiler.h
+0
-10
paddle/fluid/platform/stream_callback_manager.h
paddle/fluid/platform/stream_callback_manager.h
+6
-7
paddle/fluid/pybind/CMakeLists.txt
paddle/fluid/pybind/CMakeLists.txt
+1
-4
paddle/fluid/pybind/pybind.cc
paddle/fluid/pybind/pybind.cc
+0
-6
python/paddle/fluid/__init__.py
python/paddle/fluid/__init__.py
+1
-2
python/paddle/fluid/parallel_executor.py
python/paddle/fluid/parallel_executor.py
+248
-249
未找到文件。
paddle/fluid/framework/CMakeLists.txt
浏览文件 @
703b26e6
...
...
@@ -31,9 +31,7 @@ function(windows_symbolic TARGET)
endfunction
()
add_subdirectory
(
ir
)
if
(
NOT WIN32
)
add_subdirectory
(
details
)
endif
(
NOT WIN32
)
# ddim lib
proto_library
(
framework_proto SRCS framework.proto
)
...
...
@@ -118,13 +116,8 @@ cc_test(op_proto_maker_test SRCS op_proto_maker_test.cc DEPS op_proto_maker)
cc_library
(
op_info SRCS op_info.cc DEPS attribute framework_proto
)
cc_library
(
shape_inference SRCS shape_inference.cc DEPS ddim attribute device_context
)
if
(
NOT WIN32
)
cc_library
(
operator SRCS operator.cc DEPS op_info device_context tensor scope glog
shape_inference data_transform lod_tensor profiler
)
else
()
cc_library
(
operator SRCS operator.cc DEPS op_info device_context tensor scope glog
shape_inference data_transform lod_tensor
)
endif
(
NOT WIN32
)
cc_test
(
operator_test SRCS operator_test.cc DEPS operator op_registry device_context
)
...
...
@@ -179,12 +172,10 @@ else()
cc_test
(
test_naive_executor SRCS naive_executor_test.cc DEPS naive_executor elementwise_add_op
)
endif
()
if
(
NOT WIN32
)
cc_library
(
parallel_executor SRCS parallel_executor.cc DEPS
threaded_ssa_graph_executor scope_buffered_ssa_graph_executor
graph build_strategy
fast_threaded_ssa_graph_executor
)
endif
()
# NOT WIN32
cc_library
(
prune SRCS prune.cc DEPS framework_proto
)
cc_test
(
prune_test SRCS prune_test.cc DEPS op_info prune recurrent_op device_context
)
...
...
paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.h
浏览文件 @
703b26e6
...
...
@@ -13,9 +13,9 @@
// limitations under the License.
#pragma once
#include <ThreadPool.h>
#include <string>
#include <vector>
#include "ThreadPool.h"
#include "paddle/fluid/framework/blocking_queue.h"
#include "paddle/fluid/framework/details/exception_holder.h"
#include "paddle/fluid/framework/details/execution_strategy.h"
...
...
paddle/fluid/memory/allocation/cpu_allocator.h
浏览文件 @
703b26e6
...
...
@@ -17,7 +17,8 @@
#ifdef _WIN32
#define posix_memalign_free _aligned_free
#define posix_memalign(p, a, s) (((*(p)) = _aligned_malloc((s), (a))), *(p) ? 0 : errno)
#define posix_memalign(p, a, s) \
(((*(p)) = _aligned_malloc((s), (a))), *(p) ? 0 : errno)
#endif
namespace
paddle
{
...
...
paddle/fluid/platform/CMakeLists.txt
浏览文件 @
703b26e6
if
(
NOT WIN32
)
proto_library
(
profiler_proto SRCS profiler.proto DEPS framework_proto
)
py_proto_compile
(
profiler_py_proto SRCS profiler.proto
)
...
...
@@ -6,11 +5,19 @@ add_custom_target(profiler_py_proto_init ALL COMMAND ${CMAKE_COMMAND} -E touch _
add_dependencies
(
profiler_py_proto profiler_py_proto_init
)
if
(
NOT WIN32
)
add_custom_command
(
TARGET profiler_py_proto POST_BUILD
COMMAND
${
CMAKE_COMMAND
}
-E make_directory
${
PADDLE_BINARY_DIR
}
/python/paddle/fluid/proto/profiler
COMMAND cp *.py
${
PADDLE_BINARY_DIR
}
/python/paddle/fluid/proto/profiler
COMMENT
"Copy generated python proto into directory paddle/fluid/proto/profiler."
WORKING_DIRECTORY
${
CMAKE_CURRENT_BINARY_DIR
}
)
else
(
NOT WIN32
)
string
(
REPLACE
"/"
"
\\
"
proto_dstpath
"
${
PADDLE_BINARY_DIR
}
/python/paddle/fluid/proto/profiler/"
)
add_custom_command
(
TARGET profiler_py_proto POST_BUILD
COMMAND
${
CMAKE_COMMAND
}
-E make_directory
${
PADDLE_BINARY_DIR
}
/python/paddle/fluid/proto/profiler
COMMAND copy /Y *.py
${
proto_dstpath
}
COMMENT
"Copy generated python proto into directory paddle/fluid/proto/profiler."
WORKING_DIRECTORY
${
CMAKE_CURRENT_BINARY_DIR
}
)
endif
(
NOT WIN32
)
if
(
WITH_GPU
)
...
...
@@ -60,12 +67,9 @@ cc_test(init_test SRCS init_test.cc DEPS device_context)
nv_test
(
cudnn_helper_test SRCS cudnn_helper_test.cc DEPS dynload_cuda
)
nv_test
(
transform_test SRCS transform_test.cu DEPS memory place device_context
)
if
(
NOT WIN32
)
cc_library
(
device_tracer SRCS device_tracer.cc DEPS boost profiler_proto framework_proto
${
GPU_CTX_DEPS
}
)
cc_library
(
profiler SRCS profiler.cc DEPS device_context device_tracer
)
cc_test
(
profiler_test SRCS profiler_test.cc DEPS profiler
)
endif
(
NOT WIN32
)
nv_test
(
float16_gpu_test SRCS float16_test.cu DEPS lod_tensor
)
cc_test
(
float16_test SRCS float16_test.cc DEPS lod_tensor
)
...
...
paddle/fluid/platform/device_tracer.h
浏览文件 @
703b26e6
...
...
@@ -13,17 +13,11 @@ See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#if !defined(_WIN32)
#include <sys/time.h>
#else
#include <windows.h>
#endif // !_WIN32
#include <time.h>
#include <chrono> // NOLINT
#include <string>
#include "paddle/fluid/platform/dynload/cupti.h"
#include "paddle/fluid/platform/port.h"
#include "paddle/fluid/platform/profiler.pb.h"
namespace
paddle
{
...
...
@@ -32,15 +26,11 @@ namespace platform {
///////////////////////
// WARN: Under Development. Don't depend on it yet.
//////////////////////
#if !defined(_WIN32)
inline
uint64_t
PosixInNsec
()
{
struct
timeval
tv
;
gettimeofday
(
&
tv
,
nullptr
);
return
1000
*
(
static_cast
<
uint64_t
>
(
tv
.
tv_sec
)
*
1000000
+
tv
.
tv_usec
);
}
#else
inline
uint64_t
PosixInNsec
()
{
return
static_cast
<
uint64_t
>
(
0
);
}
#endif // !_WIN32
// DeviceTracer performs the following tasks:
// 1. Register cuda callbacks for various events: kernel, memcpy, etc.
...
...
paddle/fluid/platform/enforce.h
浏览文件 @
703b26e6
...
...
@@ -134,7 +134,7 @@ struct EOFException : public std::exception {
#define LIKELY(condition) __builtin_expect(static_cast<bool>(condition), 1)
#else
// there is no equivalent intrinsics in msvc.
#define LIKELY(condition)
!
(condition)
#define LIKELY(condition) (condition)
#endif
template
<
typename
...
Args
>
...
...
paddle/fluid/platform/port.h
浏览文件 @
703b26e6
...
...
@@ -17,6 +17,7 @@
#include <cstdio>
#include <stdexcept>
#include <time.h>
#include <memory>
#include <string>
...
...
@@ -27,6 +28,7 @@
#include <dlfcn.h> // dladdr
#include <execinfo.h> // backtrace
#include <sys/stat.h>
#include <sys/time.h>
#include <algorithm> // std::accumulate
#else
#include <io.h> // _popen, _pclose
...
...
@@ -57,6 +59,25 @@ static void *dlopen(const char *filename, int flag) {
return
reinterpret_cast
<
void
*>
(
hModule
);
}
static
int
gettimeofday
(
struct
timeval
*
tp
,
void
*
tzp
)
{
time_t
clock
;
struct
tm
tm
;
SYSTEMTIME
wtm
;
GetLocalTime
(
&
wtm
);
tm
.
tm_year
=
wtm
.
wYear
-
1900
;
tm
.
tm_mon
=
wtm
.
wMonth
-
1
;
tm
.
tm_mday
=
wtm
.
wDay
;
tm
.
tm_hour
=
wtm
.
wHour
;
tm
.
tm_min
=
wtm
.
wMinute
;
tm
.
tm_sec
=
wtm
.
wSecond
;
tm
.
tm_isdst
=
-
1
;
clock
=
mktime
(
&
tm
);
tp
->
tv_sec
=
clock
;
tp
->
tv_usec
=
wtm
.
wMilliseconds
*
1000
;
return
(
0
);
}
#endif // !_WIN32
static
void
ExecShellCommand
(
const
std
::
string
&
cmd
,
std
::
string
*
message
)
{
...
...
paddle/fluid/platform/profiler.cc
浏览文件 @
703b26e6
...
...
@@ -13,8 +13,8 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/platform/profiler.h"
#include "paddle/fluid/platform/port.h"
#include <sys/time.h>
#include <algorithm>
#include <iomanip>
#include <limits>
...
...
@@ -438,10 +438,10 @@ void ParseEvents(const std::vector<std::vector<Event>>& events,
event_items
[
index
].
total_time
+=
event_time
;
// min time
event_items
[
index
].
min_time
=
std
::
min
(
event_time
,
event_items
[
index
].
min_time
);
(
std
::
min
)
(
event_time
,
event_items
[
index
].
min_time
);
// max time
event_items
[
index
].
max_time
=
std
::
max
(
event_time
,
event_items
[
index
].
max_time
);
(
std
::
max
)
(
event_time
,
event_items
[
index
].
max_time
);
}
// remove the push marker from the list
...
...
paddle/fluid/platform/profiler.h
浏览文件 @
703b26e6
...
...
@@ -69,7 +69,6 @@ void PushEvent(const std::string& name, const DeviceContext* dev_ctx);
void
PopEvent
(
const
std
::
string
&
name
,
const
DeviceContext
*
dev_ctx
);
#if !defined(_WIN32)
struct
RecordEvent
{
// dev_ctx can be set to nullptr if device is cpu.
RecordEvent
(
const
std
::
string
&
name
,
const
DeviceContext
*
dev_ctx
);
...
...
@@ -106,15 +105,6 @@ struct RecordBlock {
std
::
string
name_
;
uint64_t
start_ns_
;
};
#else
// windows do not support profiler temporarily.
struct
RecordEvent
{
RecordEvent
(
const
std
::
string
&
name
,
const
DeviceContext
*
dev_ctx
)
{}
};
struct
RecordBlock
{
explicit
RecordBlock
(
int
block_id
)
{}
};
#endif
// Return the event list of all threads. Assumed the returned value calls
// event_lists, event_lists[i][j] represents the j-th Event of i-th thread.
...
...
paddle/fluid/platform/stream_callback_manager.h
浏览文件 @
703b26e6
...
...
@@ -45,16 +45,15 @@ class StreamCallbackManager {
inline
void
AddCallback
(
Callback
&&
callback
)
const
{
auto
*
stream_callback_context
=
new
StreamCallbackContext
(
this
,
std
::
forward
<
Callback
>
(
callback
));
PADDLE_ENFORCE
(
#if CUDA_VERSION >= 10000
cudaLaunchHostFunc
(
stream_
,
StreamCallbackManager
::
StreamCallbackFunc
,
stream_callback_context
)
PADDLE_ENFORCE
(
cudaLaunchHostFunc
(
stream_
,
StreamCallbackManager
::
StreamCallbackFunc
,
stream_callback_context
));
// NOLINT
#else
cudaStreamAddCallback
(
stream_
,
StreamCallbackManager
::
StreamCallbackFunc
,
stream_callback_context
,
0
)
PADDLE_ENFORCE
(
cudaStreamAddCallback
(
stream_
,
StreamCallbackManager
::
StreamCallbackFunc
,
stream_callback_context
,
0
));
// NOLINT
#endif
);
// NOLINT
}
void
Wait
()
const
{
thread_pool_
.
reset
(
new
ThreadPool
(
1
));
}
...
...
paddle/fluid/pybind/CMakeLists.txt
浏览文件 @
703b26e6
set
(
PYBIND_DEPS pybind python proto_desc memory executor prune feed_fetch_method pass_builder
)
set
(
PYBIND_DEPS pybind python proto_desc memory executor prune feed_fetch_method pass_builder
parallel_executor profiler
)
set
(
PYBIND_SRCS pybind.cc exception.cc protobuf.cc const_value.cc recordio.cc
)
if
(
NOT WIN32
)
list
(
APPEND PYBIND_DEPS parallel_executor profiler
)
endif
(
NOT WIN32
)
if
(
WITH_PYTHON
)
if
(
WITH_AMD_GPU
)
hip_library
(
paddle_pybind SHARED
...
...
paddle/fluid/pybind/pybind.cc
浏览文件 @
703b26e6
...
...
@@ -36,9 +36,7 @@ limitations under the License. */
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/op_registry.h"
#ifndef _WIN32
#include "paddle/fluid/framework/parallel_executor.h"
#endif
#include "paddle/fluid/framework/prune.h"
#include "paddle/fluid/framework/reader.h"
#include "paddle/fluid/framework/selected_rows.h"
...
...
@@ -637,7 +635,6 @@ All parameter, weight, gradient are variables in Paddle.
#endif
#endif
#ifndef _WIN32
py
::
enum_
<
platform
::
ProfilerState
>
(
m
,
"ProfilerState"
,
py
::
arithmetic
())
.
value
(
"kDisabled"
,
platform
::
ProfilerState
::
kDisabled
)
.
value
(
"kCPU"
,
platform
::
ProfilerState
::
kCPU
)
...
...
@@ -658,7 +655,6 @@ All parameter, weight, gradient are variables in Paddle.
m
.
def
(
"disable_profiler"
,
platform
::
DisableProfiler
);
m
.
def
(
"is_profiler_enabled"
,
platform
::
IsProfileEnabled
);
m
.
def
(
"reset_profiler"
,
platform
::
ResetProfiler
);
#endif
py
::
class_
<
ir
::
Pass
,
std
::
shared_ptr
<
ir
::
Pass
>>
pass
(
m
,
"Pass"
);
pass
.
def
(
py
::
init
())
...
...
@@ -687,7 +683,6 @@ All parameter, weight, gradient are variables in Paddle.
.
def
(
"remove_pass"
,
[](
ir
::
PassBuilder
&
self
,
size_t
idx
)
{
self
.
RemovePass
(
idx
);
});
#ifndef _WIN32
// -- python binds for parallel executor.
py
::
class_
<
ParallelExecutor
>
pe
(
m
,
"ParallelExecutor"
);
py
::
class_
<
ExecutionStrategy
>
exec_strategy
(
pe
,
"ExecutionStrategy"
,
R"DOC(
...
...
@@ -913,7 +908,6 @@ All parameter, weight, gradient are variables in Paddle.
pybind11
::
gil_scoped_release
release
;
self
.
Run
(
fetch_tensors
,
fetched_var_name
);
});
#endif
BindRecordIOWriter
(
&
m
);
return
m
.
ptr
();
...
...
python/paddle/fluid/__init__.py
浏览文件 @
703b26e6
...
...
@@ -47,8 +47,7 @@ from . import profiler
from
.
import
unique_name
from
.
import
recordio_writer
from
.
import
parallel_executor
if
os
.
name
!=
'nt'
:
from
.parallel_executor
import
*
from
.parallel_executor
import
*
from
paddle.fluid.layers.math_op_patch
import
monkey_patch_variable
Tensor
=
LoDTensor
...
...
python/paddle/fluid/parallel_executor.py
浏览文件 @
703b26e6
...
...
@@ -25,264 +25,263 @@ import os
__all__
=
[
'ParallelExecutor'
,
'ExecutionStrategy'
,
'BuildStrategy'
]
if
os
.
name
!=
'nt'
:
ExecutionStrategy
=
core
.
ParallelExecutor
.
ExecutionStrategy
BuildStrategy
=
core
.
ParallelExecutor
.
BuildStrategy
class
ParallelExecutor
(
object
):
ExecutionStrategy
=
core
.
ParallelExecutor
.
ExecutionStrategy
BuildStrategy
=
core
.
ParallelExecutor
.
BuildStrategy
class
ParallelExecutor
(
object
):
"""
ParallelExecutor is designed for data parallelism, which focuses on distributing
the data across different nodes and every node operates on the data in parallel.
If you use ParallelExecutor to run the current program on GPU, the node means GPU
device, and ParallelExecutor will get the available GPU device automatically on
the current machine. If you use ParallelExecutor to run the current program on CPU,
the node means the CPU device, and you can specify the CPU device number by adding
'CPU_NUM' environment variable, for example 'CPU_NUM=4', if the environment variable
is not found, ParallelExecutor will call `multiprocessing.cpu_count` to get the number
of CPUs in the system.
Args:
use_cuda (bool): Whether to use CUDA or not.
loss_name (str): The loss name must set in training. Default None.
main_program (Program): The program that need to run, if not provided,
then default_main_program will be used. Default None.
share_vars_from(ParallelExecutor): If provide, it will share variables
from the specified ParallelExecutor. Default None.
exec_strategy(ExecutionStrategy): exec_strategy is used to control how to run
the program in ParallelExecutor, for example how many threads are used to
execute the program, how many iterations to clean up the temp variables
which is generated during execution. For more information, please refer
to fluid.ExecutionStrategy. Default None.
build_strategy(BuildStrategy): build_strategy is used to control how to
build the SSA Graph in ParallelExecutor by setting the property,
for example reduce_strategy, gradient_scale_strategy. For more information,
please refer to fluid.BuildStrategy. Default None.
num_trainers(int): If greater than 1, NCCL will be initialized with
multiple rank of nodes, each node should have same number of GPUs.
Distributed training will be enabled then. Default 1.
trainer_id(int): Must use together with num_trainers. trainer_id is the
"rank" of current node starts from 0. Default 0.
scope(Scope): scope to run with, default use fluid.global_scope().
Returns:
ParallelExecutor: The initialized ParallelExecutor object.
Raises:
TypeError: If share_vars_from is provided, but not ParallelExecutor object.
Examples:
.. code-block:: python
train_exe = fluid.ParallelExecutor(use_cuda=True, loss_name=loss.name)
test_exe = fluid.ParallelExecutor(use_cuda=True,
main_program=test_program,
share_vars_from=train_exe)
train_loss, = train_exe.run([loss.name], feed=feed_dict)
test_loss, = test_exe.run([loss.name], feed=feed_dict)
"""
def
__init__
(
self
,
use_cuda
,
loss_name
=
None
,
main_program
=
None
,
share_vars_from
=
None
,
exec_strategy
=
None
,
build_strategy
=
None
,
num_trainers
=
1
,
trainer_id
=
0
,
scope
=
None
):
self
.
_places
=
[]
self
.
_act_places
=
[]
if
use_cuda
:
for
i
in
six
.
moves
.
range
(
core
.
get_cuda_device_count
()):
p
=
core
.
Place
()
self
.
_act_places
.
append
(
core
.
CUDAPlace
(
i
))
p
.
set_place
(
self
.
_act_places
[
-
1
])
self
.
_places
.
append
(
p
)
else
:
cpu_num
=
int
(
os
.
environ
.
get
(
'CPU_NUM'
,
multiprocessing
.
cpu_count
()))
for
i
in
six
.
moves
.
range
(
cpu_num
):
p
=
core
.
Place
()
self
.
_act_places
.
append
(
core
.
CPUPlace
())
p
.
set_place
(
self
.
_act_places
[
-
1
])
self
.
_places
.
append
(
p
)
assert
self
.
_places
,
"no place for execution"
if
exec_strategy
is
None
:
exec_strategy
=
ExecutionStrategy
()
exec_strategy
.
use_cuda
=
use_cuda
if
exec_strategy
.
num_threads
==
0
:
if
use_cuda
:
# Experiments on se-resnext shows that too many threads hurt
# performance. Worth tunning for other models in the future.
exec_strategy
.
num_threads
=
len
(
self
.
_places
)
*
4
else
:
cpu_num
=
int
(
os
.
environ
.
get
(
'CPU_NUM'
,
multiprocessing
.
cpu_count
()))
exec_strategy
.
num_threads
=
cpu_num
*
2
# Set 1 thread num under nccl2 distribute
# env to make sure all gpus run ops in same order.
if
num_trainers
>
1
:
assert
(
use_cuda
)
# FIXME(gongwb): avoid this set.
exec_strategy
.
num_threads
=
1
if
build_strategy
is
None
:
build_strategy
=
BuildStrategy
()
main
=
main_program
main
=
main
if
main
else
framework
.
default_main_program
()
if
scope
==
None
:
scope
=
executor
.
global_scope
()
if
share_vars_from
and
not
isinstance
(
share_vars_from
,
ParallelExecutor
):
raise
TypeError
(
"share_vars_from must be ParallelExecutor."
)
local_scopes
=
share_vars_from
.
executor
.
local_scopes
(
)
if
share_vars_from
else
[]
self
.
persistable_vars
=
[
v
.
name
for
v
in
[
var
for
var
in
main
.
list_vars
()
if
var
.
persistable
and
var
.
type
!=
core
.
VarDesc
.
VarType
.
RAW
]
]
self
.
executor
=
core
.
ParallelExecutor
(
self
.
_places
,
set
([
cpt
.
to_text
(
p
.
name
)
for
p
in
main
.
global_block
().
iter_parameters
()
if
not
p
.
stop_gradient
]),
set
(
cpt
.
to_text
(
var
)
for
var
in
self
.
persistable_vars
),
main
.
desc
,
cpt
.
to_text
(
loss_name
)
if
loss_name
else
six
.
u
(
''
),
scope
,
local_scopes
,
exec_strategy
,
build_strategy
,
num_trainers
,
trainer_id
)
self
.
scope
=
scope
def
run
(
self
,
fetch_list
,
feed
=
None
,
feed_dict
=
None
,
return_numpy
=
True
):
"""
ParallelExecutor is designed for data parallelism, which focuses on distributing
the data across different nodes and every node operates on the data in parallel.
If you use ParallelExecutor to run the current program on GPU, the node means GPU
device, and ParallelExecutor will get the available GPU device automatically on
the current machine. If you use ParallelExecutor to run the current program on CPU,
the node means the CPU device, and you can specify the CPU device number by adding
'CPU_NUM' environment variable, for example 'CPU_NUM=4', if the environment variable
is not found, ParallelExecutor will call `multiprocessing.cpu_count` to get the number
of CPUs in the system.
Run a parallel executor with fetch_list.
The feed parameter can be a dict or a list. If feed is a dict, the
feed data will be split into multiple devices. If feed is a list, we
assume the data has been splitted into multiple devices, the each
element in the list will be copied to each device directly.
For example, if the feed is a dict:
>>> exe = ParallelExecutor()
>>> # the image will be splitted into devices. If there is two devices
>>> # each device will process an image with shape (24, 1, 28, 28)
>>> exe.run(feed={'image': numpy.random.random(size=(48, 1, 28, 28))})
For example, if the feed is a list:
>>> exe = ParallelExecutor()
>>> # each device will process each element in the list.
>>> # the 1st device will process an image with shape (48, 1, 28, 28)
>>> # the 2nd device will process an image with shape (32, 1, 28, 28)
>>> #
>>> # you can use exe.device_count to get the device number.
>>> exe.run(feed=[{"image": numpy.random.random(size=(48, 1, 28, 28))},
>>> {"image": numpy.random.random(size=(32, 1, 28, 28))},
>>> ])
Args:
use_cuda (bool): Whether to use CUDA or not.
loss_name (str): The loss name must set in training. Default None.
main_program (Program): The program that need to run, if not provided,
then default_main_program will be used. Default None.
share_vars_from(ParallelExecutor): If provide, it will share variables
from the specified ParallelExecutor. Default None.
exec_strategy(ExecutionStrategy): exec_strategy is used to control how to run
the program in ParallelExecutor, for example how many threads are used to
execute the program, how many iterations to clean up the temp variables
which is generated during execution. For more information, please refer
to fluid.ExecutionStrategy. Default None.
build_strategy(BuildStrategy): build_strategy is used to control how to
build the SSA Graph in ParallelExecutor by setting the property,
for example reduce_strategy, gradient_scale_strategy. For more information,
please refer to fluid.BuildStrategy. Default None.
num_trainers(int): If greater than 1, NCCL will be initialized with
multiple rank of nodes, each node should have same number of GPUs.
Distributed training will be enabled then. Default 1.
trainer_id(int): Must use together with num_trainers. trainer_id is the
"rank" of current node starts from 0. Default 0.
scope(Scope): scope to run with, default use fluid.global_scope().
fetch_list(list): The fetched variable names
feed(list|dict|None): The feed variables. If the feed is a dict,
tensors in that dict will be splitted into each devices. If
the feed is a list, each element of the list will be copied
to each device. Default None.
feed_dict: Alias for feed parameter, for backward compatibility.
This parameter has been deprecated. Default None.
return_numpy(bool): Whether converts the fetched tensor to numpy.
Default: True.
Returns:
ParallelExecutor: The initialized ParallelExecutor objec
t.
List: The fetched result lis
t.
Raises:
TypeError: If share_vars_from is provided, but not ParallelExecutor object.
ValueError: If the feed is a list, but its length is not equal the
length of active places, or its element's is not dict.
NOTES:
1. If the feed's type is dict, the number of data that feeds to
ParallelExecutor must be bigger than active places. Otherwise,
it will throw exception from C++ side. Special attention should be
paid to check whether the last batch of the dataset is bigger
than active places.
2. If active places are more than one, the fetch results for each
variable is a list, and each element of this list is the variable of
respective active place.
Examples:
.. code-block:: python
train_exe = fluid.ParallelExecutor(use_cuda=True, loss_name=loss.name)
test_exe = fluid.ParallelExecutor(use_cuda=True,
main_program=test_program,
share_vars_from=train_exe)
train_loss, = train_exe.run([loss.name], feed=feed_dict)
test_loss, = test_exe.run([loss.name], feed=feed_dict)
pe = fluid.ParallelExecutor(use_cuda=use_cuda,
loss_name=avg_cost.name,
main_program=fluid.default_main_program())
loss = pe.run(feed=feeder.feed(cur_batch),
fetch_list=[avg_cost.name]))
"""
def
__init__
(
self
,
use_cuda
,
loss_name
=
None
,
main_program
=
None
,
share_vars_from
=
None
,
exec_strategy
=
None
,
build_strategy
=
None
,
num_trainers
=
1
,
trainer_id
=
0
,
scope
=
None
):
self
.
_places
=
[]
self
.
_act_places
=
[]
if
use_cuda
:
for
i
in
six
.
moves
.
range
(
core
.
get_cuda_device_count
()):
p
=
core
.
Place
()
self
.
_act_places
.
append
(
core
.
CUDAPlace
(
i
))
p
.
set_place
(
self
.
_act_places
[
-
1
])
self
.
_places
.
append
(
p
)
else
:
cpu_num
=
int
(
os
.
environ
.
get
(
'CPU_NUM'
,
multiprocessing
.
cpu_count
()))
for
i
in
six
.
moves
.
range
(
cpu_num
):
p
=
core
.
Place
()
self
.
_act_places
.
append
(
core
.
CPUPlace
())
p
.
set_place
(
self
.
_act_places
[
-
1
])
self
.
_places
.
append
(
p
)
assert
self
.
_places
,
"no place for execution"
if
exec_strategy
is
None
:
exec_strategy
=
ExecutionStrategy
()
exec_strategy
.
use_cuda
=
use_cuda
if
exec_strategy
.
num_threads
==
0
:
if
use_cuda
:
# Experiments on se-resnext shows that too many threads hurt
# performance. Worth tunning for other models in the future.
exec_strategy
.
num_threads
=
len
(
self
.
_places
)
*
4
else
:
cpu_num
=
int
(
os
.
environ
.
get
(
'CPU_NUM'
,
multiprocessing
.
cpu_count
()))
exec_strategy
.
num_threads
=
cpu_num
*
2
# Set 1 thread num under nccl2 distribute
# env to make sure all gpus run ops in same order.
if
num_trainers
>
1
:
assert
(
use_cuda
)
# FIXME(gongwb): avoid this set.
exec_strategy
.
num_threads
=
1
if
build_strategy
is
None
:
build_strategy
=
BuildStrategy
()
main
=
main_program
main
=
main
if
main
else
framework
.
default_main_program
()
if
scope
==
None
:
scope
=
executor
.
global_scope
()
if
share_vars_from
and
not
isinstance
(
share_vars_from
,
ParallelExecutor
):
raise
TypeError
(
"share_vars_from must be ParallelExecutor."
)
local_scopes
=
share_vars_from
.
executor
.
local_scopes
(
)
if
share_vars_from
else
[]
self
.
persistable_vars
=
[
v
.
name
for
v
in
[
var
for
var
in
main
.
list_vars
()
if
var
.
persistable
and
var
.
type
!=
core
.
VarDesc
.
VarType
.
RAW
]
]
self
.
executor
=
core
.
ParallelExecutor
(
self
.
_places
,
set
([
cpt
.
to_text
(
p
.
name
)
for
p
in
main
.
global_block
().
iter_parameters
()
if
not
p
.
stop_gradient
]),
set
(
cpt
.
to_text
(
var
)
for
var
in
self
.
persistable_vars
),
main
.
desc
,
cpt
.
to_text
(
loss_name
)
if
loss_name
else
six
.
u
(
''
),
scope
,
local_scopes
,
exec_strategy
,
build_strategy
,
num_trainers
,
trainer_id
)
self
.
scope
=
scope
def
run
(
self
,
fetch_list
,
feed
=
None
,
feed_dict
=
None
,
return_numpy
=
True
):
"""
Run a parallel executor with fetch_list.
The feed parameter can be a dict or a list. If feed is a dict, the
feed data will be split into multiple devices. If feed is a list, we
assume the data has been splitted into multiple devices, the each
element in the list will be copied to each device directly.
For example, if the feed is a dict:
>>> exe = ParallelExecutor()
>>> # the image will be splitted into devices. If there is two devices
>>> # each device will process an image with shape (24, 1, 28, 28)
>>> exe.run(feed={'image': numpy.random.random(size=(48, 1, 28, 28))})
For example, if the feed is a list:
>>> exe = ParallelExecutor()
>>> # each device will process each element in the list.
>>> # the 1st device will process an image with shape (48, 1, 28, 28)
>>> # the 2nd device will process an image with shape (32, 1, 28, 28)
>>> #
>>> # you can use exe.device_count to get the device number.
>>> exe.run(feed=[{"image": numpy.random.random(size=(48, 1, 28, 28))},
>>> {"image": numpy.random.random(size=(32, 1, 28, 28))},
>>> ])
Args:
fetch_list(list): The fetched variable names
feed(list|dict|None): The feed variables. If the feed is a dict,
tensors in that dict will be splitted into each devices. If
the feed is a list, each element of the list will be copied
to each device. Default None.
feed_dict: Alias for feed parameter, for backward compatibility.
This parameter has been deprecated. Default None.
return_numpy(bool): Whether converts the fetched tensor to numpy.
Default: True.
Returns:
List: The fetched result list.
Raises:
ValueError: If the feed is a list, but its length is not equal the
length of active places, or its element's is not dict.
NOTES:
1. If the feed's type is dict, the number of data that feeds to
ParallelExecutor must be bigger than active places. Otherwise,
it will throw exception from C++ side. Special attention should be
paid to check whether the last batch of the dataset is bigger
than active places.
2. If active places are more than one, the fetch results for each
variable is a list, and each element of this list is the variable of
respective active place.
Examples:
.. code-block:: python
pe = fluid.ParallelExecutor(use_cuda=use_cuda,
loss_name=avg_cost.name,
main_program=fluid.default_main_program())
loss = pe.run(feed=feeder.feed(cur_batch),
fetch_list=[avg_cost.name]))
"""
if
feed
is
None
and
feed_dict
is
not
None
:
feed
=
feed_dict
print
(
"`feed_dict` is deprecated. Please use `feed=`"
,
file
=
sys
.
stderr
)
if
isinstance
(
feed
,
dict
):
feed_tensor_dict
=
dict
()
for
feed_name
in
feed
:
feed_tensor
=
feed
[
feed_name
]
if
not
isinstance
(
feed_tensor
,
core
.
LoDTensor
):
feed_tensor
=
core
.
LoDTensor
()
# always set to CPU place, since the tensor need to be splitted
# it is fast in CPU
feed_tensor
.
set
(
feed
[
feed_name
],
core
.
CPUPlace
())
feed_tensor_dict
[
feed_name
]
=
feed_tensor
self
.
executor
.
feed_and_split_tensor_into_local_scopes
(
feed_tensor_dict
)
elif
isinstance
(
feed
,
list
)
or
isinstance
(
feed
,
tuple
):
if
len
(
feed
)
!=
len
(
self
.
_act_places
):
raise
ValueError
(
"Feed a list of tensor, the list should be the same size as places"
)
res
=
list
()
for
i
,
each
in
enumerate
(
feed
):
if
not
isinstance
(
each
,
dict
):
raise
TypeError
(
"Each element of feed list should be a dict"
)
res_dict
=
dict
()
for
feed_name
in
each
:
tensor
=
each
[
feed_name
]
if
not
isinstance
(
tensor
,
core
.
LoDTensor
):
tmp
=
core
.
LoDTensor
()
tmp
.
set
(
tensor
,
self
.
_act_places
[
i
])
tensor
=
tmp
res_dict
[
feed_name
]
=
tensor
res
.
append
(
res_dict
)
self
.
executor
.
feed_tensors_into_local_scopes
(
res
)
fetch_var_name
=
'@FETCHED_VAR_NAME@'
self
.
executor
.
run
(
fetch_list
,
fetch_var_name
)
arr
=
self
.
scope
.
find_var
(
fetch_var_name
).
get_lod_tensor_array
()
if
return_numpy
:
return
executor
.
as_numpy
(
arr
)
return
[
arr
[
i
]
for
i
in
range
(
len
(
arr
))]
@
property
def
device_count
(
self
):
return
len
(
self
.
_act_places
)
if
feed
is
None
and
feed_dict
is
not
None
:
feed
=
feed_dict
print
(
"`feed_dict` is deprecated. Please use `feed=`"
,
file
=
sys
.
stderr
)
if
isinstance
(
feed
,
dict
):
feed_tensor_dict
=
dict
()
for
feed_name
in
feed
:
feed_tensor
=
feed
[
feed_name
]
if
not
isinstance
(
feed_tensor
,
core
.
LoDTensor
):
feed_tensor
=
core
.
LoDTensor
()
# always set to CPU place, since the tensor need to be splitted
# it is fast in CPU
feed_tensor
.
set
(
feed
[
feed_name
],
core
.
CPUPlace
())
feed_tensor_dict
[
feed_name
]
=
feed_tensor
self
.
executor
.
feed_and_split_tensor_into_local_scopes
(
feed_tensor_dict
)
elif
isinstance
(
feed
,
list
)
or
isinstance
(
feed
,
tuple
):
if
len
(
feed
)
!=
len
(
self
.
_act_places
):
raise
ValueError
(
"Feed a list of tensor, the list should be the same size as places"
)
res
=
list
()
for
i
,
each
in
enumerate
(
feed
):
if
not
isinstance
(
each
,
dict
):
raise
TypeError
(
"Each element of feed list should be a dict"
)
res_dict
=
dict
()
for
feed_name
in
each
:
tensor
=
each
[
feed_name
]
if
not
isinstance
(
tensor
,
core
.
LoDTensor
):
tmp
=
core
.
LoDTensor
()
tmp
.
set
(
tensor
,
self
.
_act_places
[
i
])
tensor
=
tmp
res_dict
[
feed_name
]
=
tensor
res
.
append
(
res_dict
)
self
.
executor
.
feed_tensors_into_local_scopes
(
res
)
fetch_var_name
=
'@FETCHED_VAR_NAME@'
self
.
executor
.
run
(
fetch_list
,
fetch_var_name
)
arr
=
self
.
scope
.
find_var
(
fetch_var_name
).
get_lod_tensor_array
()
if
return_numpy
:
return
executor
.
as_numpy
(
arr
)
return
[
arr
[
i
]
for
i
in
range
(
len
(
arr
))]
@
property
def
device_count
(
self
):
return
len
(
self
.
_act_places
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录