Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
6fa56b9d
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
6fa56b9d
编写于
1月 10, 2018
作者:
T
typhoonzero
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
left startup program bug
上级
50a02adf
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
59 addition
and
23 deletion
+59
-23
python/paddle/v2/fluid/distribute_transpiler.py
python/paddle/v2/fluid/distribute_transpiler.py
+59
-23
未找到文件。
python/paddle/v2/fluid/distribute_transpiler.py
浏览文件 @
6fa56b9d
...
...
@@ -56,8 +56,6 @@ def split_dense_variable(var_list,
(
block_id
)
*
block_size
))
block
=
VarBlock
(
var
.
name
,
block_id
,
curr_block_size
)
blocks
.
append
(
str
(
block
))
print
(
"$$ splited var: "
,
var
.
name
,
var
.
shape
,
split_count
,
len
(
blocks
),
block_size
)
return
blocks
...
...
@@ -126,7 +124,7 @@ class DistributeTranspiler:
# let send_op know which endpoint to send which var, eplist is of the same
# order of send_inputs.
eplist
=
split_method
(
send_inputs
,
pserver_endpoints
)
# create mapping of endpoint -> var to create pserver side program
# create mapping of endpoint ->
splited
var to create pserver side program
self
.
param_grad_ep_mapping
=
dict
()
for
i
,
ep
in
enumerate
(
eplist
):
param
=
send_outputs
[
i
]
...
...
@@ -142,7 +140,6 @@ class DistributeTranspiler:
outputs
=
{
"Out"
:
send_outputs
},
attrs
=
{
"endpoints"
:
pserver_endpoints
,
"epmap"
:
eplist
})
# step4
for
varname
,
splited_var
in
param_var_mapping
.
iteritems
():
if
len
(
splited_var
)
<=
1
:
...
...
@@ -187,21 +184,6 @@ class DistributeTranspiler:
var_mapping
[
varname
].
append
(
var
)
return
var_mapping
def
_clone_param
(
self
,
block
,
v
):
assert
isinstance
(
v
,
Parameter
)
new_p
=
Parameter
(
block
=
block
,
shape
=
v
.
shape
,
dtype
=
v
.
dtype
,
type
=
v
.
type
,
lod_level
=
v
.
lod_level
,
stop_gradient
=
v
.
stop_gradient
,
trainable
=
v
.
trainable
,
optimize_attr
=
v
.
optimize_attr
,
regularizer
=
v
.
regularizer
,
name
=
v
.
name
)
block
.
vars
[
new_p
.
name
]
=
new_p
def
_clone_var
(
self
,
block
,
var
):
assert
isinstance
(
var
,
Variable
)
return
block
.
create_var
(
...
...
@@ -210,7 +192,9 @@ class DistributeTranspiler:
dtype
=
var
.
dtype
,
type
=
var
.
type
,
lod_level
=
var
.
lod_level
,
persistable
=
var
.
persistable
)
# HACK: let all param in pserver persistable so child
# program in recv can get them
persistable
=
True
)
def
_append_split_op
(
self
,
program
,
gradblocks
):
var_mapping
=
self
.
_create_vars_from_blocklist
(
program
,
gradblocks
)
...
...
@@ -318,9 +302,10 @@ class DistributeTranspiler:
return
tmpvar
=
program
.
global_block
().
create_var
(
name
=
param_block
.
name
,
persistable
=
param_block
.
persistabl
e
,
persistable
=
Tru
e
,
dtype
=
param_block
.
dtype
,
shape
=
param_block
.
shape
)
new_inputs
[
key
]
=
tmpvar
for
key
,
var
in
opt_op
.
inputs
.
iteritems
():
...
...
@@ -330,7 +315,6 @@ class DistributeTranspiler:
param_shape
=
new_inputs
[
"Param"
].
shape
new_shape
=
self
.
_get_optimizer_input_shape
(
opt_op
.
type
,
key
,
var
.
shape
,
param_shape
)
print
(
"var, new shape"
,
key
,
var
.
name
,
new_shape
)
tmpvar
=
program
.
global_block
().
create_var
(
name
=
var
.
name
,
persistable
=
var
.
persistable
,
...
...
@@ -338,7 +322,8 @@ class DistributeTranspiler:
shape
=
new_shape
)
new_inputs
[
key
]
=
tmpvar
# FIXME: change outputs ParamOut
# change outputs ParamOut variable
opt_op
.
outputs
[
"ParamOut"
]
=
new_inputs
[
"Param"
]
program
.
global_block
().
append_op
(
type
=
opt_op
.
type
,
inputs
=
new_inputs
,
...
...
@@ -380,6 +365,7 @@ class DistributeTranspiler:
else
:
self
.
_append_pserver_non_opt_ops
(
optimize_sub_program
,
opt_op
)
print
(
"####"
,
optimize_sub_program
)
pserver_program
.
global_block
().
append_op
(
type
=
"recv"
,
inputs
=
{
"RX"
:
self
.
param_grad_ep_mapping
[
endpoint
][
"grads"
]
...
...
@@ -400,3 +386,53 @@ class DistributeTranspiler:
})
pserver_program
.
sync_with_cpp
()
return
pserver_program
def
get_startup_program
(
self
,
endpoint
):
"""
Get startup program for current parameter server.
Modify operator input variables if there are variables that
was splited to several blocks.
"""
s_prog
=
Program
()
orig_s_prog
=
framework
.
default_startup_program
()
params
=
self
.
param_grad_ep_mapping
[
endpoint
][
"params"
]
def
_get_splited_name_and_shape
(
varname
):
for
idx
,
splited_param
in
enumerate
(
params
):
pname
=
splited_param
.
name
if
pname
.
startswith
(
varname
)
and
varname
!=
pname
:
return
pname
,
splited_param
.
shape
return
""
,
[]
# 1. create vars
created_var_map
=
dict
()
for
var
in
params
:
print
(
"%%%% append var"
,
var
.
name
,
var
.
shape
)
tmpvar
=
s_prog
.
global_block
().
create_var
(
name
=
var
.
name
,
persistable
=
True
,
dtype
=
var
.
dtype
,
shape
=
var
.
shape
)
created_var_map
[
var
.
name
]
=
tmpvar
# 2. rename op outputs
for
op
in
orig_s_prog
.
global_block
().
ops
:
new_outputs
=
dict
()
for
key
,
var
in
op
.
outputs
.
iteritems
():
newname
,
_
=
_get_splited_name_and_shape
(
var
.
name
)
if
newname
:
new_outputs
[
key
]
=
created_var_map
[
newname
]
else
:
new_outputs
[
key
]
=
var
# do not append startup op if var is not on this pserver
var_on_pserver
=
False
for
_
,
var
in
new_outputs
.
iteritems
():
if
var
.
name
in
created_var_map
:
var_on_pserver
=
True
if
var_on_pserver
:
s_prog
.
global_block
().
append_op
(
type
=
op
.
type
,
inputs
=
op
.
inputs
,
outputs
=
new_outputs
,
attrs
=
op
.
attrs
)
return
s_prog
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录