diff --git a/paddle/fluid/inference/tensorrt/convert/test_split_op.cc b/paddle/fluid/inference/tensorrt/convert/test_split_op.cc index f81d011552c152c2df79e1a272f34b954ae2a3a1..23909378dde0678106313bc94207a40413fb353d 100644 --- a/paddle/fluid/inference/tensorrt/convert/test_split_op.cc +++ b/paddle/fluid/inference/tensorrt/convert/test_split_op.cc @@ -20,30 +20,59 @@ namespace paddle { namespace inference { namespace tensorrt { -TEST(split_op, test) { +template +void TensorRTSplitTest(const std::vector &in_shape, + const std::vector §ions) { std::unordered_set parameters({""}); framework::Scope scope; - TRTConvertValidation validator(10, parameters, scope, 1000); - validator.DeclInputVar("split_input", nvinfer1::DimsCHW(3, 2, 2)); - validator.DeclOutputVar("split_out1", nvinfer1::DimsCHW(2, 2, 2)); - validator.DeclOutputVar("split_out2", nvinfer1::DimsCHW(1, 2, 2)); + TRTConvertValidation validator(BatchSize + 1, parameters, scope, 10000); + + auto make_dim = [](const std::vector &shape) { + nvinfer1::DimsCHW dim; + dim.c() = shape[0]; + dim.h() = shape[1]; + dim.w() = shape[2]; + return dim; + }; + validator.DeclInputVar("split_input", make_dim(in_shape)); + std::vector output_vars; + for (size_t i = 0; i < sections.size(); ++i) { + auto out_shape = in_shape; + out_shape[Axis - 1] = sections[i]; + std::string output_name = "split_out" + std::to_string(i); + validator.DeclOutputVar(output_name, make_dim(out_shape)); + output_vars.push_back(output_name); + } // Prepare Op description framework::OpDesc desc; desc.SetType("split"); desc.SetInput("X", {"split_input"}); - desc.SetOutput("Out", {"split_out1", "split_out2"}); + desc.SetOutput("Out", output_vars); - int num = 0; - int axis = 1; - std::vector output_lengths = {2, 1}; - desc.SetAttr("axis", axis); - desc.SetAttr("num", num); - desc.SetAttr("sections", output_lengths); + desc.SetAttr("axis", Axis); + desc.SetAttr("num", 0); + desc.SetAttr("sections", sections); validator.SetOp(*desc.Proto()); - validator.Execute(1); + validator.Execute(BatchSize); +} + +TEST(split_op, test_same_shape_batch1) { + TensorRTSplitTest<1, 1>({4, 2, 2}, {2, 2}); +} + +TEST(split_op, test_different_shape_batch1) { + TensorRTSplitTest<1, 1>({3, 2, 2}, {2, 1}); +} + +TEST(split_op, test_same_shape_batch10) { + TensorRTSplitTest<10, 1>({4, 2, 2}, {2, 2}); +} + +TEST(split_op, test_different_shape_batch10) { + TensorRTSplitTest<10, 1>({3, 2, 2}, {2, 1}); } } // namespace tensorrt diff --git a/paddle/fluid/inference/tensorrt/plugin/split_op_plugin.cu b/paddle/fluid/inference/tensorrt/plugin/split_op_plugin.cu index 1ec0753e9fb01aecbee4d417eace4b7600e02233..de61ace59e299a1f51940e4b433a0133d4fbe7ff 100644 --- a/paddle/fluid/inference/tensorrt/plugin/split_op_plugin.cu +++ b/paddle/fluid/inference/tensorrt/plugin/split_op_plugin.cu @@ -138,11 +138,12 @@ inline void Split(cudaStream_t stream, const bool same_shape, int SplitPlugin::enqueue(int batchSize, const void* const* inputs, void** outputs, void* workspace, cudaStream_t stream) { float const* input_ptr = reinterpret_cast(inputs[0]); - if (axis_ == -1 && this->getNbOutputs() < 10) { + if (((batchSize == 1 && axis_ == 0) || axis_ == -1) && + this->getNbOutputs() < 10) { float** output_ptrs = reinterpret_cast(outputs); int data_type_size = (this->getDataType() == nvinfer1::DataType::kFLOAT) - ? sizeof(__half) - : sizeof(float); + ? sizeof(float) + : sizeof(__half); for (int i = 0; i < this->getNbOutputs(); ++i) { PADDLE_ENFORCE( cudaMemcpyAsync(