Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
691b5cac
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
691b5cac
编写于
1月 07, 2018
作者:
S
Siddharth Goyal
提交者:
Yi Wang
1月 07, 2018
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Fix equation for gru op (#7274)
上级
758fe473
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
8 addition
and
5 deletion
+8
-5
python/paddle/v2/fluid/layers/nn.py
python/paddle/v2/fluid/layers/nn.py
+8
-5
未找到文件。
python/paddle/v2/fluid/layers/nn.py
浏览文件 @
691b5cac
...
@@ -243,18 +243,21 @@ def gru_unit(input,
...
@@ -243,18 +243,21 @@ def gru_unit(input,
r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
ch_t & = actNode(xc_t + W_c dot(r_t, h_{t-1}) + b_c
)
m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m
)
h_t & = dot((1-u_t),
ch_{t-1}) + dot(u_t, h_t
)
h_t & = dot((1-u_t),
m_t) + dot(u_t, h_{t-1}
)
The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
of the equation above, the :math:`z_t` is split into 3 parts -
of the equation above, the :math:`z_t` is split into 3 parts -
:math:`xu_t`, :math:`xr_t` and :math:`x
c
_t`. This means that in order to
:math:`xu_t`, :math:`xr_t` and :math:`x
m
_t`. This means that in order to
implement a full GRU unit operator for an input, a fully
implement a full GRU unit operator for an input, a fully
connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.
connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.
This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t - 1})`
The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
and concatenation of :math:`u_t`, :math:`r_t` and :math:`ch_t`.
of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
an intermediate candidate hidden output, which is denoted by :math:`m_t`.
This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
Args:
Args:
input (Variable): The fc transformed input value of current step.
input (Variable): The fc transformed input value of current step.
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录