Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
6477b443
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
6477b443
编写于
2月 26, 2019
作者:
D
dzhwinter
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix default value. test=develop
上级
131e4a3b
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
257 addition
and
3 deletion
+257
-3
python/paddle/fluid/tests/unittests/ir_memory_optimize_net_base.py
...ddle/fluid/tests/unittests/ir_memory_optimize_net_base.py
+145
-0
python/paddle/fluid/tests/unittests/test_eager_deletion_dynamic_rnn_base.py
...d/tests/unittests/test_eager_deletion_dynamic_rnn_base.py
+2
-0
python/paddle/fluid/tests/unittests/test_ir_memory_optimize_ifelse_net.py
...uid/tests/unittests/test_ir_memory_optimize_ifelse_net.py
+55
-0
python/paddle/fluid/tests/unittests/test_ir_memory_optimize_nlp.py
...ddle/fluid/tests/unittests/test_ir_memory_optimize_nlp.py
+55
-0
python/paddle/fluid/tests/unittests/test_ir_memory_optimize_transformer.py
...id/tests/unittests/test_ir_memory_optimize_transformer.py
+0
-3
未找到文件。
python/paddle/fluid/tests/unittests/ir_memory_optimize_net_base.py
0 → 100644
浏览文件 @
6477b443
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
six
import
unittest
import
time
import
math
import
multiprocessing
import
paddle
import
paddle.fluid.core
as
core
import
paddle.fluid
as
fluid
from
paddle.fluid
import
compiler
# open eager delete mode
os
.
environ
[
'FLAGS_eager_delete_tensor_gb'
]
=
'0.0'
os
.
environ
[
'FLAGS_fast_eager_deletion_mode'
]
=
'true'
os
.
environ
[
'CPU_NUM'
]
=
'2'
class
BuildIrMemOptBase
(
unittest
.
TestCase
):
def
check_network_convergence
(
self
,
network
,
use_cuda
=
True
,
memory_opt
=
True
,
use_ir_memory_optimize
=
True
,
enable_inplace
=
True
,
iter
=
5
):
if
use_cuda
and
not
core
.
is_compiled_with_cuda
():
print
(
'Skip use_cuda=True because Paddle is not compiled with cuda'
)
return
if
os
.
name
==
'nt'
:
print
(
'Skip use_parallel_executor=True because Paddle comes without parallel support on windows'
)
return
batch_size
=
32
batch_size
*=
fluid
.
core
.
get_cuda_device_count
()
if
use_cuda
else
int
(
os
.
environ
.
get
(
'CPU_NUM'
,
multiprocessing
.
cpu_count
()))
# build network
word_dict
=
paddle
.
dataset
.
imdb
.
word_dict
()
train_reader
=
paddle
.
batch
(
paddle
.
dataset
.
imdb
.
train
(
word_dict
),
batch_size
=
batch_size
)
data
=
fluid
.
layers
.
data
(
name
=
"words"
,
shape
=
[
1
],
dtype
=
"int64"
,
lod_level
=
1
)
label
=
fluid
.
layers
.
data
(
name
=
"label"
,
shape
=
[
1
],
dtype
=
"int64"
)
cost
=
network
(
data
,
label
,
len
(
word_dict
))
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
0.2
)
optimizer
.
minimize
(
cost
)
if
memory_opt
:
fluid
.
memory_optimize
(
main
)
# execution
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
feeder
=
fluid
.
DataFeeder
(
feed_list
=
[
data
,
label
],
place
=
place
)
reader
=
feeder
.
decorate_reader
(
train_reader
,
multi_devices
=
True
)
exe
=
fluid
.
Executor
(
place
)
fluid
.
default_startup_program
().
random_seed
=
1
fluid
.
default_main_program
().
random_seed
=
1
exe
.
run
(
fluid
.
default_startup_program
())
train_cp
=
compiler
.
CompiledProgram
(
fluid
.
default_main_program
())
train_cp
=
train_cp
.
with_data_parallel
(
loss_name
=
cost
.
name
)
fetch_list
=
[
cost
.
name
]
begin
=
time
.
time
()
first_loss
,
last_loss
=
None
,
None
step_id
=
0
custom_iter
=
getattr
(
self
,
"iter"
)
if
not
custom_iter
==
None
:
iter
=
custom_iter
for
data
in
reader
():
ret
=
exe
.
run
(
train_cp
,
feed
=
data
,
fetch_list
=
fetch_list
)
print
(
ret
)
step_id
+=
1
if
step_id
==
0
:
first_loss
=
res
[
0
]
if
step_id
==
iter
:
last_loss
=
res
[
0
]
break
end
=
time
.
time
()
print
(
"%.4f Instance per second"
%
(
(
batch_size
*
iter
)
/
(
end
-
begin
)))
avg_last_loss_val
=
np
.
array
(
last_loss
).
mean
()
avg_first_loss_val
=
np
.
array
(
first_loss
).
mean
()
if
math
.
isnan
(
float
(
avg_last_loss_val
))
or
math
.
isnan
(
float
(
avg_first_loss_val
)):
sys
.
exit
(
"got NaN loss, training failed."
)
print
(
first_loss
,
last_loss
)
return
first_loss
,
last_loss
class
TestIrMemOptBase
(
BuildIrMemOptBase
):
def
setUp
(
self
):
self
.
network
=
None
def
test_network
(
self
):
if
self
.
network
is
None
:
return
baseline_first_loss
,
baseline_last_loss
=
None
,
None
for
use_cuda
in
[
True
,
False
]:
for
use_python_mem_opt
in
[
True
,
False
]:
print
(
'network: {}, use_cuda: {}, use_python_mem_opt: {}, use_ir_mem_opt : {}'
.
format
(
self
.
network
.
__name__
,
use_cuda
,
use_python_mem_opt
,
not
use_python_mem_opt
))
with
fluid
.
program_guard
(
fluid
.
Program
(),
fluid
.
Program
()):
with
fluid
.
scope_guard
(
core
.
Scope
()):
if
use_cuda
is
False
and
use_python_mem_opt
is
False
:
baseline_first_loss
,
baseline_last_loss
=
self
.
check_network_convergence
(
self
.
network
,
use_cuda
=
use_cuda
,
memory_opt
=
use_python_mem_opt
)
else
:
cur_first_loss
,
cur_last_loss
=
self
.
check_network_convergence
(
self
.
network
,
use_cuda
=
use_cuda
,
memory_opt
=
use_python_mem_opt
)
for
loss
in
zip
(
baseline_first_loss
,
cur_first_loss
):
self
.
assertAlmostEqual
(
loss
[
0
],
loss
[
1
],
1e-5
)
for
loss
in
zip
(
baseline_last_loss
,
cur_last_loss
):
self
.
assertAlmostEqual
(
loss
[
0
],
loss
[
1
],
1e-5
)
python/paddle/fluid/tests/unittests/test_eager_deletion_dynamic_rnn_base.py
浏览文件 @
6477b443
...
...
@@ -56,6 +56,8 @@ def train(network, use_cuda, use_parallel_executor, batch_size=32, pass_num=2):
train_reader
,
multi_devices
=
use_parallel_executor
)
exe
=
fluid
.
Executor
(
place
)
fluid
.
default_startup_program
().
random_seed
=
1
fluid
.
default_main_program
().
random_seed
=
1
exe
.
run
(
fluid
.
default_startup_program
())
train_cp
=
compiler
.
CompiledProgram
(
fluid
.
default_main_program
())
...
...
python/paddle/fluid/tests/unittests/test_ir_memory_optimize_ifelse_net.py
0 → 100644
浏览文件 @
6477b443
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
paddle.fluid
as
fluid
import
unittest
from
ir_memory_optimize_net_base
import
TestIrMemOptBase
from
paddle.fluid.layers.control_flow
import
ConditionalBlock
def
lstm_net
(
data
,
label
,
dict_dim
,
emb_dim
=
128
,
hid_dim
=
128
,
hid_dim2
=
96
,
class_dim
=
2
,
emb_lr
=
30.0
):
emb
=
fluid
.
layers
.
embedding
(
input
=
data
,
size
=
[
dict_dim
,
emb_dim
],
param_attr
=
fluid
.
ParamAttr
(
learning_rate
=
emb_lr
))
fc0
=
fluid
.
layers
.
fc
(
input
=
emb
,
size
=
hid_dim
*
4
)
lstm_h
,
c
=
fluid
.
layers
.
dynamic_lstm
(
input
=
fc0
,
size
=
hid_dim
*
4
,
is_reverse
=
False
)
lstm_max
=
fluid
.
layers
.
sequence_pool
(
input
=
lstm_h
,
pool_type
=
'max'
)
lstm_max_tanh
=
fluid
.
layers
.
tanh
(
lstm_max
)
fc1
=
fluid
.
layers
.
fc
(
input
=
lstm_max_tanh
,
size
=
hid_dim2
,
act
=
'tanh'
)
prediction
=
fluid
.
layers
.
fc
(
input
=
fc1
,
size
=
class_dim
,
act
=
'softmax'
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
return
avg_cost
class
TestIrMemOptRNN
(
TestIrMemOptBase
):
def
setUp
(
self
):
self
.
network
=
lstm_net
self
.
iter
=
2
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_ir_memory_optimize_nlp.py
0 → 100644
浏览文件 @
6477b443
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# nlp model stack of op operate on lod. It's a classical test case in optimize pass.
from
__future__
import
print_function
import
paddle.fluid
as
fluid
import
unittest
from
ir_memory_optimize_net_base
import
TestIrMemOptBase
def
lstm_net
(
data
,
label
,
dict_dim
,
emb_dim
=
128
,
hid_dim
=
128
,
hid_dim2
=
96
,
class_dim
=
2
,
emb_lr
=
30.0
):
emb
=
fluid
.
layers
.
embedding
(
input
=
data
,
size
=
[
dict_dim
,
emb_dim
],
param_attr
=
fluid
.
ParamAttr
(
learning_rate
=
emb_lr
))
fc0
=
fluid
.
layers
.
fc
(
input
=
emb
,
size
=
hid_dim
*
4
)
lstm_h
,
c
=
fluid
.
layers
.
dynamic_lstm
(
input
=
fc0
,
size
=
hid_dim
*
4
,
is_reverse
=
False
)
lstm_max
=
fluid
.
layers
.
sequence_pool
(
input
=
lstm_h
,
pool_type
=
'max'
)
lstm_max_tanh
=
fluid
.
layers
.
tanh
(
lstm_max
)
fc1
=
fluid
.
layers
.
fc
(
input
=
lstm_max_tanh
,
size
=
hid_dim2
,
act
=
'tanh'
)
prediction
=
fluid
.
layers
.
fc
(
input
=
fc1
,
size
=
class_dim
,
act
=
'softmax'
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
return
avg_cost
class
TestIrMemOptRNN
(
TestIrMemOptBase
):
def
setUp
(
self
):
self
.
network
=
lstm_net
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_ir_memory_optimize_transformer.py
浏览文件 @
6477b443
...
...
@@ -28,9 +28,6 @@ os.environ[
from
test_parallel_executor_transformer
import
transformer
,
ModelHyperParams
,
transformer_model
,
transformer
,
prepare_batch_input
from
parallel_executor_test_base
import
TestParallelExecutorBase
# disable temporarily because of timeout.
sys
.
exit
(
0
)
# NOTE(dzhwinter): test diferent strategy colisions.
# open the eager delete tensor strategy by default.
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录