Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
63e7cfa4
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
63e7cfa4
编写于
6月 13, 2022
作者:
W
Wenyu
提交者:
GitHub
6月 13, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add vit, adamw_ld (#6059)
* add vit, adamw_ld * update
上级
ff62e6ff
变更
4
展开全部
显示空白变更内容
内联
并排
Showing
4 changed file
with
947 addition
and
51 deletion
+947
-51
ppdet/modeling/backbones/swin_transformer.py
ppdet/modeling/backbones/swin_transformer.py
+3
-51
ppdet/modeling/backbones/transformer_utils.py
ppdet/modeling/backbones/transformer_utils.py
+74
-0
ppdet/modeling/backbones/vision_transformer.py
ppdet/modeling/backbones/vision_transformer.py
+629
-0
ppdet/optimizer/adamw.py
ppdet/optimizer/adamw.py
+241
-0
未找到文件。
ppdet/modeling/backbones/swin_transformer.py
浏览文件 @
63e7cfa4
...
@@ -25,57 +25,9 @@ from ppdet.modeling.shape_spec import ShapeSpec
...
@@ -25,57 +25,9 @@ from ppdet.modeling.shape_spec import ShapeSpec
from
ppdet.core.workspace
import
register
,
serializable
from
ppdet.core.workspace
import
register
,
serializable
import
numpy
as
np
import
numpy
as
np
# Common initializations
from
.transformer_utils
import
DropPath
,
Identity
ones_
=
Constant
(
value
=
1.
)
from
.transformer_utils
import
add_parameter
,
to_2tuple
zeros_
=
Constant
(
value
=
0.
)
from
.transformer_utils
import
ones_
,
zeros_
,
trunc_normal_
trunc_normal_
=
TruncatedNormal
(
std
=
.
02
)
# Common Functions
def
to_2tuple
(
x
):
return
tuple
([
x
]
*
2
)
def
add_parameter
(
layer
,
datas
,
name
=
None
):
parameter
=
layer
.
create_parameter
(
shape
=
(
datas
.
shape
),
default_initializer
=
Assign
(
datas
))
if
name
:
layer
.
add_parameter
(
name
,
parameter
)
return
parameter
# Common Layers
def
drop_path
(
x
,
drop_prob
=
0.
,
training
=
False
):
"""
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ...
"""
if
drop_prob
==
0.
or
not
training
:
return
x
keep_prob
=
paddle
.
to_tensor
(
1
-
drop_prob
)
shape
=
(
paddle
.
shape
(
x
)[
0
],
)
+
(
1
,
)
*
(
x
.
ndim
-
1
)
random_tensor
=
keep_prob
+
paddle
.
rand
(
shape
,
dtype
=
x
.
dtype
)
random_tensor
=
paddle
.
floor
(
random_tensor
)
# binarize
output
=
x
.
divide
(
keep_prob
)
*
random_tensor
return
output
class
DropPath
(
nn
.
Layer
):
def
__init__
(
self
,
drop_prob
=
None
):
super
(
DropPath
,
self
).
__init__
()
self
.
drop_prob
=
drop_prob
def
forward
(
self
,
x
):
return
drop_path
(
x
,
self
.
drop_prob
,
self
.
training
)
class
Identity
(
nn
.
Layer
):
def
__init__
(
self
):
super
(
Identity
,
self
).
__init__
()
def
forward
(
self
,
input
):
return
input
class
Mlp
(
nn
.
Layer
):
class
Mlp
(
nn
.
Layer
):
...
...
ppdet/modeling/backbones/transformer_utils.py
0 → 100644
浏览文件 @
63e7cfa4
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
paddle
import
paddle.nn
as
nn
from
paddle.nn.initializer
import
TruncatedNormal
,
Constant
,
Assign
# Common initializations
ones_
=
Constant
(
value
=
1.
)
zeros_
=
Constant
(
value
=
0.
)
trunc_normal_
=
TruncatedNormal
(
std
=
.
02
)
# Common Layers
def
drop_path
(
x
,
drop_prob
=
0.
,
training
=
False
):
"""
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ...
"""
if
drop_prob
==
0.
or
not
training
:
return
x
keep_prob
=
paddle
.
to_tensor
(
1
-
drop_prob
)
shape
=
(
paddle
.
shape
(
x
)[
0
],
)
+
(
1
,
)
*
(
x
.
ndim
-
1
)
random_tensor
=
keep_prob
+
paddle
.
rand
(
shape
,
dtype
=
x
.
dtype
)
random_tensor
=
paddle
.
floor
(
random_tensor
)
# binarize
output
=
x
.
divide
(
keep_prob
)
*
random_tensor
return
output
class
DropPath
(
nn
.
Layer
):
def
__init__
(
self
,
drop_prob
=
None
):
super
(
DropPath
,
self
).
__init__
()
self
.
drop_prob
=
drop_prob
def
forward
(
self
,
x
):
return
drop_path
(
x
,
self
.
drop_prob
,
self
.
training
)
class
Identity
(
nn
.
Layer
):
def
__init__
(
self
):
super
(
Identity
,
self
).
__init__
()
def
forward
(
self
,
input
):
return
input
# common funcs
def
to_2tuple
(
x
):
if
isinstance
(
x
,
(
list
,
tuple
)):
return
x
return
tuple
([
x
]
*
2
)
def
add_parameter
(
layer
,
datas
,
name
=
None
):
parameter
=
layer
.
create_parameter
(
shape
=
(
datas
.
shape
),
default_initializer
=
Assign
(
datas
))
if
name
:
layer
.
add_parameter
(
name
,
parameter
)
return
parameter
ppdet/modeling/backbones/vision_transformer.py
0 → 100644
浏览文件 @
63e7cfa4
此差异已折叠。
点击以展开。
ppdet/optimizer/adamw.py
0 → 100644
浏览文件 @
63e7cfa4
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
from
paddle.optimizer
import
AdamW
from
functools
import
partial
def
layerwise_lr_decay
(
decay_rate
,
name_dict
,
n_layers
,
param
):
"""
Args:
decay_rate (float):
The layer-wise decay ratio.
name_dict (dict):
The keys of name_dict is dynamic name of model while the value
of name_dict is static name.
Use model.named_parameters() to get name_dict.
n_layers (int):
Total number of layers in the transformer encoder.
"""
ratio
=
1.0
static_name
=
name_dict
[
param
.
name
]
if
"blocks"
in
static_name
:
idx
=
static_name
.
find
(
"blocks."
)
layer
=
int
(
static_name
[
idx
:].
split
(
"."
)[
1
])
ratio
=
decay_rate
**
(
n_layers
-
layer
)
elif
"cls_token"
in
static_name
or
'patch_embed'
in
static_name
:
ratio
=
decay_rate
**
(
n_layers
+
1
)
param
.
optimize_attr
[
"learning_rate"
]
*=
ratio
class
AdamWDL
(
AdamW
):
r
"""
The AdamWDL optimizer is implemented based on the AdamW Optimization with dynamic lr setting.
Generally it's used for transformer model.
We use "layerwise_lr_decay" as default dynamic lr setting method of AdamWDL.
“Layer-wise decay” means exponentially decaying the learning rates of individual
layers in a top-down manner. For example, suppose the 24-th layer uses a learning
rate l, and the Layer-wise decay rate is α, then the learning rate of layer m
is lα^(24-m). See more details on: https://arxiv.org/abs/1906.08237.
.. math::
& t = t + 1
& moment\_1\_out = {\beta}_1 * moment\_1 + (1 - {\beta}_1) * grad
& moment\_2\_out = {\beta}_2 * moment\_2 + (1 - {\beta}_2) * grad * grad
& learning\_rate = learning\_rate * \frac{\sqrt{1 - {\beta}_2^t}}{1 - {\beta}_1^t}
& param\_out = param - learning\_rate * (\frac{moment\_1}{\sqrt{moment\_2} + \epsilon} + \lambda * param)
Args:
learning_rate (float|LRScheduler, optional): The learning rate used to update ``Parameter``.
It can be a float value or a LRScheduler. The default value is 0.001.
beta1 (float, optional): The exponential decay rate for the 1st moment estimates.
It should be a float number or a Tensor with shape [1] and data type as float32.
The default value is 0.9.
beta2 (float, optional): The exponential decay rate for the 2nd moment estimates.
It should be a float number or a Tensor with shape [1] and data type as float32.
The default value is 0.999.
epsilon (float, optional): A small float value for numerical stability.
It should be a float number or a Tensor with shape [1] and data type as float32.
The default value is 1e-08.
parameters (list|tuple, optional): List/Tuple of ``Tensor`` to update to minimize ``loss``. \
This parameter is required in dygraph mode. \
The default value is None in static mode, at this time all parameters will be updated.
weight_decay (float, optional): The weight decay coefficient, it can be float or Tensor. The default value is 0.01.
apply_decay_param_fun (function|None, optional): If it is not None,
only tensors that makes apply_decay_param_fun(Tensor.name)==True
will be updated. It only works when we want to specify tensors.
Default: None.
grad_clip (GradientClipBase, optional): Gradient cliping strategy, it's an instance of
some derived class of ``GradientClipBase`` . There are three cliping strategies
( :ref:`api_fluid_clip_GradientClipByGlobalNorm` , :ref:`api_fluid_clip_GradientClipByNorm` ,
:ref:`api_fluid_clip_GradientClipByValue` ). Default None, meaning there is no gradient clipping.
lazy_mode (bool, optional): The official Adam algorithm has two moving-average accumulators.
The accumulators are updated at every step. Every element of the two moving-average
is updated in both dense mode and sparse mode. If the size of parameter is very large,
then the update may be very slow. The lazy mode only update the element that has
gradient in current mini-batch, so it will be much more faster. But this mode has
different semantics with the original Adam algorithm and may lead to different result.
The default value is False.
multi_precision (bool, optional): Whether to use multi-precision during weight updating. Default is false.
layerwise_decay (float, optional): The layer-wise decay ratio. Defaults to 1.0.
n_layers (int, optional): The total number of encoder layers. Defaults to 12.
set_param_lr_fun (function|None, optional): If it's not None, set_param_lr_fun() will set the the parameter
learning rate before it executes Adam Operator. Defaults to :ref:`layerwise_lr_decay`.
name_dict (dict, optional): The keys of name_dict is dynamic name of model while the value
of name_dict is static name. Use model.named_parameters() to get name_dict.
name (str, optional): Normally there is no need for user to set this property.
For more information, please refer to :ref:`api_guide_Name`.
The default value is None.
Examples:
.. code-block:: python
import paddle
from paddlenlp.ops.optimizer import AdamWDL
def simple_lr_setting(decay_rate, name_dict, n_layers, param):
ratio = 1.0
static_name = name_dict[param.name]
if "weight" in static_name:
ratio = decay_rate**0.5
param.optimize_attr["learning_rate"] *= ratio
linear = paddle.nn.Linear(10, 10)
name_dict = dict()
for n, p in linear.named_parameters():
name_dict[p.name] = n
inp = paddle.rand([10,10], dtype="float32")
out = linear(inp)
loss = paddle.mean(out)
adamwdl = AdamWDL(
learning_rate=1e-4,
parameters=linear.parameters(),
set_param_lr_fun=simple_lr_setting,
layerwise_decay=0.8,
name_dict=name_dict)
loss.backward()
adamwdl.step()
adamwdl.clear_grad()
"""
def
__init__
(
self
,
learning_rate
=
0.001
,
beta1
=
0.9
,
beta2
=
0.999
,
epsilon
=
1e-8
,
parameters
=
None
,
weight_decay
=
0.01
,
apply_decay_param_fun
=
None
,
grad_clip
=
None
,
lazy_mode
=
False
,
multi_precision
=
False
,
layerwise_decay
=
1.0
,
n_layers
=
12
,
set_param_lr_fun
=
None
,
name_dict
=
None
,
name
=
None
):
if
not
isinstance
(
layerwise_decay
,
float
):
raise
TypeError
(
"coeff should be float or Tensor."
)
self
.
layerwise_decay
=
layerwise_decay
self
.
n_layers
=
n_layers
self
.
set_param_lr_fun
=
partial
(
set_param_lr_fun
,
layerwise_decay
,
name_dict
,
n_layers
)
if
set_param_lr_fun
is
not
None
else
set_param_lr_fun
super
(
AdamWDL
,
self
).
__init__
(
learning_rate
=
learning_rate
,
parameters
=
parameters
,
beta1
=
beta1
,
beta2
=
beta2
,
epsilon
=
epsilon
,
grad_clip
=
grad_clip
,
name
=
name
,
apply_decay_param_fun
=
apply_decay_param_fun
,
weight_decay
=
weight_decay
,
lazy_mode
=
lazy_mode
,
multi_precision
=
multi_precision
)
def
_append_optimize_op
(
self
,
block
,
param_and_grad
):
if
self
.
set_param_lr_fun
is
None
:
return
super
(
AdamWDL
,
self
).
_append_optimize_op
(
block
,
param_and_grad
)
self
.
_append_decoupled_weight_decay
(
block
,
param_and_grad
)
prev_lr
=
param_and_grad
[
0
].
optimize_attr
[
"learning_rate"
]
self
.
set_param_lr_fun
(
param_and_grad
[
0
])
# excute Adam op
res
=
super
(
AdamW
,
self
).
_append_optimize_op
(
block
,
param_and_grad
)
param_and_grad
[
0
].
optimize_attr
[
"learning_rate"
]
=
prev_lr
return
res
def
build_adamw
(
model
,
lr
=
1e-4
,
weight_decay
=
0.05
,
betas
=
(
0.9
,
0.999
),
layer_decay
=
0.65
,
num_layers
=
None
,
filter_bias_and_bn
=
True
,
skip_decay_names
=
None
,
set_param_lr_fun
=
None
):
if
skip_decay_names
and
filter_bias_and_bn
:
decay_dict
=
{
param
.
name
:
not
(
len
(
param
.
shape
)
==
1
or
name
.
endswith
(
".bias"
)
or
any
([
_n
in
name
for
_n
in
skip_decay_names
]))
for
name
,
param
in
model
.
named_parameters
()
}
parameters
=
[
p
for
p
in
model
.
parameters
()]
else
:
parameters
=
model
.
parameters
()
opt_args
=
dict
(
parameters
=
parameters
,
learning_rate
=
lr
,
weight_decay
=
weight_decay
)
if
decay_dict
is
not
None
:
opt_args
[
'apply_decay_param_fun'
]
=
lambda
n
:
decay_dict
[
n
]
if
isinstance
(
set_param_lr_fun
,
str
):
set_param_lr_fun
=
eval
(
set_param_lr_fun
)
opt_args
[
'set_param_lr_fun'
]
=
set_param_lr_fun
opt_args
[
'beta1'
]
=
betas
[
0
]
opt_args
[
'beta2'
]
=
betas
[
1
]
opt_args
[
'layerwise_decay'
]
=
layer_decay
name_dict
=
dict
()
for
n
,
p
in
model
.
named_parameters
():
name_dict
[
p
.
name
]
=
n
opt_args
[
'name_dict'
]
=
name_dict
opt_args
[
'n_layers'
]
=
num_layers
optimizer
=
AdamWDL
(
**
opt_args
)
return
optimizer
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录