未验证 提交 629e1533 编写于 作者: F Feng Ni 提交者: GitHub

fix doc deadlinks (#5270)

上级 89bfcdaf
...@@ -18,12 +18,13 @@ English | [简体中文](README_cn.md) ...@@ -18,12 +18,13 @@ English | [简体中文](README_cn.md)
| backbone | input shape | mAP | FPS | download | config | | backbone | input shape | mAP | FPS | download | config |
| :--------------| :------- | :----: | :------: | :----: |:-----: | | :--------------| :------- | :----: | :------: | :----: |:-----: |
| DLA-34(paper) | 512x512 | 37.4 | - | - | - | | DLA-34(paper) | 512x512 | 37.4 | - | - | - |
| DLA-34 | 512x512 | 37.6 | - | [model](https://bj.bcebos.com/v1/paddledet/models/centernet_dla34_140e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/centernet/centernet_dla34_140e_coco.yml) | | DLA-34 | 512x512 | 37.6 | - | [model](https://bj.bcebos.com/v1/paddledet/models/centernet_dla34_140e_coco.pdparams) | [config](./centernet_dla34_140e_coco.yml) |
| ResNet50 + DLAUp | 512x512 | 38.9 | - | [model](https://bj.bcebos.com/v1/paddledet/models/centernet_r50_140e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/centernet/centernet_r50_140e_coco.yml) | | ResNet50 + DLAUp | 512x512 | 38.9 | - | [model](https://bj.bcebos.com/v1/paddledet/models/centernet_r50_140e_coco.pdparams) | [config](./centernet_r50_140e_coco.yml) |
| MobileNetV1_1x + DLAUp | 512x512 | 28.2 | - | [model](https://paddledet.bj.bcebos.com/models/centernet_mbv1_x1_0_140e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/centernet/centernet_mbv1_1x_140e_coco.yml) | | MobileNetV1 + DLAUp | 512x512 | 28.2 | - | [model](https://bj.bcebos.com/v1/paddledet/models/centernet_mbv1_140e_coco.pdparams) | [config](./centernet_mbv1_140e_coco.yml) |
| MobileNetV3_small_x1_0 + DLAUp | 512x512 | 17 | - | [model](https://paddledet.bj.bcebos.com/models/centernet_mbv3_small_1x_140e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/centernet/centernet_mbv3_small_1x_140e_coco.yml) | | MobileNetV3_small + DLAUp | 512x512 | 17 | - | [model](https://bj.bcebos.com/v1/paddledet/models/centernet_mbv3_small_140e_coco.pdparams) | [config](./centernet_mbv3_small_140e_coco.yml) |
| MobileNetV3_large_x1_0 + DLAUp | 512x512 | 27.1 | - | [model](https://paddledet.bj.bcebos.com/models/centernet_mbv3_large_x1_0_140e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/centernet/centernet_mbv3_large_1x_140e_coco.yml) | | MobileNetV3_large + DLAUp | 512x512 | 27.1 | - | [model](https://bj.bcebos.com/v1/paddledet/models/centernet_mbv3_large_140e_coco.pdparams) | [config](./centernet_mbv3_large_140e_coco.yml) |
| ShuffleNetV2_x1_0 + DLAUp | 512x512 | 23.8 | - | [model](https://paddledet.bj.bcebos.com/models/centernet_shufflenetv2_1x_140e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/centernet/centernet_shufflenetv2_1x_140e_coco.yml) | | ShuffleNetV2 + DLAUp | 512x512 | 23.8 | - | [model](https://bj.bcebos.com/v1/paddledet/models/centernet_shufflenetv2_140e_coco.pdparams) | [config](./centernet_shufflenetv2_140e_coco.yml) |
## Citations ## Citations
``` ```
......
...@@ -18,12 +18,12 @@ ...@@ -18,12 +18,12 @@
| 骨干网络 | 输入尺寸 | mAP | FPS | 下载链接 | 配置文件 | | 骨干网络 | 输入尺寸 | mAP | FPS | 下载链接 | 配置文件 |
| :--------------| :------- | :----: | :------: | :----: |:-----: | | :--------------| :------- | :----: | :------: | :----: |:-----: |
| DLA-34(paper) | 512x512 | 37.4 | - | - | - | | DLA-34(paper) | 512x512 | 37.4 | - | - | - |
| DLA-34 | 512x512 | 37.6 | - | [下载链接](https://bj.bcebos.com/v1/paddledet/models/centernet_dla34_140e_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/centernet/centernet_dla34_140e_coco.yml) | | DLA-34 | 512x512 | 37.6 | - | [下载链接](https://bj.bcebos.com/v1/paddledet/models/centernet_dla34_140e_coco.pdparams) | [配置文件](./centernet_dla34_140e_coco.yml) |
| ResNet50 + DLAUp | 512x512 | 38.9 | - | [下载链接](https://bj.bcebos.com/v1/paddledet/models/centernet_r50_140e_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/centernet/centernet_r50_140e_coco.yml) | | ResNet50 + DLAUp | 512x512 | 38.9 | - | [下载链接](https://bj.bcebos.com/v1/paddledet/models/centernet_r50_140e_coco.pdparams) | [配置文件](./centernet_r50_140e_coco.yml) |
| MobileNetV1_1x + DLAUp | 512x512 | 28.2 | - | [下载链接](https://paddledet.bj.bcebos.com/models/centernet_mbv1_x1_0_140e_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/centernet/centernet_mbv1_1x_140e_coco.yml) | | MobileNetV1 + DLAUp | 512x512 | 28.2 | - | [下载链接](https://bj.bcebos.com/v1/paddledet/models/centernet_mbv1_140e_coco.pdparams) | [配置文件](./centernet_mbv1_140e_coco.yml) |
| MobileNetV3_small_x1_0 + DLAUp | 512x512 | 17 | - | [下载链接](https://paddledet.bj.bcebos.com/models/centernet_mbv3_small_1x_140e_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/centernet/centernet_mbv3_small_1x_140e_coco.yml) | | MobileNetV3_small + DLAUp | 512x512 | 17 | - | [下载链接](https://bj.bcebos.com/v1/paddledet/models/centernet_mbv3_small_140e_coco.pdparams) | [配置文件](./centernet_mbv3_small_140e_coco.yml) |
| MobileNetV3_large_x1_0 + DLAUp | 512x512 | 27.1 | - | [下载链接](https://paddledet.bj.bcebos.com/models/centernet_mbv3_large_x1_0_140e_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/centernet/centernet_mbv3_large_1x_140e_coco.yml) | | MobileNetV3_large + DLAUp | 512x512 | 27.1 | - | [下载链接](https://bj.bcebos.com/v1/paddledet/models/centernet_mbv3_large_140e_coco.pdparams) | [配置文件](./centernet_mbv3_large_140e_coco.yml) |
| ShuffleNetV2_x1_0 + DLAUp | 512x512 | 23.8 | - | [下载链接](https://paddledet.bj.bcebos.com/models/centernet_shufflenetv2_1x_140e_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/centernet/centernet_shufflenetv2_1x_140e_coco.yml) | | ShuffleNetV2 + DLAUp | 512x512 | 23.8 | - | [下载链接](https://bj.bcebos.com/v1/paddledet/models/centernet_shufflenetv2_140e_coco.pdparams) | [配置文件](./centernet_shufflenetv2_140e_coco.yml) |
## 引用 ## 引用
``` ```
......
...@@ -3,7 +3,7 @@ _BASE_: [ ...@@ -3,7 +3,7 @@ _BASE_: [
] ]
pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/MobileNetV1_pretrained.pdparams pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/MobileNetV1_pretrained.pdparams
weights: output/centernet_mbv1_1x_140e_coco/model_final weights: output/centernet_mbv1_140e_coco/model_final
CenterNet: CenterNet:
backbone: MobileNet backbone: MobileNet
......
...@@ -3,7 +3,7 @@ _BASE_: [ ...@@ -3,7 +3,7 @@ _BASE_: [
] ]
pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/MobileNetV3_large_x1_0_ssld_pretrained.pdparams pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/MobileNetV3_large_x1_0_ssld_pretrained.pdparams
weights: output/centernet_mbv3_large_1x_140e_coco/model_final weights: output/centernet_mbv3_large_140e_coco/model_final
CenterNet: CenterNet:
backbone: MobileNetV3 backbone: MobileNetV3
......
...@@ -3,7 +3,7 @@ _BASE_: [ ...@@ -3,7 +3,7 @@ _BASE_: [
] ]
pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/MobileNetV3_small_x1_0_ssld_pretrained.pdparams pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/MobileNetV3_small_x1_0_ssld_pretrained.pdparams
weights: output/centernet_mbv3_small_1x_140e_coco/model_final weights: output/centernet_mbv3_small_140e_coco/model_final
CenterNet: CenterNet:
backbone: MobileNetV3 backbone: MobileNetV3
...@@ -24,6 +24,5 @@ CenterNetDLAFPN: ...@@ -24,6 +24,5 @@ CenterNetDLAFPN:
down_ratio: 8 down_ratio: 8
dcn_v2: False dcn_v2: False
TrainReader: TrainReader:
batch_size: 32 batch_size: 32
...@@ -3,7 +3,7 @@ _BASE_: [ ...@@ -3,7 +3,7 @@ _BASE_: [
] ]
pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/ShuffleNetV2_x1_0_pretrained.pdparams pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/ShuffleNetV2_x1_0_pretrained.pdparams
weights: output/centernet_shufflenetv2_1x_140e_coco/model_final weights: output/centernet_shufflenetv2_140e_coco/model_final
CenterNet: CenterNet:
backbone: ShuffleNetV2 backbone: ShuffleNetV2
......
...@@ -4,26 +4,26 @@ ...@@ -4,26 +4,26 @@
| 骨架网络 | 网络类型 | 每张GPU图片个数 | 学习率策略 |推理时间(fps) | Box AP | 下载 | 配置文件 | | 骨架网络 | 网络类型 | 每张GPU图片个数 | 学习率策略 |推理时间(fps) | Box AP | 下载 | 配置文件 |
| :------------------- | :------------- | :-----: | :-----: | :------------: | :-----: | :-----------------------------------------------------: | :-----: | | :------------------- | :------------- | :-----: | :-----: | :------------: | :-----: | :-----------------------------------------------------: | :-----: |
| ResNet50 | Faster | 1 | 1x | ---- | 36.7 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r50_1x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/faster_rcnn/faster_rcnn_r50_1x_coco.yml) | | ResNet50 | Faster | 1 | 1x | ---- | 36.7 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r50_1x_coco.pdparams) | [配置文件](./faster_rcnn_r50_1x_coco.yml) |
| ResNet50-vd | Faster | 1 | 1x | ---- | 37.6 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r50_vd_1x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/faster_rcnn/faster_rcnn_r50_vd_1x_coco.yml) | | ResNet50-vd | Faster | 1 | 1x | ---- | 37.6 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r50_vd_1x_coco.pdparams) | [配置文件](./faster_rcnn_r50_vd_1x_coco.yml) |
| ResNet101 | Faster | 1 | 1x | ---- | 39.0 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r101_1x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/faster_rcnn/faster_rcnn_r101_1x_coco.yml) | | ResNet101 | Faster | 1 | 1x | ---- | 39.0 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r101_1x_coco.pdparams) | [配置文件](./faster_rcnn_r101_1x_coco.yml) |
| ResNet34-FPN | Faster | 1 | 1x | ---- | 37.8 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r34_fpn_1x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/faster_rcnn/faster_rcnn_r34_fpn_1x_coco.yml) | | ResNet34-FPN | Faster | 1 | 1x | ---- | 37.8 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r34_fpn_1x_coco.pdparams) | [配置文件](./faster_rcnn_r34_fpn_1x_coco.yml) |
| ResNet34-FPN-MultiScaleTest | Faster | 1 | 1x | ---- | 38.2 | - | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/faster_rcnn/faster_rcnn_r34_fpn_multiscaletest_1x_coco.yml) | | ResNet34-FPN-MultiScaleTest | Faster | 1 | 1x | ---- | 38.2 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r34_fpn_multiscaletest_1x_coco.pdparams) | [配置文件](./faster_rcnn_r34_fpn_multiscaletest_1x_coco.yml) |
| ResNet34-vd-FPN | Faster | 1 | 1x | ---- | 38.5 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r34_vd_fpn_1x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/faster_rcnn/faster_rcnn_r34_vd_fpn_1x_coco.yml) | | ResNet34-vd-FPN | Faster | 1 | 1x | ---- | 38.5 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r34_vd_fpn_1x_coco.pdparams) | [配置文件](./faster_rcnn_r34_vd_fpn_1x_coco.yml) |
| ResNet50-FPN | Faster | 1 | 1x | ---- | 38.4 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r50_fpn_1x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.yml) | | ResNet50-FPN | Faster | 1 | 1x | ---- | 38.4 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r50_fpn_1x_coco.pdparams) | [配置文件](./faster_rcnn_r50_fpn_1x_coco.yml) |
| ResNet50-FPN | Faster | 1 | 2x | ---- | 40.0 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r50_fpn_2x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/faster_rcnn/faster_rcnn_r50_fpn_2x_coco.yml) | | ResNet50-FPN | Faster | 1 | 2x | ---- | 40.0 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r50_fpn_2x_coco.pdparams) | [配置文件](./faster_rcnn_r50_fpn_2x_coco.yml) |
| ResNet50-vd-FPN | Faster | 1 | 1x | ---- | 39.5 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r50_vd_fpn_1x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/faster_rcnn/faster_rcnn_r50_vd_fpn_1x_coco.yml) | | ResNet50-vd-FPN | Faster | 1 | 1x | ---- | 39.5 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r50_vd_fpn_1x_coco.pdparams) | [配置文件](./faster_rcnn_r50_vd_fpn_1x_coco.yml) |
| ResNet50-vd-FPN | Faster | 1 | 2x | ---- | 40.8 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r50_vd_fpn_2x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/faster_rcnn/faster_rcnn_r50_vd_fpn_2x_coco.yml) | | ResNet50-vd-FPN | Faster | 1 | 2x | ---- | 40.8 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r50_vd_fpn_2x_coco.pdparams) | [配置文件](./faster_rcnn_r50_vd_fpn_2x_coco.yml) |
| ResNet101-FPN | Faster | 1 | 2x | ---- | 41.4 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r101_fpn_2x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/faster_rcnn/faster_rcnn_r101_fpn_2x_coco.yml) | | ResNet101-FPN | Faster | 1 | 2x | ---- | 41.4 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r101_fpn_2x_coco.pdparams) | [配置文件](./faster_rcnn_r101_fpn_2x_coco.yml) |
| ResNet101-vd-FPN | Faster | 1 | 1x | ---- | 42.0 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r101_vd_fpn_1x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/faster_rcnn/faster_rcnn_r101_vd_fpn_1x_coco.yml) | | ResNet101-vd-FPN | Faster | 1 | 1x | ---- | 42.0 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r101_vd_fpn_1x_coco.pdparams) | [配置文件](./faster_rcnn_r101_vd_fpn_1x_coco.yml) |
| ResNet101-vd-FPN | Faster | 1 | 2x | ---- | 43.0 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r101_vd_fpn_2x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/faster_rcnn/faster_rcnn_r101_vd_fpn_2x_coco.yml) | | ResNet101-vd-FPN | Faster | 1 | 2x | ---- | 43.0 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r101_vd_fpn_2x_coco.pdparams) | [配置文件](./faster_rcnn_r101_vd_fpn_2x_coco.yml) |
| ResNeXt101-vd-FPN | Faster | 1 | 1x | ---- | 43.4 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_x101_vd_64x4d_fpn_1x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/faster_rcnn/faster_rcnn_x101_vd_64x4d_fpn_1x_coco.yml) | | ResNeXt101-vd-FPN | Faster | 1 | 1x | ---- | 43.4 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_x101_vd_64x4d_fpn_1x_coco.pdparams) | [配置文件](./faster_rcnn_x101_vd_64x4d_fpn_1x_coco.yml) |
| ResNeXt101-vd-FPN | Faster | 1 | 2x | ---- | 44.0 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_x101_vd_64x4d_fpn_2x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/faster_rcnn/faster_rcnn_x101_vd_64x4d_fpn_2x_coco.yml) | | ResNeXt101-vd-FPN | Faster | 1 | 2x | ---- | 44.0 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_x101_vd_64x4d_fpn_2x_coco.pdparams) | [配置文件](./faster_rcnn_x101_vd_64x4d_fpn_2x_coco.yml) |
| ResNet50-vd-SSLDv2-FPN | Faster | 1 | 1x | ---- | 41.4 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r50_vd_fpn_ssld_1x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/faster_rcnn/faster_rcnn_r50_vd_fpn_ssld_1x_coco.yml) | | ResNet50-vd-SSLDv2-FPN | Faster | 1 | 1x | ---- | 41.4 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r50_vd_fpn_ssld_1x_coco.pdparams) | [配置文件](./faster_rcnn_r50_vd_fpn_ssld_1x_coco.yml) |
| ResNet50-vd-SSLDv2-FPN | Faster | 1 | 2x | ---- | 42.3 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r50_vd_ssld_fpn_2x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/faster_rcnn/faster_rcnn_r50_vd_ssld_fpn_2x_coco.yml) | | ResNet50-vd-SSLDv2-FPN | Faster | 1 | 2x | ---- | 42.3 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r50_vd_fpn_ssld_2x_coco.pdparams) | [配置文件](./faster_rcnn_r50_vd_fpn_ssld_2x_coco.yml) |
| Swin-Tiny-FPN | Faster | 2 | 1x | ---- | 42.6 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_swin_tiny_fpn_1x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/faster_rcnn/faster_rcnn_swin_tiny_1x_coco.yml) | | Swin-Tiny-FPN | Faster | 2 | 1x | ---- | 42.6 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_swin_tiny_fpn_1x_coco.pdparams) | [配置文件](./faster_rcnn_swin_tiny_fpn_1x_coco.yml) |
| Swin-Tiny-FPN | Faster | 2 | 2x | ---- | 44.8 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_swin_tiny_fpn_2x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/faster_rcnn/faster_rcnn_swin_tiny_2x_coco.yml) | | Swin-Tiny-FPN | Faster | 2 | 2x | ---- | 44.8 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_swin_tiny_fpn_2x_coco.pdparams) | [配置文件](./faster_rcnn_swin_tiny_fpn_2x_coco.yml) |
| Swin-Tiny-FPN | Faster | 2 | 3x | ---- | 45.3 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_swin_tiny_fpn_3x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/faster_rcnn/faster_rcnn_swin_tiny_3x_coco.yml) | | Swin-Tiny-FPN | Faster | 2 | 3x | ---- | 45.3 | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_swin_tiny_fpn_3x_coco.pdparams) | [配置文件](./faster_rcnn_swin_tiny_fpn_3x_coco.yml) |
## Citations ## Citations
``` ```
......
...@@ -59,7 +59,7 @@ PP-YOLO and PP-YOLOv2 improved performance and speed of YOLOv3 with following me ...@@ -59,7 +59,7 @@ PP-YOLO and PP-YOLOv2 improved performance and speed of YOLOv3 with following me
**Notes:** **Notes:**
- PP-YOLO is trained on COCO train2017 dataset and evaluated on val2017 & test-dev2017 dataset,Box AP<sup>test</sup> is evaluation results of `mAP(IoU=0.5:0.95)`. - PP-YOLO is trained on COCO train2017 dataset and evaluated on val2017 & test-dev2017 dataset,Box AP<sup>test</sup> is evaluation results of `mAP(IoU=0.5:0.95)`.
- PP-YOLO used 8 GPUs for training and mini-batch size as 24 on each GPU, if GPU number and mini-batch size is changed, learning rate and iteration times should be adjusted according [FAQ](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/docs/tutorials/FAQ.md). - PP-YOLO used 8 GPUs for training and mini-batch size as 24 on each GPU, if GPU number and mini-batch size is changed, learning rate and iteration times should be adjusted according [FAQ](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/docs/tutorials/FAQ).
- PP-YOLO inference speed is tesed on single Tesla V100 with batch size as 1, CUDA 10.2, CUDNN 7.5.1, TensorRT 5.1.2.2 in TensorRT mode. - PP-YOLO inference speed is tesed on single Tesla V100 with batch size as 1, CUDA 10.2, CUDNN 7.5.1, TensorRT 5.1.2.2 in TensorRT mode.
- PP-YOLO FP32 inference speed testing uses inference model exported by `tools/export_model.py` and benchmarked by running `depoly/python/infer.py` with `--run_benchmark`. All testing results do not contains the time cost of data reading and post-processing(NMS), which is same as [YOLOv4(AlexyAB)](https://github.com/AlexeyAB/darknet) in testing method. - PP-YOLO FP32 inference speed testing uses inference model exported by `tools/export_model.py` and benchmarked by running `depoly/python/infer.py` with `--run_benchmark`. All testing results do not contains the time cost of data reading and post-processing(NMS), which is same as [YOLOv4(AlexyAB)](https://github.com/AlexeyAB/darknet) in testing method.
- TensorRT FP16 inference speed testing exclude the time cost of bounding-box decoding(`yolo_box`) part comparing with FP32 testing above, which means that data reading, bounding-box decoding and post-processing(NMS) is excluded(test method same as [YOLOv4(AlexyAB)](https://github.com/AlexeyAB/darknet) too) - TensorRT FP16 inference speed testing exclude the time cost of bounding-box decoding(`yolo_box`) part comparing with FP32 testing above, which means that data reading, bounding-box decoding and post-processing(NMS) is excluded(test method same as [YOLOv4(AlexyAB)](https://github.com/AlexeyAB/darknet) too)
...@@ -75,7 +75,7 @@ PP-YOLO and PP-YOLOv2 improved performance and speed of YOLOv3 with following me ...@@ -75,7 +75,7 @@ PP-YOLO and PP-YOLOv2 improved performance and speed of YOLOv3 with following me
**Notes:** **Notes:**
- PP-YOLO_MobileNetV3 is trained on COCO train2017 datast and evaluated on val2017 dataset,Box AP<sup>val</sup> is evaluation results of `mAP(IoU=0.5:0.95)`, Box AP<sup>val</sup> is evaluation results of `mAP(IoU=0.5)`. - PP-YOLO_MobileNetV3 is trained on COCO train2017 datast and evaluated on val2017 dataset,Box AP<sup>val</sup> is evaluation results of `mAP(IoU=0.5:0.95)`, Box AP<sup>val</sup> is evaluation results of `mAP(IoU=0.5)`.
- PP-YOLO_MobileNetV3 used 4 GPUs for training and mini-batch size as 32 on each GPU, if GPU number and mini-batch size is changed, learning rate and iteration times should be adjusted according [FAQ](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/docs/tutorials/FAQ.md). - PP-YOLO_MobileNetV3 used 4 GPUs for training and mini-batch size as 32 on each GPU, if GPU number and mini-batch size is changed, learning rate and iteration times should be adjusted according [FAQ](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/docs/tutorials/FAQ).
- PP-YOLO_MobileNetV3 inference speed is tested on Kirin 990 with 1 thread. - PP-YOLO_MobileNetV3 inference speed is tested on Kirin 990 with 1 thread.
### PP-YOLO tiny ### PP-YOLO tiny
......
...@@ -58,7 +58,7 @@ PP-YOLO和PP-YOLOv2从如下方面优化和提升YOLOv3模型的精度和速度 ...@@ -58,7 +58,7 @@ PP-YOLO和PP-YOLOv2从如下方面优化和提升YOLOv3模型的精度和速度
**注意:** **注意:**
- PP-YOLO模型使用COCO数据集中train2017作为训练集,使用val2017和test-dev2017作为测试集,Box AP<sup>test</sup>`mAP(IoU=0.5:0.95)`评估结果。 - PP-YOLO模型使用COCO数据集中train2017作为训练集,使用val2017和test-dev2017作为测试集,Box AP<sup>test</sup>`mAP(IoU=0.5:0.95)`评估结果。
- PP-YOLO模型训练过程中使用8 GPUs,每GPU batch size为24进行训练,如训练GPU数和batch size不使用上述配置,须参考[FAQ](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/docs/tutorials/FAQ.md)调整学习率和迭代次数。 - PP-YOLO模型训练过程中使用8 GPUs,每GPU batch size为24进行训练,如训练GPU数和batch size不使用上述配置,须参考[FAQ](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/docs/tutorials/FAQ)调整学习率和迭代次数。
- PP-YOLO模型推理速度测试采用单卡V100,batch size=1进行测试,使用CUDA 10.2, CUDNN 7.5.1,TensorRT推理速度测试使用TensorRT 5.1.2.2。 - PP-YOLO模型推理速度测试采用单卡V100,batch size=1进行测试,使用CUDA 10.2, CUDNN 7.5.1,TensorRT推理速度测试使用TensorRT 5.1.2.2。
- PP-YOLO模型FP32的推理速度测试数据为使用`tools/export_model.py`脚本导出模型后,使用`deploy/python/infer.py`脚本中的`--run_benchnark`参数使用Paddle预测库进行推理速度benchmark测试结果, 且测试的均为不包含数据预处理和模型输出后处理(NMS)的数据(与[YOLOv4(AlexyAB)](https://github.com/AlexeyAB/darknet)测试方法一致)。 - PP-YOLO模型FP32的推理速度测试数据为使用`tools/export_model.py`脚本导出模型后,使用`deploy/python/infer.py`脚本中的`--run_benchnark`参数使用Paddle预测库进行推理速度benchmark测试结果, 且测试的均为不包含数据预处理和模型输出后处理(NMS)的数据(与[YOLOv4(AlexyAB)](https://github.com/AlexeyAB/darknet)测试方法一致)。
- TensorRT FP16的速度测试相比于FP32去除了`yolo_box`(bbox解码)部分耗时,即不包含数据预处理,bbox解码和NMS(与[YOLOv4(AlexyAB)](https://github.com/AlexeyAB/darknet)测试方法一致)。 - TensorRT FP16的速度测试相比于FP32去除了`yolo_box`(bbox解码)部分耗时,即不包含数据预处理,bbox解码和NMS(与[YOLOv4(AlexyAB)](https://github.com/AlexeyAB/darknet)测试方法一致)。
...@@ -71,7 +71,7 @@ PP-YOLO和PP-YOLOv2从如下方面优化和提升YOLOv3模型的精度和速度 ...@@ -71,7 +71,7 @@ PP-YOLO和PP-YOLOv2从如下方面优化和提升YOLOv3模型的精度和速度
| PP-YOLO_MobileNetV3_small | 4 | 32 | 16MB | 320 | 17.2 | 33.8 | 21.5 | [下载链接](https://paddledet.bj.bcebos.com/models/ppyolo_mbv3_small_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/ppyolo/ppyolo_mbv3_small_coco.yml) | | PP-YOLO_MobileNetV3_small | 4 | 32 | 16MB | 320 | 17.2 | 33.8 | 21.5 | [下载链接](https://paddledet.bj.bcebos.com/models/ppyolo_mbv3_small_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/ppyolo/ppyolo_mbv3_small_coco.yml) |
- PP-YOLO_MobileNetV3 模型使用COCO数据集中train2017作为训练集,使用val2017作为测试集,Box AP<sup>val</sup>`mAP(IoU=0.5:0.95)`评估结果, Box AP50<sup>val</sup>`mAP(IoU=0.5)`评估结果。 - PP-YOLO_MobileNetV3 模型使用COCO数据集中train2017作为训练集,使用val2017作为测试集,Box AP<sup>val</sup>`mAP(IoU=0.5:0.95)`评估结果, Box AP50<sup>val</sup>`mAP(IoU=0.5)`评估结果。
- PP-YOLO_MobileNetV3 模型训练过程中使用4GPU,每GPU batch size为32进行训练,如训练GPU数和batch size不使用上述配置,须参考[FAQ](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/docs/tutorials/FAQ.md)调整学习率和迭代次数。 - PP-YOLO_MobileNetV3 模型训练过程中使用4GPU,每GPU batch size为32进行训练,如训练GPU数和batch size不使用上述配置,须参考[FAQ](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/docs/tutorials/FAQ)调整学习率和迭代次数。
- PP-YOLO_MobileNetV3 模型推理速度测试环境配置为麒麟990芯片单线程。 - PP-YOLO_MobileNetV3 模型推理速度测试环境配置为麒麟990芯片单线程。
### PP-YOLO tiny模型 ### PP-YOLO tiny模型
......
...@@ -106,6 +106,6 @@ bash test_tipc/test_train_inference_python.sh ./test_tipc/configs/yolov3/yolov3_ ...@@ -106,6 +106,6 @@ bash test_tipc/test_train_inference_python.sh ./test_tipc/configs/yolov3/yolov3_
各功能测试中涉及混合精度、裁剪、量化等训练相关,及mkldnn、Tensorrt等多种预测相关参数配置,请点击下方相应链接了解更多细节和使用教程: 各功能测试中涉及混合精度、裁剪、量化等训练相关,及mkldnn、Tensorrt等多种预测相关参数配置,请点击下方相应链接了解更多细节和使用教程:
- [test_train_inference_python 使用](docs/test_train_inference_python.md) :测试基于Python的模型训练、评估、推理等基本功能,包括裁剪、量化、蒸馏。 - [test_train_inference_python 使用](docs/test_train_inference_python.md) :测试基于Python的模型训练、评估、推理等基本功能,包括裁剪、量化、蒸馏。
- [test_inference_cpp 使用](docs/test_inference_cpp.md):测试基于C++的模型推理。 - [test_inference_cpp 使用](docs/test_inference_cpp.md):测试基于C++的模型推理。
- [test_serving 使用](docs/test_serving.md):测试基于Paddle Serving的服务化部署功能。 - [test_serving 使用](./):测试基于Paddle Serving的服务化部署功能。
- [test_lite_arm_cpu_cpp 使用](docs/test_lite_arm_cpu_cpp.md):测试基于Paddle-Lite的ARM CPU端c++预测部署功能。 - [test_lite_arm_cpu_cpp 使用](./):测试基于Paddle-Lite的ARM CPU端c++预测部署功能。
- [test_paddle2onnx 使用](docs/test_paddle2onnx.md):测试Paddle2ONNX的模型转化功能,并验证正确性。 - [test_paddle2onnx 使用](./):测试Paddle2ONNX的模型转化功能,并验证正确性。
...@@ -2,8 +2,8 @@ ...@@ -2,8 +2,8 @@
Linux端基础训练预测功能测试的主程序为`test_train_inference_python.sh`,可以测试基于Python的模型训练、评估、推理等基本功能,包括裁剪、量化、蒸馏。 Linux端基础训练预测功能测试的主程序为`test_train_inference_python.sh`,可以测试基于Python的模型训练、评估、推理等基本功能,包括裁剪、量化、蒸馏。
- Mac端基础训练预测功能测试参考[链接](./mac_test_train_inference_python.md) - Mac端基础训练预测功能测试参考[链接](./)
- Windows端基础训练预测功能测试参考[链接](./win_test_train_inference_python.md) - Windows端基础训练预测功能测试参考[链接](./)
## 1. 测试结论汇总 ## 1. 测试结论汇总
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册