提交 6250be4b 编写于 作者: P peizhilin

Merge branch 'windows/build' into windows/online

test=develop
...@@ -109,7 +109,8 @@ function(op_library TARGET) ...@@ -109,7 +109,8 @@ function(op_library TARGET)
# Define operators that don't need pybind here. # Define operators that don't need pybind here.
foreach(manual_pybind_op "compare_op" "logical_op" "nccl_op" foreach(manual_pybind_op "compare_op" "logical_op" "nccl_op"
"tensor_array_read_write_op" "tensorrt_engine_op" "conv_fusion_op") "tensor_array_read_write_op" "tensorrt_engine_op" "conv_fusion_op"
"fusion_transpose_flatten_concat_op")
if ("${TARGET}" STREQUAL "${manual_pybind_op}") if ("${TARGET}" STREQUAL "${manual_pybind_op}")
set(pybind_flag 1) set(pybind_flag 1)
endif() endif()
......
...@@ -116,7 +116,7 @@ cc_test(op_proto_maker_test SRCS op_proto_maker_test.cc DEPS op_proto_maker) ...@@ -116,7 +116,7 @@ cc_test(op_proto_maker_test SRCS op_proto_maker_test.cc DEPS op_proto_maker)
cc_library(op_info SRCS op_info.cc DEPS attribute framework_proto) cc_library(op_info SRCS op_info.cc DEPS attribute framework_proto)
cc_library(shape_inference SRCS shape_inference.cc DEPS ddim attribute device_context) cc_library(shape_inference SRCS shape_inference.cc DEPS ddim attribute device_context)
cc_library(transfer_scope_cache SRCS transfer_scope_cache.cc DEPS scope framework_proto) cc_library(transfer_scope_cache SRCS transfer_scope_cache.cc DEPS scope framework_proto device_context)
cc_library(operator SRCS operator.cc DEPS op_info device_context tensor scope glog cc_library(operator SRCS operator.cc DEPS op_info device_context tensor scope glog
shape_inference data_transform lod_tensor profiler transfer_scope_cache) shape_inference data_transform lod_tensor profiler transfer_scope_cache)
......
...@@ -17,16 +17,28 @@ ...@@ -17,16 +17,28 @@
namespace paddle { namespace paddle {
namespace framework { namespace framework {
// Holds all the transfer scope across the process.
std::unordered_map<size_t, Scope*>& global_transfer_data_cache() { std::unordered_map<size_t, Scope*>& global_transfer_data_cache() {
thread_local auto* x = new std::unordered_map<size_t, Scope*>; typedef std::unordered_map<size_t, Scope*> map_t;
thread_local std::unique_ptr<map_t> x(new map_t);
return *x; return *x;
} }
// Holds all the transfer scope for this thread.
std::unordered_set<Scope*>& global_transfer_scope_cache() { std::unordered_set<Scope*>& global_transfer_scope_cache() {
thread_local auto* x = new std::unordered_set<Scope*>; typedef std::unordered_set<Scope*> set_t;
thread_local std::unique_ptr<set_t> x(new set_t);
return *x; return *x;
} }
// Try to create a transfer scope. If one cached scope has match the
// requirement, just return that one.
// Inputs:
// @type0: the source kernel type.
// @type1: the target kernel type.
// @scope: the execution scope of this op.
// Returns: A scope used to hold the transfer data across the different kernel
// type.
Scope* TryCreateTransferScope(OpKernelType type0, OpKernelType type1, Scope* TryCreateTransferScope(OpKernelType type0, OpKernelType type1,
const Scope* scope) { const Scope* scope) {
Scope* new_scope{nullptr}; Scope* new_scope{nullptr};
...@@ -46,27 +58,5 @@ Scope* TryCreateTransferScope(OpKernelType type0, OpKernelType type1, ...@@ -46,27 +58,5 @@ Scope* TryCreateTransferScope(OpKernelType type0, OpKernelType type1,
return new_scope; return new_scope;
} }
void RemoveKidsFromTransferScopeCache(Scope* scope) {
auto it = global_transfer_scope_cache().find(scope);
if (it != global_transfer_scope_cache().end()) {
global_transfer_scope_cache().erase(it);
}
for (auto* s : scope->kids()) {
auto it = global_transfer_scope_cache().find(s);
if (it != global_transfer_scope_cache().end()) {
global_transfer_scope_cache().erase(it);
}
}
// remove global transfer data cache
auto& cache = global_transfer_data_cache();
for (auto it = cache.begin(); it != cache.end();) {
if (it->second == scope)
it = cache.erase(it);
else
it++;
}
}
} // namespace framework } // namespace framework
} // namespace paddle } // namespace paddle
...@@ -41,7 +41,7 @@ TEST(RetryAllocator, RetryAllocator) { ...@@ -41,7 +41,7 @@ TEST(RetryAllocator, RetryAllocator) {
size_t thread_num = 32; size_t thread_num = 32;
size_t sleep_time = 40; size_t sleep_time = 40;
size_t extra_time = 2; size_t extra_time = 10;
// Reserve to perform more tests in the future // Reserve to perform more tests in the future
std::vector<std::shared_ptr<Allocator>> allocators; std::vector<std::shared_ptr<Allocator>> allocators;
......
include(operators) include(operators)
register_operators() register_operators(EXCLUDES fusion_transpose_flatten_concat_op)
if (WITH_GPU)
op_library(fusion_transpose_flatten_concat_op)
file(APPEND ${pybind_file} "USE_CUDA_ONLY_OP(fusion_transpose_flatten_concat);\n")
endif()
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/fused/fusion_transpose_flatten_concat_op.h"
#include <string>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
namespace paddle {
namespace operators {
using framework::Tensor;
class TransposeFlattenConcatFusionOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext *ctx) const override {
PADDLE_ENFORCE_GE(ctx->Inputs("X").size(), 1UL,
"Inputs(X) of ConcatOp should be empty.");
PADDLE_ENFORCE(ctx->HasOutput("Out"),
"Output(Out) of ConcatOp should not be null.");
auto ins = ctx->GetInputsDim("X");
const size_t n = ins.size();
PADDLE_ENFORCE_GT(n, 0, "Input tensors count should > 0.");
std::vector<int> trans_axis =
ctx->Attrs().Get<std::vector<int>>("trans_axis");
int flatten_axis = ctx->Attrs().Get<int>("flatten_axis");
int concat_axis = ctx->Attrs().Get<int>("concat_axis");
size_t x_rank = ins[0].size();
size_t trans_axis_size = trans_axis.size();
PADDLE_ENFORCE_EQ(x_rank, trans_axis_size,
"The input tensor's rank(%d) "
"should be equal to the permutation axis's size(%d)",
x_rank, trans_axis_size);
auto dims0 =
GetFlattenShape(flatten_axis, GetPermuteShape(trans_axis, ins[0]));
std::vector<int> out_dims(dims0);
for (size_t i = 1; i < n; i++) {
auto dimsi =
GetFlattenShape(flatten_axis, GetPermuteShape(trans_axis, ins[i]));
for (int j = 0; j < static_cast<int>(dims0.size()); j++) {
if (j == concat_axis) {
out_dims[concat_axis] += dimsi[j];
} else {
PADDLE_ENFORCE_EQ(out_dims[j], dimsi[j],
"After flatting, the %d-th dim should be save "
"except the specify axis.",
j);
}
}
}
if (out_dims[concat_axis] < 0) {
out_dims[concat_axis] = -1;
}
ctx->SetOutputDim("Out", framework::make_ddim(out_dims));
}
};
class TransposeFlattenConcatFusionOpMaker
: public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput(
"X",
"(Tensor) The input tensor, tensors with rank up to 6 are supported.")
.AsDuplicable();
AddOutput("Out", "(Tensor)The output tensor.");
AddAttr<std::vector<int>>(
"trans_axis",
"(vector<int>) A list of values, and the size of the list should be "
"the same with the input tensor rank. This operator permutes the input "
"tensor's axes according to the values given.");
AddAttr<int>("flatten_axis",
"(int)"
"Indicate up to which input dimensions (exclusive) should be"
"flattened to the outer dimension of the output. The value"
"for axis must be in the range [0, R], where R is the rank of"
"the input tensor. When axis = 0, the shape of the output"
"tensor is (1, (d_0 X d_1 ... d_n), where the shape of the"
"input tensor is (d_0, d_1, ... d_n).");
AddAttr<int>("concat_axis",
"The axis along which the input tensors will be concatenated. "
"It should be 0 or 1, since the tensor is 2D after flatting.");
AddComment(R"DOC(
)DOC");
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(fusion_transpose_flatten_concat,
ops::TransposeFlattenConcatFusionOp,
ops::TransposeFlattenConcatFusionOpMaker,
paddle::framework::EmptyGradOpMaker);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/fused/fusion_transpose_flatten_concat_op.h"
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/cudnn_helper.h"
namespace paddle {
namespace operators {
template <typename T>
using CudnnDataType = platform::CudnnDataType<T>;
template <typename T>
class TransposeFlattenConcatFusionKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto ins = ctx.MultiInput<framework::Tensor>("X");
auto* out = ctx.Output<framework::Tensor>("Out");
out->mutable_data<T>(ctx.GetPlace());
auto odims = out->dims();
std::vector<int> trans_axis = ctx.Attr<std::vector<int>>("trans_axis");
int flatten_axis = ctx.Attr<int>("flatten_axis");
int concat_axis = ctx.Attr<int>("concat_axis");
int rank = ins[0]->dims().size();
// use at least 4D in cudnnTransformTensor
int max_dim = rank < 4 ? 4 : rank;
std::vector<int> stride_x(max_dim, 0);
std::vector<int> stride_y(max_dim, 0);
std::vector<int> dims_y(max_dim, 0);
cudnnTensorDescriptor_t in_desc;
cudnnTensorDescriptor_t out_desc;
CUDNN_ENFORCE(platform::dynload::cudnnCreateTensorDescriptor(&in_desc));
CUDNN_ENFORCE(platform::dynload::cudnnCreateTensorDescriptor(&out_desc));
cudnnDataType_t cudnn_dtype = CudnnDataType<T>::type;
auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
auto handle = dev_ctx.cudnn_handle();
T* odata = out->data<T>();
for (size_t k = 0; k < ins.size(); ++k) {
auto perm_shape = GetPermuteShape(trans_axis, ins[k]->dims());
int osize = 1;
auto idims = ins[k]->dims();
for (int i = 0; i < rank; i++) {
stride_x[i] = 1;
for (int j = trans_axis[i] + 1; j < rank; j++) {
stride_x[i] *= idims[j];
}
dims_y[i] = perm_shape[i];
osize *= perm_shape[i];
}
stride_y[rank - 1] = 1;
for (int i = rank - 2; i >= 0; i--) {
if (((i + 1) == flatten_axis) && (concat_axis == 1)) {
stride_y[i] = odims[1];
} else {
stride_y[i] = stride_y[i + 1] * perm_shape[i + 1];
}
}
// Since concat is aftern flatten, the output is 2D tensor.
// If concat_axis is 0, each input's permutated tensor is continuous.
// If concat_axis is 1, the stride of 0-th dim of each input's
// permutated tensor is odims()[1].
for (int i = rank; i < max_dim; i++) {
stride_x[i] = 1;
stride_y[i] = 1;
dims_y[i] = 1;
}
CUDNN_ENFORCE(platform::dynload::cudnnSetTensorNdDescriptor(
in_desc, cudnn_dtype, max_dim, dims_y.data(), stride_x.data()));
CUDNN_ENFORCE(platform::dynload::cudnnSetTensorNdDescriptor(
out_desc, cudnn_dtype, max_dim, dims_y.data(), stride_y.data()));
CUDNN_ENFORCE(platform::dynload::cudnnTransformTensor(
handle, CudnnDataType<T>::kOne(), in_desc,
static_cast<const void*>(ins[k]->data<T>()),
CudnnDataType<T>::kZero(), out_desc, static_cast<void*>(odata)));
if (concat_axis == 0) {
odata += osize;
} else {
auto flat_shape = GetFlattenShape(flatten_axis, perm_shape);
odata += flat_shape[1];
}
}
CUDNN_ENFORCE(platform::dynload::cudnnDestroyTensorDescriptor(in_desc));
CUDNN_ENFORCE(platform::dynload::cudnnDestroyTensorDescriptor(out_desc));
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(fusion_transpose_flatten_concat,
ops::TransposeFlattenConcatFusionKernel<float>,
ops::TransposeFlattenConcatFusionKernel<double>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <string>
#include <vector>
#include "paddle/fluid/framework/ddim.h"
namespace paddle {
namespace operators {
inline std::vector<int32_t> GetPermuteShape(const std::vector<int>& axis,
const framework::DDim& in_dims) {
std::vector<int32_t> out_dims(in_dims.size());
for (size_t i = 0; i < axis.size(); i++) {
out_dims[i] = in_dims[axis[i]];
}
return out_dims;
}
inline std::vector<int32_t> GetFlattenShape(const int axis,
const std::vector<int>& in_dims) {
int64_t outer = 1, inner = 1;
for (int i = 0; i < static_cast<int>(in_dims.size()); ++i) {
if (i < axis) {
outer *= in_dims[i];
} else {
inner *= in_dims[i];
}
}
std::vector<int32_t> out_shape(2);
out_shape[0] = outer;
out_shape[1] = inner;
return out_shape;
}
} // namespace operators
} // namespace paddle
...@@ -67,6 +67,7 @@ class LookupSparseTableOp : public framework::OperatorBase { ...@@ -67,6 +67,7 @@ class LookupSparseTableOp : public framework::OperatorBase {
framework::proto::VarType::FP32, framework::proto::VarType::FP32,
"The sparse table only support FP32"); "The sparse table only support FP32");
w_t->Get(ids_t, out_t, true, is_test); w_t->Get(ids_t, out_t, true, is_test);
out_t->set_lod(ids_t.lod());
} }
}; };
......
...@@ -127,6 +127,9 @@ class SumKernel : public framework::OpKernel<T> { ...@@ -127,6 +127,9 @@ class SumKernel : public framework::OpKernel<T> {
math::scatter::MergeAdd<DeviceContext, T> merge_add; math::scatter::MergeAdd<DeviceContext, T> merge_add;
merge_add(context.template device_context<DeviceContext>(), inputs, merge_add(context.template device_context<DeviceContext>(), inputs,
out); out);
out->SyncIndex();
} else { } else {
// no data, just set a empty out tensor. // no data, just set a empty out tensor.
out->mutable_value()->mutable_data<T>(framework::make_ddim({0}), out->mutable_value()->mutable_data<T>(framework::make_ddim({0}),
......
...@@ -31,6 +31,11 @@ int main(int argc, char** argv) { ...@@ -31,6 +31,11 @@ int main(int argc, char** argv) {
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
new_argv.push_back( new_argv.push_back(
strdup("--tryfromenv=fraction_of_gpu_memory_to_use,allocator_strategy")); strdup("--tryfromenv=fraction_of_gpu_memory_to_use,allocator_strategy"));
#elif __clang__
new_argv.push_back(
strdup("--tryfromenv=use_mkldnn,initial_cpu_memory_in_"
"mb,allocator_strategy"));
new_argv.push_back(strdup("--undefok=use_mkldnn,initial_cpu_memory_in_mb"));
#else #else
new_argv.push_back( new_argv.push_back(
strdup("--tryfromenv=use_pinned_memory,use_mkldnn,initial_cpu_memory_in_" strdup("--tryfromenv=use_pinned_memory,use_mkldnn,initial_cpu_memory_in_"
......
...@@ -91,6 +91,7 @@ def __bootstrap__(): ...@@ -91,6 +91,7 @@ def __bootstrap__():
""" """
import sys import sys
import os import os
import platform
from . import core from . import core
in_test = 'unittest' in sys.modules in_test = 'unittest' in sys.modules
...@@ -110,14 +111,17 @@ def __bootstrap__(): ...@@ -110,14 +111,17 @@ def __bootstrap__():
print('PLEASE USE OMP_NUM_THREADS WISELY.', file=sys.stderr) print('PLEASE USE OMP_NUM_THREADS WISELY.', file=sys.stderr)
os.environ['OMP_NUM_THREADS'] = str(num_threads) os.environ['OMP_NUM_THREADS'] = str(num_threads)
sysstr = platform.system()
read_env_flags = [ read_env_flags = [
'use_pinned_memory', 'check_nan_inf', 'benchmark', 'eager_delete_scope', 'check_nan_inf', 'benchmark', 'eager_delete_scope', 'use_mkldnn',
'use_mkldnn', 'use_ngraph', 'initial_cpu_memory_in_mb', 'use_ngraph', 'initial_cpu_memory_in_mb', 'init_allocated_mem',
'init_allocated_mem', 'free_idle_memory', 'paddle_num_threads', 'free_idle_memory', 'paddle_num_threads', "dist_threadpool_size",
"dist_threadpool_size", 'eager_delete_tensor_gb', 'allocator_strategy', 'eager_delete_tensor_gb', 'allocator_strategy',
'reader_queue_speed_test_mode', 'print_sub_graph_dir' 'reader_queue_speed_test_mode', 'print_sub_graph_dir'
] ]
if 'Darwin' not in sysstr:
read_env_flags.append('use_pinned_memory')
if os.name != 'nt': if os.name != 'nt':
read_env_flags.append('warpctc_dir') read_env_flags.append('warpctc_dir')
read_env_flags.append('cpu_deterministic') read_env_flags.append('cpu_deterministic')
......
...@@ -13,8 +13,10 @@ ...@@ -13,8 +13,10 @@
# limitations under the License. # limitations under the License.
from __future__ import print_function from __future__ import print_function
from . import lookup_table_utils
from .lookup_table_utils import *
from . import hdfs_utils from . import hdfs_utils
from .hdfs_utils import * from .hdfs_utils import *
__all__ = lookup_table_utils.__all__
__all__ = hdfs_utils.__all__ __all__ = hdfs_utils.__all__
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import os
import time
import logging
import paddle
import paddle.fluid as fluid
from paddle.fluid import core
from paddle.fluid import io
from paddle.fluid import Program
__all__ = [
"load_inference_model", "load_persistable_vars",
"convert_dist_to_sparse_program"
]
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(message)s')
_logger = logging.getLogger("lookup_table_utils")
_logger.setLevel(logging.INFO)
model_filename = "__model__"
lookup_table_dir = "__lookup_table__"
def __insert_lookup_sparse_table_op(main_program, idx, ids, w, out):
main_program.global_block()._insert_op(
index=idx,
type="lookup_sparse_table",
inputs={"Ids": [ids],
"W": [w]},
outputs={"Out": [out]},
attrs={
"is_distributed": False,
"is_sparse": True,
"grad_inplace": False
})
def __get_prefetch_op_tuples(main_program):
# current lookup tables op is split_ids->prefetch->merge_ids
prefetch_op_tuples = None
op_types = [op.type for op in main_program.global_block().ops]
for i in range(len(op_types)):
if op_types[i] == "prefetch":
if op_types[i - 1] == "split_ids" and op_types[i +
1] == "merge_ids":
split_ids_op_id = i - 1
split_ids_inputs = main_program.global_block().ops[i - 1].input(
"Ids")
prefetch_op_inputs = main_program.global_block().ops[i].input(
"X")
prefetch_op_outputs = main_program.global_block().ops[i].output(
"Out")
merge_ids_outputs = main_program.global_block().ops[
i + 1].output("Out")
need_delete_vars = []
need_delete_vars.extend(prefetch_op_inputs)
need_delete_vars.extend(prefetch_op_outputs)
prefetch_op_tuples = (split_ids_op_id, split_ids_inputs,
merge_ids_outputs, need_delete_vars)
break
return prefetch_op_tuples
def convert_dist_to_sparse_program(main_program):
if not main_program._distributed_lookup_table:
_logger.warn(
"There are no distributed lookup tables need to be converted")
return
# create table param and grad var in pserver program
origin_emb_var = "{}.origin".format(main_program._distributed_lookup_table)
emb_var = main_program._distributed_lookup_table
main_program.global_block()._rename_var(emb_var, origin_emb_var)
origin_param_var = main_program.global_block().vars[origin_emb_var]
param_var = main_program.global_block().create_var(
name=emb_var,
shape=origin_param_var.shape,
dtype=origin_param_var.dtype,
type=core.VarDesc.VarType.SELECTED_ROWS,
persistable=True)
# parameter must be selected rows
param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
main_program._sync_with_cpp()
prefetch_op_tuples = __get_prefetch_op_tuples(main_program)
split_ids_id = prefetch_op_tuples[0]
for idx in range(split_ids_id + 2, split_ids_id - 1, -1):
main_program.global_block()._remove_op(idx)
main_program.desc.flush()
in_out_pairs = zip(prefetch_op_tuples[1], prefetch_op_tuples[2])
for in_out_pair in in_out_pairs:
idx = split_ids_id
ids = main_program.global_block().vars[in_out_pair[0]]
out = main_program.global_block().vars[in_out_pair[1]]
__insert_lookup_sparse_table_op(main_program, idx, ids, param_var, out)
main_program.desc.flush()
return main_program
def load_persistable_vars(executor, dirname, program, lookup_table_var):
def _is_checkpoint_var(exclude_fluid_vars=None):
"""
the checkpoint will not save or load all the variables.
var type is FEED_MINIBATCH/FETCH_LIST/RAW or var name ends with @GRAD are discarded.
: param var(Variable)
"""
if exclude_fluid_vars is None:
exclude_fluid_vars = []
def is_valid(var):
if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
var.desc.type() == core.VarDesc.VarType.RAW:
return False
# @GRAD are named for gradient variables, checkpoint will not save it.
if "@GRAD" in var.name:
return False
# .trainer_ are named for distribute train variables, checkpoint will not save it.
if ".trainer_" in var.name:
return False
# .block is named for distribute train variables, checkpoint will not save it.
if ".block" in var.name:
return False
if "tmp_" in var.name:
return False
if var.name in exclude_fluid_vars:
return False
return var.persistable
return is_valid
def _load_lookup_table_vars(executor, dirname, main_program,
lookup_table_vars):
if not os.path.isdir(dirname):
raise ValueError("There is no directory named '%s'", dirname)
lookup_table_dirname = os.path.join(dirname, lookup_table_dir)
emb_var_name = lookup_table_vars[0]
emb_var = main_program.global_block().var(emb_var_name)
emb_files = []
for emb_name in os.listdir(lookup_table_dirname):
if emb_var_name in emb_name:
emb_files.append(emb_name)
convert_program = Program()
global_block = convert_program.global_block()
emb_var = global_block.create_var(
name=emb_var.name,
shape=emb_var.shape,
dtype=emb_var.dtype,
type=core.VarDesc.VarType.SELECTED_ROWS,
persistable=True)
emb_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
sums = []
for i, emb_file in enumerate(emb_files):
var_name = "{}_{}".format(emb_var.name, i)
param_var = global_block.create_var(
name=var_name,
shape=emb_var.shape,
dtype=emb_var.dtype,
type=core.VarDesc.VarType.SELECTED_ROWS,
persistable=True)
param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
global_block.append_op(
type='load',
inputs={},
outputs={'Out': [param_var]},
attrs={
'file_path': os.path.join(lookup_table_dirname, var_name)
})
sums.append(param_var)
global_block.append_op(
type='sum', inputs={"X": sums}, outputs={'Out': emb_var}, attrs={})
global_block.append_op(type='delete_var', inputs={'X': sums})
executor.run(convert_program)
_logger.info("Start Load Sparse Program With "
"Distributed Lookup Table Vars from {}, time = {}".format(
dirname, time.ctime()))
lookup_table_vars = [lookup_table_var]
io.load_vars(
executor,
dirname=dirname,
main_program=program,
predicate=_is_checkpoint_var(lookup_table_vars),
filename=None)
_load_lookup_table_vars(executor, dirname, program, lookup_table_vars)
_logger.info("Finish Load Sparse Program With "
"Distributed Lookup Table Vars from {}, time = {}".format(
dirname, time.ctime()))
def load_inference_model(dirname, executor, lookup_table_var_name):
if not os.path.isdir(dirname):
raise ValueError("There is no directory named '%s'", dirname)
local_model = os.path.join(dirname, model_filename)
with open(local_model, "rb") as f:
program_desc_str = f.read()
program = Program.parse_from_string(program_desc_str)
if not core._is_program_version_supported(program._version()):
raise ValueError("Unsupported program version: %d\n" %
program._version())
# Binary data also need version.
load_persistable_vars(executor, dirname, program, lookup_table_var_name)
feed_target_names = program.desc.get_feed_target_names()
fetch_target_names = program.desc.get_fetch_target_names()
fetch_targets = [
program.global_block().var(name) for name in fetch_target_names
]
return [program, feed_target_names, fetch_targets]
...@@ -1698,6 +1698,7 @@ class Program(object): ...@@ -1698,6 +1698,7 @@ class Program(object):
p._copy_param_info_from(self) p._copy_param_info_from(self)
p._copy_data_info_from(self) p._copy_data_info_from(self)
p._copy_dist_param_info_from(self)
return p return p
def _prune(self, targets): def _prune(self, targets):
...@@ -1938,6 +1939,25 @@ class Program(object): ...@@ -1938,6 +1939,25 @@ class Program(object):
"program, with represent the same topology") "program, with represent the same topology")
self.global_block()._copy_param_info_from(other.global_block()) self.global_block()._copy_param_info_from(other.global_block())
def _copy_dist_param_info_from(self, other):
"""
Copy the information of distributed information from other program.
Args:
other(Program): Other program
Returns:
None
"""
if not isinstance(other, Program):
raise TypeError("_copy_dist_param_info_from should be invoked with "
"Program")
self._is_distributed = other._is_distributed
self._is_chief = other._is_chief
self._slice_vars_and_attrs = other._slice_vars_and_attrs
self._endpoints = other._endpoints
self._distributed_lookup_table = other._distributed_lookup_table
def _copy_data_info_from(self, other): def _copy_data_info_from(self, other):
""" """
Copy the information of data variables from other program. Copy the information of data variables from other program.
......
...@@ -165,6 +165,7 @@ def save_vars(executor, ...@@ -165,6 +165,7 @@ def save_vars(executor,
save_vars( save_vars(
executor, executor,
main_program=main_program,
dirname=dirname, dirname=dirname,
vars=list(filter(predicate, main_program.list_vars())), vars=list(filter(predicate, main_program.list_vars())),
filename=filename) filename=filename)
...@@ -172,11 +173,18 @@ def save_vars(executor, ...@@ -172,11 +173,18 @@ def save_vars(executor,
save_program = Program() save_program = Program()
save_block = save_program.global_block() save_block = save_program.global_block()
if main_program is None:
main_program = default_main_program()
if not isinstance(main_program, Program):
raise TypeError("program should be as Program type or None")
save_var_map = {} save_var_map = {}
for each_var in vars: for each_var in vars:
# NOTE: don't save the variable which type is RAW # NOTE: don't save the variable which type is RAW
if each_var.type == core.VarDesc.VarType.RAW: if each_var.type == core.VarDesc.VarType.RAW:
continue continue
if each_var.name == main_program._distributed_lookup_table:
continue
new_var = _clone_var_in_block_(save_block, each_var) new_var = _clone_var_in_block_(save_block, each_var)
if filename is None: if filename is None:
save_block.append_op( save_block.append_op(
...@@ -198,6 +206,16 @@ def save_vars(executor, ...@@ -198,6 +206,16 @@ def save_vars(executor,
outputs={}, outputs={},
attrs={'file_path': os.path.join(dirname, filename)}) attrs={'file_path': os.path.join(dirname, filename)})
# if there is lookup table, the trainer 0 will notify all pserver to save.
if main_program._is_distributed and main_program._is_chief and main_program._distributed_lookup_table:
lookup_table_filename = os.path.join(dirname, "__lookup_table__")
attrs = {}
attrs['epmap'] = main_program._endpoints
attrs['dir'] = lookup_table_filename
attrs['lookup_table'] = main_program._distributed_lookup_table
save_block.append_op(
type='checkpoint_notify', inputs={}, outputs={}, attrs=attrs)
executor.run(save_program) executor.run(save_program)
...@@ -379,11 +397,22 @@ def load_vars(executor, ...@@ -379,11 +397,22 @@ def load_vars(executor,
load_prog = Program() load_prog = Program()
load_block = load_prog.global_block() load_block = load_prog.global_block()
if main_program is None:
main_program = default_main_program()
if not isinstance(main_program, Program):
raise TypeError("program should be as Program type or None")
load_slice_vars = []
for each_var in main_program._slice_vars_and_attrs:
load_slice_vars.append(each_var[2].name)
load_var_map = {} load_var_map = {}
for each_var in vars: for each_var in vars:
assert isinstance(each_var, Variable) assert isinstance(each_var, Variable)
if each_var.type == core.VarDesc.VarType.RAW: if each_var.type == core.VarDesc.VarType.RAW:
continue continue
if each_var.name in load_slice_vars:
continue
new_var = _clone_var_in_block_(load_block, each_var) new_var = _clone_var_in_block_(load_block, each_var)
if filename is None: if filename is None:
load_block.append_op( load_block.append_op(
...@@ -406,9 +435,6 @@ def load_vars(executor, ...@@ -406,9 +435,6 @@ def load_vars(executor,
attrs={'file_path': os.path.join(dirname, filename)}) attrs={'file_path': os.path.join(dirname, filename)})
executor.run(load_prog) executor.run(load_prog)
if main_program is None:
main_program = default_main_program()
# load slice vars on pserver, if have it. # load slice vars on pserver, if have it.
_load_slice_up_vars(executor, dirname, _load_slice_up_vars(executor, dirname,
main_program._slice_vars_and_attrs) main_program._slice_vars_and_attrs)
...@@ -618,13 +644,6 @@ def save_inference_model(dirname, ...@@ -618,13 +644,6 @@ def save_inference_model(dirname,
if main_program is None: if main_program is None:
main_program = default_main_program() main_program = default_main_program()
# if there is lookup table, the trainer 0 will notify all pserver to save.
if main_program._is_distributed and main_program._is_chief and main_program._distributed_lookup_table:
lookup_table_filename = os.path.join(dirname, "__lookup_table__")
_save_lookup_tables_by_notify(executor, lookup_table_filename,
main_program._distributed_lookup_table,
main_program._endpoints)
# when a pserver and a trainer running on the same machine, mkdir may conflict # when a pserver and a trainer running on the same machine, mkdir may conflict
try: try:
os.makedirs(dirname) os.makedirs(dirname)
...@@ -642,6 +661,9 @@ def save_inference_model(dirname, ...@@ -642,6 +661,9 @@ def save_inference_model(dirname,
# it can only be loaded for inference directly. If it's false, the whole # it can only be loaded for inference directly. If it's false, the whole
# original program and related meta are saved so that future usage can be # original program and related meta are saved so that future usage can be
# more flexible. # more flexible.
origin_program = main_program.clone()
if export_for_deployment: if export_for_deployment:
main_program = main_program.clone() main_program = main_program.clone()
global_block = main_program.global_block() global_block = main_program.global_block()
...@@ -666,8 +688,11 @@ def save_inference_model(dirname, ...@@ -666,8 +688,11 @@ def save_inference_model(dirname,
with open(model_basename + ".main_program", "wb") as f: with open(model_basename + ".main_program", "wb") as f:
f.write(main_program.desc.serialize_to_string()) f.write(main_program.desc.serialize_to_string())
main_program._copy_dist_param_info_from(origin_program)
if params_filename is not None: if params_filename is not None:
params_filename = os.path.basename(params_filename) params_filename = os.path.basename(params_filename)
save_persistables(executor, dirname, main_program, params_filename) save_persistables(executor, dirname, main_program, params_filename)
...@@ -897,6 +922,9 @@ def _load_slice_up_vars(executor, dirname, slice_vars_and_attrs): ...@@ -897,6 +922,9 @@ def _load_slice_up_vars(executor, dirname, slice_vars_and_attrs):
slice_var = var_tuple[2] slice_var = var_tuple[2]
end = start + slice_var.shape[0] end = start + slice_var.shape[0]
orig_var_name = orig_var.name
orig_var.name = "{}.origin".format(orig_var_name)
clone_orig_var = load_block.create_var( clone_orig_var = load_block.create_var(
name=orig_var.name, name=orig_var.name,
type=orig_var.type, type=orig_var.type,
...@@ -915,7 +943,7 @@ def _load_slice_up_vars(executor, dirname, slice_vars_and_attrs): ...@@ -915,7 +943,7 @@ def _load_slice_up_vars(executor, dirname, slice_vars_and_attrs):
type='load', type='load',
inputs={}, inputs={},
outputs={'Out': [clone_orig_var]}, outputs={'Out': [clone_orig_var]},
attrs={'file_path': os.path.join(dirname, clone_orig_var.name)}) attrs={'file_path': os.path.join(dirname, orig_var_name)})
load_block.append_op( load_block.append_op(
type="slice", type="slice",
inputs={'Input': clone_orig_var}, inputs={'Input': clone_orig_var},
...@@ -924,6 +952,7 @@ def _load_slice_up_vars(executor, dirname, slice_vars_and_attrs): ...@@ -924,6 +952,7 @@ def _load_slice_up_vars(executor, dirname, slice_vars_and_attrs):
'starts': [start], 'starts': [start],
'ends': [end]}) 'ends': [end]})
need_delete_vars.append(clone_orig_var) need_delete_vars.append(clone_orig_var)
load_block.append_op( load_block.append_op(
type='delete_var', type='delete_var',
inputs={'X': need_delete_vars}, ) inputs={'X': need_delete_vars}, )
......
...@@ -6972,14 +6972,14 @@ def prelu(x, mode, param_attr=None, name=None): ...@@ -6972,14 +6972,14 @@ def prelu(x, mode, param_attr=None, name=None):
""" """
Equation: Equation:
y = \max(0, x) + alpha \min(0, x) y = \max(0, x) + alpha * \min(0, x)
Args: Args:
x (Variable): The input tensor. x (Variable): The input tensor.
param_attr(ParamAttr|None): The parameter attribute for the learnable param_attr(ParamAttr|None): The parameter attribute for the learnable
weight (alpha). weight (alpha).
mode (string): The mode for weight sharing mode (string): The mode for weight sharing. It supports all, channel
all: all elements share same weight and element. all: all elements share same weight
channel:elements in a channel share same weight channel:elements in a channel share same weight
element:each element has a weight element:each element has a weight
name(str|None): A name for this layer(optional). If set None, the layer name(str|None): A name for this layer(optional). If set None, the layer
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
from op_test import OpTest
import paddle.fluid.core as core
class TestFusionTransposeFlattenConcationOp(OpTest):
def setUp(self):
self.init_test_case()
self.op_type = "fusion_transpose_flatten_concat"
ins = []
flats = []
for i in range(len(self.shapes)):
in_shape = self.shapes[i]
a = np.random.random(in_shape).astype("float32")
ins.append(("x%d" % i, a))
b = a.transpose(self.trans_axis)
flat_shape = (np.prod(b.shape[:self.flatten_axis]),
np.prod(b.shape[self.flatten_axis:]))
c = b.reshape(flat_shape)
flats.append(c)
out = np.concatenate(flats, axis=self.concat_axis)
self.inputs = {'X': ins}
self.attrs = {
'trans_axis': list(self.trans_axis),
'flatten_axis': self.flatten_axis,
'concat_axis': self.concat_axis
}
self.outputs = {'Out': out}
def test_check_output(self):
if core.is_compiled_with_cuda():
place = core.CUDAPlace(0)
self.check_output_with_place(place, 1e-6)
else:
pass
def init_test_case(self):
self.shapes = [(3, 4, 17, 17), (3, 8, 7, 7), (3, 12, 5, 5)]
self.trans_axis = (0, 2, 3, 1)
self.flatten_axis = 1
self.concat_axis = 1
class TestCase1(TestFusionTransposeFlattenConcationOp):
def init_test_case(self):
self.shapes = [(3, 4, 18, 17), (3, 8, 18, 7), (6, 12, 9, 5)]
self.trans_axis = (0, 2, 3, 1)
self.flatten_axis = 2
self.concat_axis = 1
class TestCase2(TestFusionTransposeFlattenConcationOp):
def init_test_case(self):
self.shapes = [(3, 8, 20, 17), (3, 8, 19, 17), (3, 8, 40, 17)]
self.trans_axis = (0, 2, 3, 1)
self.flatten_axis = 2
self.concat_axis = 0
class TestCase3(TestFusionTransposeFlattenConcationOp):
def init_test_case(self):
self.shapes = [(3, 8, 20, 17), (3, 8, 19, 17), (3, 8, 40, 17)]
self.trans_axis = (0, 3, 2, 1)
self.flatten_axis = 1
self.concat_axis = 1
class TestCase4(TestFusionTransposeFlattenConcationOp):
def init_test_case(self):
self.shapes = [(3, 8, 9, 17), (8, 3, 9, 17), (4, 6, 9, 17)]
self.trans_axis = (0, 2, 1, 3)
self.flatten_axis = 3
self.concat_axis = 1
class TestCase5(TestFusionTransposeFlattenConcationOp):
def init_test_case(self):
self.shapes = [(3, 8, 9, 17, 2), (3, 8, 2, 17, 9), (3, 17, 9, 8, 2)]
self.trans_axis = (0, 2, 1, 4, 3)
self.flatten_axis = 1
self.concat_axis = 1
if __name__ == '__main__':
unittest.main()
...@@ -644,6 +644,9 @@ in a single call.") ...@@ -644,6 +644,9 @@ in a single call.")
else: else:
recv_inputs.append(single_trainer_var) recv_inputs.append(single_trainer_var)
self._slice_params_and_optimizes = self._get_slice_vars_and_attrs(
endpoint)
# step 3 # step 3
# Create a union-find data structure from optimize ops, # Create a union-find data structure from optimize ops,
# If two ops are connected, we could add these two ops # If two ops are connected, we could add these two ops
...@@ -766,7 +769,7 @@ in a single call.") ...@@ -766,7 +769,7 @@ in a single call.")
grad_to_block_id, merged_var, grad_to_block_id, merged_var,
lr_ops) lr_ops)
# dedup grad to ids list # dedup grad to ids list
grad_to_block_id = list(set(grad_to_block_id)) grad_to_block_id = list(set(grad_to_block_id))
# append global ops # append global ops
if global_ops: if global_ops:
...@@ -827,8 +830,8 @@ in a single call.") ...@@ -827,8 +830,8 @@ in a single call.")
attrs=attrs) attrs=attrs)
# add distributed attrs # add distributed attrs
pserver_program._slice_vars_and_attrs = self._get_slice_vars_and_attrs( pserver_program._slice_vars_and_attrs = list(
endpoint) self._slice_params_and_optimizes.values())
pserver_program._sync_with_cpp() pserver_program._sync_with_cpp()
# save pserver program to generate pserver side startup relatively. # save pserver program to generate pserver side startup relatively.
...@@ -941,12 +944,12 @@ to transpile() call.") ...@@ -941,12 +944,12 @@ to transpile() call.")
outputs={"Out": startup_tmpvar}) outputs={"Out": startup_tmpvar})
# add slice vars # add slice vars
s_prog._slice_vars_and_attrs = self._get_slice_vars_and_attrs(endpoint) s_prog._slice_vars_and_attrs = pserver_program._slice_vars_and_attrs
return s_prog return s_prog
def _get_slice_vars_and_attrs(self, endpoint): def _get_slice_vars_and_attrs(self, endpoint):
slice_vars_and_attrs = [] slice_vars_and_attrs = {}
block_suffix = "block" block_suffix = "block"
for param in self.param_grad_ep_mapping[endpoint]["params"]: for param in self.param_grad_ep_mapping[endpoint]["params"]:
orig_var_name, block_name, _ = self._get_varname_parts(param.name) orig_var_name, block_name, _ = self._get_varname_parts(param.name)
...@@ -960,8 +963,7 @@ to transpile() call.") ...@@ -960,8 +963,7 @@ to transpile() call.")
slice_vars = self.param_var_mapping[orig_var_name] slice_vars = self.param_var_mapping[orig_var_name]
for slice_var in slice_vars[:block_idx]: for slice_var in slice_vars[:block_idx]:
skip_dim0 += slice_var.shape[0] skip_dim0 += slice_var.shape[0]
slice_vars_and_attrs.append([orig_var, skip_dim0, param]) slice_vars_and_attrs[param.name] = [orig_var, skip_dim0, param]
return slice_vars_and_attrs return slice_vars_and_attrs
# ====================== private transpiler functions ===================== # ====================== private transpiler functions =====================
...@@ -1662,10 +1664,10 @@ to transpile() call.") ...@@ -1662,10 +1664,10 @@ to transpile() call.")
if key in ["Param", "Grad", "LearningRate"]: if key in ["Param", "Grad", "LearningRate"]:
continue continue
var = self.origin_program.global_block().vars[opt_op.input(key)[0]] var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
param_var = new_inputs["Param"]
# update accumulator variable shape # update accumulator variable shape
param_shape = new_inputs["Param"].shape new_shape = self._get_optimizer_input_shape(
new_shape = self._get_optimizer_input_shape(opt_op.type, key, opt_op.type, key, var.shape, param_var.shape)
var.shape, param_shape)
tmpvar = pserver_block.create_var( tmpvar = pserver_block.create_var(
name=var.name, name=var.name,
persistable=var.persistable, persistable=var.persistable,
...@@ -1673,6 +1675,13 @@ to transpile() call.") ...@@ -1673,6 +1675,13 @@ to transpile() call.")
shape=new_shape) shape=new_shape)
new_inputs[key] = tmpvar new_inputs[key] = tmpvar
# var shape been changed
if new_shape != var.shape:
slice_var_args = self._slice_params_and_optimizes[
param_var.name]
self._slice_params_and_optimizes[
var.name] = [var, slice_var_args[1], tmpvar]
# change output's ParamOut variable # change output's ParamOut variable
outputs = self._get_output_map_from_op( outputs = self._get_output_map_from_op(
self.origin_program.global_block().vars, opt_op) self.origin_program.global_block().vars, opt_op)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册