Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
60a4f69b
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
60a4f69b
编写于
11月 22, 2018
作者:
Q
Qiao Longfei
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add lookup remote table op
上级
e0b48f7e
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
204 addition
and
41 deletion
+204
-41
paddle/fluid/operators/distributed_ops/lookup_remote_table_op.cc
...fluid/operators/distributed_ops/lookup_remote_table_op.cc
+104
-0
paddle/fluid/operators/distributed_ops/lookup_remote_table_op.h
.../fluid/operators/distributed_ops/lookup_remote_table_op.h
+100
-41
未找到文件。
paddle/fluid/operators/distributed_ops/lookup_remote_table_op.cc
0 → 100644
浏览文件 @
60a4f69b
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/distributed_ops/lookup_remote_table_op.h"
#include "paddle/fluid/framework/var_type_inference.h"
namespace
paddle
{
namespace
operators
{
class
LookupRemoteTableOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"W"
),
"Input(W) of LookupRemoteTableOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Ids"
),
"Input(Ids) of LookupRemoteTableOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
"Output(Out) of LookupRemoteTableOp should not be null."
);
auto
table_dims
=
ctx
->
GetInputDim
(
"W"
);
auto
ids_dims
=
ctx
->
GetInputDim
(
"Ids"
);
int
ids_rank
=
ids_dims
.
size
();
PADDLE_ENFORCE_EQ
(
table_dims
.
size
(),
2
);
PADDLE_ENFORCE_EQ
(
ids_dims
[
ids_rank
-
1
],
1
,
"The last dimension of the 'Ids' tensor must be 1."
);
auto
output_dims
=
framework
::
vectorize
(
framework
::
slice_ddim
(
ids_dims
,
0
,
ids_rank
-
1
));
output_dims
.
push_back
(
table_dims
[
1
]);
ctx
->
SetOutputDim
(
"Out"
,
framework
::
make_ddim
(
output_dims
));
if
(
ctx
->
GetOutputsVarType
(
"Out"
)[
0
]
==
framework
::
proto
::
VarType
::
LOD_TENSOR
)
{
ctx
->
ShareLoD
(
"Ids"
,
/*->*/
"Out"
);
}
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
data_type
=
framework
::
GetDataTypeOfVar
(
ctx
.
InputVar
(
"W"
));
return
framework
::
OpKernelType
(
data_type
,
ctx
.
device_context
());
}
};
class
LookupRemoteTableOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddInput
(
"W"
,
"(Tensor) The input represents embedding tensors, "
"which is a learnable parameter."
);
AddInput
(
"Ids"
,
"An input with type int32 or int64 "
"contains the ids to be looked up in W. "
"The last dimension size must be 1."
);
AddOutput
(
"Out"
,
"The lookup results, which have the same type as W."
);
AddAttr
<
int64_t
>
(
"padding_idx"
,
"(int64, default -1) "
"If the value is -1, it makes no effect to lookup. "
"Otherwise the given value indicates padding the output "
"with zeros whenever lookup encounters it in Ids."
)
.
SetDefault
(
kNoPadding
);
// NOTE(minqiyang): grad_inplace is an temporal attribute,
// please do NOT set this attribute in python layer.
AddAttr
<
bool
>
(
"grad_inplace"
,
"(boolean, default false) "
"If the grad op reuse the input's variable."
)
.
SetDefault
(
false
);
AddComment
(
R"DOC(
Lookup Remote Table Operator.
This operator is used to perform lookups on the parameter W,
then concatenated into a dense tensor.
The input Ids can carry the LoD (Level of Details) information,
or not. And the output only shares the LoD information with input Ids.
)DOC"
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
lookup_remote_table
,
ops
::
LookupRemoteTableOp
,
ops
::
EmptyGradOpMaker
,
ops
::
LookupRemoteTableOpMaker
);
REGISTER_OP_CPU_KERNEL
(
lookup_remote_table
,
ops
::
LookupRemoteTableKernel
<
float
>
,
ops
::
LookupRemoteTableKernel
<
double
>
);
paddle/fluid/operators/distributed_ops/lookup_remote_table.h
→
paddle/fluid/operators/distributed_ops/lookup_remote_table
_op
.h
浏览文件 @
60a4f69b
...
@@ -14,21 +14,22 @@ limitations under the License. */
...
@@ -14,21 +14,22 @@ limitations under the License. */
#include <future> // NOLINT
#include <future> // NOLINT
#include <ostream>
#include <ostream>
#include <vector>
#include <set>
#include <set>
#include <unordered_map>
#include <unordered_map>
#include <vector>
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/operators/detail/macros.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/operators/detail/macros.h"
#include "paddle/fluid/operators/distributed_ops/send_recv_util.h"
#include "paddle/fluid/operators/distributed_ops/send_recv_util.h"
namespace
paddle
{
namespace
paddle
{
namespace
operators
{
namespace
operators
{
namespace
distributed
{
namespace
distributed
{
inline
size_t
GetSectionIndex
(
int64_t
id
,
const
std
::
vector
<
int64_t
>&
abs_sections
)
{
inline
size_t
GetSectionIndex
(
int64_t
id
,
const
std
::
vector
<
int64_t
>&
abs_sections
)
{
for
(
size_t
i
=
1
;
i
<
abs_sections
.
size
();
++
i
)
{
for
(
size_t
i
=
1
;
i
<
abs_sections
.
size
();
++
i
)
{
if
(
row
<
abs_sections
[
i
])
{
if
(
row
<
abs_sections
[
i
])
{
return
i
-
1
;
return
i
-
1
;
...
@@ -49,8 +50,7 @@ inline std::vector<int64_t> ToAbsoluteSection(
...
@@ -49,8 +50,7 @@ inline std::vector<int64_t> ToAbsoluteSection(
}
}
inline
std
::
vector
<
std
::
vector
<
int64_t
>>
SplitIds
(
inline
std
::
vector
<
std
::
vector
<
int64_t
>>
SplitIds
(
const
std
::
string
&
id_name
,
const
std
::
string
&
id_name
,
const
std
::
vector
<
int64_t
>&
height_section
,
const
std
::
vector
<
int64_t
>&
height_section
,
framework
::
Scope
*
scope
)
{
framework
::
Scope
*
scope
)
{
auto
&
id_tensor
=
scope
->
Var
(
id_name
)
->
Get
<
framework
::
LoDTensor
>
();
auto
&
id_tensor
=
scope
->
Var
(
id_name
)
->
Get
<
framework
::
LoDTensor
>
();
auto
*
id_data
=
id_tensor
.
data
<
int64_t
>
();
auto
*
id_data
=
id_tensor
.
data
<
int64_t
>
();
...
@@ -68,8 +68,7 @@ inline std::vector<std::vector<int64_t>> SplitIds(
...
@@ -68,8 +68,7 @@ inline std::vector<std::vector<int64_t>> SplitIds(
}
}
inline
void
SplitIdsIntoMultipleVarsBySection
(
inline
void
SplitIdsIntoMultipleVarsBySection
(
const
std
::
string
&
id_name
,
const
std
::
string
&
id_name
,
const
std
::
vector
<
std
::
string
>&
in_var_names
,
const
std
::
vector
<
std
::
string
>&
in_var_names
,
const
std
::
vector
<
int64_t
>&
height_section
,
const
std
::
vector
<
int64_t
>&
height_section
,
const
std
::
vector
<
std
::
vector
<
int64_t
>>&
splited_ids
,
const
std
::
vector
<
std
::
vector
<
int64_t
>>&
splited_ids
,
framework
::
Scope
*
scope
)
{
framework
::
Scope
*
scope
)
{
...
@@ -78,18 +77,19 @@ inline void SplitIdsIntoMultipleVarsBySection(
...
@@ -78,18 +77,19 @@ inline void SplitIdsIntoMultipleVarsBySection(
auto
place
=
platform
::
CPUPlace
();
auto
place
=
platform
::
CPUPlace
();
for
(
size_t
i
=
0
;
i
<
in_var_names
.
size
();
++
i
)
{
for
(
size_t
i
=
0
;
i
<
in_var_names
.
size
();
++
i
)
{
auto
*
id_tensor
=
scope
->
Var
(
in_var_names
[
i
])
->
GetMutable
<
framework
::
LoDTensor
>
();
auto
*
id_tensor
=
scope
->
Var
(
in_var_names
[
i
])
->
GetMutable
<
framework
::
LoDTensor
>
();
auto
&
ids
=
splited_ids
[
i
];
auto
&
ids
=
splited_ids
[
i
];
if
(
!
ids
.
empty
())
{
if
(
!
ids
.
empty
())
{
auto
*
id_tensor_data
=
id_tensor
->
mutable_data
<
int64_t
>
(
framework
::
make_ddim
({
ids
.
size
(),
1
}),
place
);
auto
*
id_tensor_data
=
id_tensor
->
mutable_data
<
int64_t
>
(
framework
::
make_ddim
({
ids
.
size
(),
1
}),
place
);
memcpy
(
id_tensor_data
,
ids
.
data
(),
sizeof
(
int64_t
)
*
ids
.
size
());
memcpy
(
id_tensor_data
,
ids
.
data
(),
sizeof
(
int64_t
)
*
ids
.
size
());
}
}
}
}
}
}
inline
void
MergeMultipleVarsIntoOnBySection
(
inline
void
MergeMultipleVarsIntoOnBySection
(
const
std
::
string
&
id_name
,
const
std
::
string
&
id_name
,
const
std
::
string
&
out_name
,
const
std
::
string
&
out_name
,
const
std
::
vector
<
std
::
string
>&
out_var_names
,
const
std
::
vector
<
std
::
string
>&
out_var_names
,
const
std
::
vector
<
int64_t
>&
height_section
,
const
std
::
vector
<
int64_t
>&
height_section
,
const
std
::
vector
<
std
::
vector
<
int64_t
>>&
splited_ids
,
const
std
::
vector
<
std
::
vector
<
int64_t
>>&
splited_ids
,
...
@@ -109,9 +109,11 @@ inline void MergeMultipleVarsIntoOnBySection(
...
@@ -109,9 +109,11 @@ inline void MergeMultipleVarsIntoOnBySection(
auto
&
out_tensor
=
scope
->
Var
(
out_name
)
->
Get
<
framework
::
LoDTensor
>
();
auto
&
out_tensor
=
scope
->
Var
(
out_name
)
->
Get
<
framework
::
LoDTensor
>
();
auto
*
out_tensor_data
=
out_tensor
.
mutable_data
<
float
>
();
auto
*
out_tensor_data
=
out_tensor
.
mutable_data
<
float
>
();
for
(
size_t
section_idx
=
0
;
section_idx
<
out_var_names
.
size
();
++
section_idx
)
{
for
(
size_t
section_idx
=
0
;
section_idx
<
out_var_names
.
size
();
++
section_idx
)
{
auto
&
ids_in_this_section
=
splited_ids
[
section_idx
];
auto
&
ids_in_this_section
=
splited_ids
[
section_idx
];
auto
&
prefetch_out_var
=
scope
->
Var
(
out_var_names
[
section_idx
])
->
Get
<
framework
::
LoDTensor
>
();
auto
&
prefetch_out_var
=
scope
->
Var
(
out_var_names
[
section_idx
])
->
Get
<
framework
::
LoDTensor
>
();
const
auto
*
out_var_data
=
prefetch_out_var
.
mutable_data
<
float
>
();
const
auto
*
out_var_data
=
prefetch_out_var
.
mutable_data
<
float
>
();
auto
&
dims
=
prefetch_out_var
.
dims
();
auto
&
dims
=
prefetch_out_var
.
dims
();
...
@@ -126,31 +128,27 @@ inline void MergeMultipleVarsIntoOnBySection(
...
@@ -126,31 +128,27 @@ inline void MergeMultipleVarsIntoOnBySection(
auto
&
offsets
=
id_to_offset
[
origin_id
];
auto
&
offsets
=
id_to_offset
[
origin_id
];
for
(
auto
&
offset
:
offsets
)
{
for
(
auto
&
offset
:
offsets
)
{
// should support GPU tensor
// should support GPU tensor
memory
::
Copy
(
cpu_place
,
out_tensor_data
+
offset
*
row_numel
,
memory
::
Copy
(
cpu_place
,
out_tensor_data
+
offset
*
row_numel
,
cpu_place
,
cpu_place
,
out_var_data
+
i
*
grad_row_numel
,
out_var_data
+
i
*
grad_row_numel
,
sizeof
(
T
)
*
grad_row_numel
);
sizeof
(
T
)
*
grad_row_numel
);
}
}
}
}
}
}
}
}
inline
void
prefetch
(
inline
void
prefetch
(
const
std
::
string
&
table_name
,
const
std
::
string
&
id_name
,
const
std
::
string
&
table_name
,
const
std
::
string
&
id_name
,
const
std
::
string
&
out_name
,
const
std
::
string
&
out_name
,
const
std
::
vector
<
std
::
string
>&
epmap
,
const
std
::
vector
<
std
::
string
>&
epmap
,
const
std
::
vector
<
int64_t
>&
height_section
,
const
std
::
vector
<
int64_t
>&
height_section
,
const
framework
::
Scope
&
scope
,
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
{
const
platform
::
Place
&
place
)
const
{
auto
local_scope
=
scope
.
NewScope
();
auto
local_scope
=
scope
.
NewScope
();
platform
::
DeviceContextPool
&
pool
=
platform
::
DeviceContextPool
::
Instance
();
platform
::
DeviceContextPool
&
pool
=
platform
::
DeviceContextPool
::
Instance
();
auto
&
ctx
=
*
pool
.
Get
(
place
);
auto
&
ctx
=
*
pool
.
Get
(
place
);
distributed
::
RPCClient
*
rpc_client
=
distributed
::
RPCClient
*
rpc_client
=
distributed
::
RPCClient
::
GetInstance
<
RPCCLIENT_T
>
(
distributed
::
RPCClient
::
GetInstance
<
RPCCLIENT_T
>
(
Attr
<
int
>
(
"trainer_id"
));
Attr
<
int
>
(
"trainer_id"
));
std
::
vector
<
std
::
string
>
in_var_names
;
std
::
vector
<
std
::
string
>
in_var_names
;
std
::
vector
<
std
::
string
>
out_var_names
;
std
::
vector
<
std
::
string
>
out_var_names
;
...
@@ -160,7 +158,8 @@ inline void prefetch(
...
@@ -160,7 +158,8 @@ inline void prefetch(
}
}
auto
splited_ids
=
SplitIds
(
id_name
,
height_section
,
local_scope
);
auto
splited_ids
=
SplitIds
(
id_name
,
height_section
,
local_scope
);
SplitIdsIntoMultipleVarsBySection
(
id_name
,
in_var_names
,
height_section
,
splited_ids
,
local_scope
);
SplitIdsIntoMultipleVarsBySection
(
id_name
,
in_var_names
,
height_section
,
splited_ids
,
local_scope
);
// create output var in local scope
// create output var in local scope
for
(
auto
&
name
:
out_var_names
)
{
for
(
auto
&
name
:
out_var_names
)
{
...
@@ -172,8 +171,8 @@ inline void prefetch(
...
@@ -172,8 +171,8 @@ inline void prefetch(
if
(
NeedSend
(
local_scope
,
ins
[
i
]))
{
if
(
NeedSend
(
local_scope
,
ins
[
i
]))
{
VLOG
(
30
)
<<
"sending "
<<
ins
[
i
]
<<
" to "
<<
epmap
[
i
]
<<
" to get "
VLOG
(
30
)
<<
"sending "
<<
ins
[
i
]
<<
" to "
<<
epmap
[
i
]
<<
" to get "
<<
outs
[
i
]
<<
" back"
;
<<
outs
[
i
]
<<
" back"
;
rets
.
push_back
(
rpc_client
->
AsyncPrefetchVar
(
epmap
[
i
],
ctx
,
local_scope
,
rets
.
push_back
(
rpc_client
->
AsyncPrefetchVar
(
in_var_names
[
i
],
out_var_names
[
i
]));
epmap
[
i
],
ctx
,
local_scope
,
in_var_names
[
i
],
out_var_names
[
i
]));
}
else
{
}
else
{
VLOG
(
30
)
<<
"don't send no-initialied variable: "
<<
out_var_names
[
i
];
VLOG
(
30
)
<<
"don't send no-initialied variable: "
<<
out_var_names
[
i
];
}
}
...
@@ -182,11 +181,71 @@ inline void prefetch(
...
@@ -182,11 +181,71 @@ inline void prefetch(
PADDLE_ENFORCE
(
rets
[
i
]
->
Wait
(),
"internal error in RPCClient"
);
PADDLE_ENFORCE
(
rets
[
i
]
->
Wait
(),
"internal error in RPCClient"
);
}
}
MergeMultipleVarsIntoOnBySection
(
id_name
,
out_name
,
out_var_names
,
height_section
,
plited_ids
,
scope
)
MergeMultipleVarsIntoOnBySection
(
id_name
,
out_name
,
out_var_names
,
height_section
,
plited_ids
,
scope
)
scope
.
DeleteScope
(
local_scope
);
scope
.
DeleteScope
(
local_scope
);
}
}
using
Tensor
=
framework
::
Tensor
;
using
LoDTensor
=
framework
::
LoDTensor
;
using
SelectedRows
=
framework
::
SelectedRows
;
using
DDim
=
framework
::
DDim
;
constexpr
int64_t
kNoPadding
=
-
1
;
template
<
typename
T
>
class
LookupRemoteTableKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
ids_t
=
context
.
Input
<
LoDTensor
>
(
"Ids"
);
// int tensor
auto
*
output_t
=
context
.
Output
<
LoDTensor
>
(
"Out"
);
// float tensor
auto
*
table_var
=
context
.
InputVar
(
"W"
);
int64_t
padding_idx
=
context
.
Attr
<
int64_t
>
(
"padding_idx"
);
int64_t
*
ids
=
const_cast
<
int64_t
*>
(
ids_t
->
data
<
int64_t
>
());
int64_t
ids_numel
=
ids_t
->
numel
();
if
(
table_var
->
IsType
<
LoDTensor
>
())
{
auto
*
table_t
=
context
.
Input
<
LoDTensor
>
(
"W"
);
int64_t
row_number
=
table_t
->
dims
()[
0
];
int64_t
row_width
=
table_t
->
dims
()[
1
];
auto
*
table
=
table_t
->
data
<
T
>
();
auto
*
output
=
output_t
->
mutable_data
<
T
>
(
context
.
GetPlace
());
for
(
int64_t
i
=
0
;
i
<
ids_numel
;
++
i
)
{
if
(
padding_idx
!=
kNoPadding
&&
ids
[
i
]
==
padding_idx
)
{
memset
(
output
+
i
*
row_width
,
0
,
row_width
*
sizeof
(
T
));
}
else
{
PADDLE_ENFORCE_LT
(
ids
[
i
],
row_number
);
PADDLE_ENFORCE_GE
(
ids
[
i
],
0
,
"ids %d"
,
i
);
memcpy
(
output
+
i
*
row_width
,
table
+
ids
[
i
]
*
row_width
,
row_width
*
sizeof
(
T
));
}
}
}
else
if
(
table_var
->
IsType
<
SelectedRows
>
())
{
const
auto
&
table_t
=
table_var
->
Get
<
SelectedRows
>
();
int64_t
row_width
=
table_t
.
value
().
dims
()[
1
];
const
auto
*
table
=
table_t
.
value
().
data
<
T
>
();
auto
*
output
=
output_t
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
blas
=
math
::
GetBlas
<
platform
::
CPUDeviceContext
,
T
>
(
context
);
for
(
int64_t
i
=
0
;
i
<
ids_numel
;
++
i
)
{
if
(
padding_idx
!=
kNoPadding
&&
ids
[
i
]
==
padding_idx
)
{
memset
(
output
+
i
*
row_width
,
0
,
row_width
*
sizeof
(
T
));
}
else
{
PADDLE_ENFORCE_GE
(
ids
[
i
],
0
);
auto
id_index
=
table_t
.
Index
(
ids
[
i
]);
PADDLE_ENFORCE_GE
(
id_index
,
0
,
"the input key should be exists."
);
blas
.
VCOPY
(
row_width
,
table
+
id_index
*
row_width
,
output
+
i
*
row_width
);
}
}
}
}
};
}
// namespace distributed
}
// namespace distributed
}
// namespace operators
}
// namespace operators
}
// namespace paddle
}
// namespace paddle
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录