提交 59b3df31 编写于 作者: Y Yu Yang

Extract OpInfo into a library

Fix cycle dependencies, Fix #3583.
上级 0d9846f3
......@@ -18,8 +18,8 @@ cc_test(scope_test SRCS scope_test.cc DEPS scope)
proto_library(framework_proto SRCS framework.proto)
cc_library(attribute SRCS attribute.cc DEPS framework_proto)
cc_library(operator SRCS operator.cc DEPS framework_proto device_context tensor scope attribute)
cc_library(op_info SRCS op_info.cc DEPS attribute framework_proto)
cc_library(operator SRCS operator.cc DEPS op_info device_context tensor scope)
cc_test(operator_test SRCS operator_test.cc DEPS operator op_registry)
cc_library(grad_op_builder SRCS grad_op_builder.cc DEPS operator)
......
......@@ -72,8 +72,8 @@ class NoGradOpMaker : public OpProtoAndCheckerMaker {
class FcOp : public operators::NetOp {
public:
FcOp(const std::string &type, const VarNameMap &inputs,
const VarNameMap &outputs, const AttributeMap &attrs)
FcOp(const std::string &type, const VariableNameMap &inputs,
const VariableNameMap &outputs, const AttributeMap &attrs)
: NetOp(type, inputs, outputs, attrs) {
AddOp(OpRegistry::CreateOp("mul",
{{"X", {Input("X")}}, {"Y", {Input("W")}}},
......
......@@ -20,11 +20,11 @@ namespace framework {
enum class OpArgType { IN, OUT };
static void TransOpArg(const OperatorBase* src_op, const OpArgType& src_type,
bool is_grad, OperatorBase::VarNameMap* vars) {
bool is_grad, VariableNameMap* vars) {
const auto& src_inout =
src_type == OpArgType::IN ? src_op->Inputs() : src_op->Outputs();
auto& dst_inout = *vars;
const OpProto* proto = OpRegistry::op_info_map().at(src_op->Type()).proto_;
const OpProto* proto = OpInfoMap().at(src_op->Type()).proto_;
const auto& src_arg_list =
src_type == OpArgType::IN ? proto->inputs() : proto->outputs();
for (const auto& arg : src_arg_list) {
......@@ -40,25 +40,25 @@ static void TransOpArg(const OperatorBase* src_op, const OpArgType& src_type,
}
OperatorBase* BuildGradOp(const OperatorBase* op) {
auto it = OpRegistry::op_info_map().find(op->Type());
PADDLE_ENFORCE(it != OpRegistry::op_info_map().end(),
"'%s' has not been registered.", op->Type());
auto it = OpInfoMap().find(op->Type());
PADDLE_ENFORCE(it != OpInfoMap().end(), "'%s' has not been registered.",
op->Type());
PADDLE_ENFORCE(it->second.proto_ != nullptr, "'%s' has no OpProto.",
op->Type());
std::string grad_op_type = it->second.grad_op_type_;
PADDLE_ENFORCE(!grad_op_type.empty(), "'%s' has no gradient operator.",
op->Type());
OperatorBase::VarNameMap inputs;
OperatorBase::VarNameMap outputs;
VariableNameMap inputs;
VariableNameMap outputs;
TransOpArg(op, OpArgType::IN, false, &inputs); // I
TransOpArg(op, OpArgType::OUT, false, &inputs); // O
TransOpArg(op, OpArgType::OUT, true, &inputs); // OG
TransOpArg(op, OpArgType::IN, true, &outputs); // IG
it = OpRegistry::op_info_map().find(grad_op_type);
PADDLE_ENFORCE(it != OpRegistry::op_info_map().end(),
"'%s' has not been registered.", grad_op_type);
it = OpInfoMap().find(grad_op_type);
PADDLE_ENFORCE(it != OpInfoMap().end(), "'%s' has not been registered.",
grad_op_type);
return it->second.creator_(grad_op_type, inputs, outputs, op->Attrs());
}
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/framework/op_info.h"
namespace paddle {
namespace framework {
static std::unordered_map<std::string, const paddle::framework::OpInfo>*
g_op_info_map = nullptr;
std::unordered_map<std::string, const paddle::framework::OpInfo>& OpInfoMap() {
if (g_op_info_map == nullptr) {
g_op_info_map =
new std::unordered_map<std::string, const paddle::framework::OpInfo>();
}
return *g_op_info_map;
}
} // namespace framework
} // namespace paddle
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <functional>
#include <map>
#include <string>
#include <unordered_map>
#include "paddle/framework/attribute.h"
namespace paddle {
namespace framework {
class OperatorBase;
using VariableNameMap = std::map<std::string, std::vector<std::string>>;
using OpCreator = std::function<OperatorBase*(
const std::string& /*type*/, const VariableNameMap& /*inputs*/,
const VariableNameMap& /*outputs*/, const AttributeMap& /*attrs*/)>;
struct OpInfo {
OpCreator creator_;
std::string grad_op_type_;
OpProto* proto_;
OpAttrChecker* checker_;
};
extern std::unordered_map<std::string, const OpInfo>& OpInfoMap();
} // namespace framework
} // namespace paddle
......@@ -19,32 +19,20 @@ limitations under the License. */
namespace paddle {
namespace framework {
std::unique_ptr<OperatorBase> OpRegistry::CreateOp(const std::string& type,
const VarNameMap& inputs,
const VarNameMap& outputs,
AttributeMap attrs) {
auto it = op_info_map().find(type);
PADDLE_ENFORCE(it != op_info_map().end(),
std::unique_ptr<OperatorBase> OpRegistry::CreateOp(
const std::string& type, const VariableNameMap& inputs,
const VariableNameMap& outputs, AttributeMap attrs) {
auto it = OpInfoMap().find(type);
PADDLE_ENFORCE(it != OpInfoMap().end(),
"Operator '%s' has not been registered.", type);
it->second.checker_->Check(attrs);
auto op = it->second.creator_(type, inputs, outputs, attrs);
return std::unique_ptr<OperatorBase>(op);
}
std::unique_ptr<OperatorBase> OpRegistry::CreateOp(const OpDesc& op_desc) {
VarNameMap inputs = ConvertOpDescVarsToVarNameMap(op_desc.inputs());
VarNameMap outputs = ConvertOpDescVarsToVarNameMap(op_desc.outputs());
AttributeMap attrs;
for (auto& attr : op_desc.attrs()) {
attrs[attr.name()] = GetAttrValue(attr);
}
return CreateOp(op_desc.type(), inputs, outputs, attrs);
}
OperatorBase::VarNameMap OpRegistry::ConvertOpDescVarsToVarNameMap(
static VariableNameMap ConvertOpDescVarsToVarNameMap(
const google::protobuf::RepeatedPtrField<OpDesc::Var>& op_desc_vars) {
VarNameMap ret_val;
VariableNameMap ret_val;
for (auto& var : op_desc_vars) {
auto& var_names = ret_val[var.parameter()];
auto& var_names_in_proto = var.arguments();
......@@ -55,6 +43,17 @@ OperatorBase::VarNameMap OpRegistry::ConvertOpDescVarsToVarNameMap(
return ret_val;
}
std::unique_ptr<OperatorBase> OpRegistry::CreateOp(const OpDesc& op_desc) {
VariableNameMap inputs = ConvertOpDescVarsToVarNameMap(op_desc.inputs());
VariableNameMap outputs = ConvertOpDescVarsToVarNameMap(op_desc.outputs());
AttributeMap attrs;
for (auto& attr : op_desc.attrs()) {
attrs[attr.name()] = GetAttrValue(attr);
}
return CreateOp(op_desc.type(), inputs, outputs, attrs);
}
std::unique_ptr<OperatorBase> OpRegistry::CreateGradOp(const OperatorBase& op) {
PADDLE_ENFORCE(!op.IsNetOp(), "Use framework::Backward to get backward ops");
return std::unique_ptr<OperatorBase>(BuildGradOp(&op));
......
......@@ -23,6 +23,7 @@ limitations under the License. */
#include "paddle/framework/attribute.h"
#include "paddle/framework/framework.pb.h"
#include "paddle/framework/grad_op_builder.h"
#include "paddle/framework/op_info.h"
#include "paddle/framework/operator.h"
#include "paddle/framework/scope.h"
......@@ -30,28 +31,16 @@ namespace paddle {
namespace framework {
class OpRegistry {
using VarNameMap = OperatorBase::VarNameMap;
using OpCreator = std::function<OperatorBase*(
const std::string& /*type*/, const VarNameMap& /*inputs*/,
const VarNameMap& /*outputs*/, const AttributeMap& /*attrs*/)>;
public:
struct OpInfo {
OpCreator creator_;
std::string grad_op_type_;
OpProto* proto_;
OpAttrChecker* checker_;
};
template <typename OpType, typename ProtoMakerType, typename GradOpType>
static void RegisterOp(const std::string& op_type,
const std::string& grad_op_type) {
PADDLE_ENFORCE(op_info_map().count(op_type) == 0,
PADDLE_ENFORCE(OpInfoMap().count(op_type) == 0,
"'%s' is registered more than once.", op_type);
OpInfo op_info;
op_info.creator_ = [](const std::string& type, const VarNameMap& inputs,
const VarNameMap& outputs,
const AttributeMap& attrs) {
op_info.creator_ = [](
const std::string& type, const VariableNameMap& inputs,
const VariableNameMap& outputs, const AttributeMap& attrs) {
return new OpType(type, inputs, outputs, attrs);
};
op_info.grad_op_type_ = grad_op_type;
......@@ -70,7 +59,7 @@ class OpRegistry {
op_info.proto_ = nullptr;
op_info.checker_ = nullptr;
}
op_info_map().insert(std::make_pair(op_type, op_info));
OpInfoMap().insert(std::make_pair(op_type, op_info));
// register gradient op
if (!grad_op_type.empty()) {
RegisterOp<GradOpType, NOPMaker, NOP>(grad_op_type, "");
......@@ -78,21 +67,13 @@ class OpRegistry {
}
static std::unique_ptr<OperatorBase> CreateOp(const std::string& type,
const VarNameMap& inputs,
const VarNameMap& outputs,
const VariableNameMap& inputs,
const VariableNameMap& outputs,
AttributeMap attrs);
static std::unique_ptr<OperatorBase> CreateOp(const OpDesc& op_desc);
static VarNameMap ConvertOpDescVarsToVarNameMap(
const google::protobuf::RepeatedPtrField<OpDesc::Var>& op_desc_vars);
static std::unique_ptr<OperatorBase> CreateGradOp(const OperatorBase& op);
static std::unordered_map<std::string, const OpInfo>& op_info_map() {
static std::unordered_map<std::string, const OpInfo> op_info_map_;
return op_info_map_;
}
};
class Registrar {
......
......@@ -115,8 +115,8 @@ void OperatorBase::Rename(const std::string& old_name,
}
OperatorBase::OperatorBase(const std::string& type,
const OperatorBase::VarNameMap& inputs,
const OperatorBase::VarNameMap& outputs,
const VariableNameMap& inputs,
const VariableNameMap& outputs,
const AttributeMap& attrs)
: type_(type), inputs_(inputs), outputs_(outputs), attrs_(attrs) {
static std::atomic<size_t> gUniqId(0UL);
......@@ -141,9 +141,9 @@ std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
}
return ret_val;
}
auto it = OpRegistry::op_info_map().find(type_);
auto it = OpInfoMap().find(type_);
PADDLE_ENFORCE(
it != OpRegistry::op_info_map().end(),
it != OpInfoMap().end(),
"Operator %s not registered, cannot figure out intermediate outputs",
type_);
PADDLE_ENFORCE(
......
......@@ -19,6 +19,7 @@ limitations under the License. */
#include <unordered_map>
#include <vector>
#include "op_info.h"
#include "paddle/framework/attribute.h"
#include "paddle/framework/framework.pb.h"
#include "paddle/framework/scope.h"
......@@ -62,10 +63,8 @@ class ExecutionContext;
*/
class OperatorBase {
public:
using VarNameMap = std::map<std::string, std::vector<std::string>>;
OperatorBase(const std::string& type, const VarNameMap& inputs,
const VarNameMap& outputs, const AttributeMap& attrs);
OperatorBase(const std::string& type, const VariableNameMap& inputs,
const VariableNameMap& outputs, const AttributeMap& attrs);
virtual ~OperatorBase() {}
......@@ -93,8 +92,8 @@ class OperatorBase {
/// rename inputs outputs name
void Rename(const std::string& old_name, const std::string& new_name);
const VarNameMap& Inputs() const { return inputs_; }
const VarNameMap& Outputs() const { return outputs_; }
const VariableNameMap& Inputs() const { return inputs_; }
const VariableNameMap& Outputs() const { return outputs_; }
//! Get a input with argument's name described in `op_proto`
const std::string& Input(const std::string& name) const;
//! Get a input which has multiple variables.
......@@ -122,11 +121,11 @@ class OperatorBase {
// I (Inputs)opear
// O (Outputs)
// OG (Output Gradients)
VarNameMap inputs_;
VariableNameMap inputs_;
// NOTE: in case of OpGrad, outputs_ contains
// IG (Inputs Gradients)
VarNameMap outputs_;
VariableNameMap outputs_;
AttributeMap attrs_;
};
......@@ -143,8 +142,10 @@ class OperatorBase {
// using PARENT_CLASS::PARENT_CLASS;
// to use parent's constructor.
#define DEFINE_OP_CONSTRUCTOR(CLS, PARENT_CLS) \
CLS(const std::string& type, const VarNameMap& inputs, \
const VarNameMap& outputs, const paddle::framework::AttributeMap& attrs) \
CLS(const std::string& type, \
const ::paddle::framework::VariableNameMap& inputs, \
const ::paddle::framework::VariableNameMap& outputs, \
const paddle::framework::AttributeMap& attrs) \
: PARENT_CLS(type, inputs, outputs, attrs) {}
class NOP : public OperatorBase {
......@@ -389,8 +390,8 @@ class OperatorWithKernel : public OperatorBase {
using OpKernelMap =
std::unordered_map<OpKernelKey, std::unique_ptr<OpKernel>, OpKernelHash>;
OperatorWithKernel(const std::string& type, const VarNameMap& inputs,
const VarNameMap& outputs, const AttributeMap& attrs)
OperatorWithKernel(const std::string& type, const VariableNameMap& inputs,
const VariableNameMap& outputs, const AttributeMap& attrs)
: OperatorBase(type, inputs, outputs, attrs) {}
void InferShape(const Scope& scope) const override {
......
......@@ -23,8 +23,8 @@ static int op_run_num = 0;
class OpWithoutKernelTest : public OperatorBase {
public:
OpWithoutKernelTest(const std::string& type, const VarNameMap& inputs,
const VarNameMap& outputs, const AttributeMap& attrs)
OpWithoutKernelTest(const std::string& type, const VariableNameMap& inputs,
const VariableNameMap& outputs, const AttributeMap& attrs)
: OperatorBase(type, inputs, outputs, attrs), x(1) {}
void InferShape(const Scope& scope) const override {}
void Run(const Scope& scope,
......@@ -249,8 +249,9 @@ TEST(OpKernel, multi_inputs) {
class OperatorClone : public paddle::framework::OperatorBase {
public:
DEFINE_OP_CLONE_METHOD(OperatorClone);
OperatorClone(const std::string& type, const VarNameMap& inputs,
const VarNameMap& outputs,
OperatorClone(const std::string& type,
const paddle::framework::VariableNameMap& inputs,
const paddle::framework::VariableNameMap& outputs,
const paddle::framework::AttributeMap& attrs)
: OperatorBase(type, inputs, outputs, attrs) {}
void InferShape(const paddle::framework::Scope& scope) const override {}
......
......@@ -138,7 +138,7 @@ All parameter, weight, gradient are variables in Paddle.
//! @note: Be careful! PyBind will return std::string as an unicode, not
//! Python str. If you want a str object, you should cast them in Python.
m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
auto &op_info_map = OpRegistry::op_info_map();
auto &op_info_map = OpInfoMap();
std::vector<py::bytes> ret_values;
for (auto it = op_info_map.begin(); it != op_info_map.end(); ++it) {
const OpProto *proto = it->second.proto_;
......
......@@ -81,9 +81,8 @@ std::vector<std::string> NetOp::OutputVars(bool has_intermediate) const {
return ret_val;
}
NetOp::NetOp(const std::string& type,
const framework::OperatorBase::VarNameMap& inputs,
const framework::OperatorBase::VarNameMap& outputs,
NetOp::NetOp(const std::string& type, const framework::VariableNameMap& inputs,
const framework::VariableNameMap& outputs,
const framework::AttributeMap& attrs)
: framework::OperatorBase(type, inputs, outputs, attrs) {}
......
......@@ -38,8 +38,10 @@ class NetOp : public framework::OperatorBase {
public:
static const char kAll[];
NetOp() : framework::OperatorBase("plain_net", {}, {}, {}) {}
NetOp(const std::string& type, const VarNameMap& inputs,
const VarNameMap& outputs, const framework::AttributeMap& attrs);
NetOp(const std::string& type, const framework::VariableNameMap& inputs,
const framework::VariableNameMap& outputs,
const framework::AttributeMap& attrs);
NetOp(const NetOp& o) : framework::OperatorBase(o.type_, {}, {}, o.attrs_) {
this->ops_.reserve(o.ops_.size());
......
......@@ -131,8 +131,8 @@ const rnn::ArgumentName RecurrentGradientOp::kArgName{
"memories", "pre_memories", "boot_memories@grad"};
RecurrentOp::RecurrentOp(const std::string& type,
const framework::OperatorBase::VarNameMap& inputs,
const framework::OperatorBase::VarNameMap& outputs,
const framework::VariableNameMap& inputs,
const framework::VariableNameMap& outputs,
const framework::AttributeMap& attrs)
: OperatorBase(type, inputs, outputs, attrs) {
rnn::InitArgument(kArgName, &arg_, *this);
......@@ -223,8 +223,8 @@ void RecurrentGradientAlgorithm::InferShape(const Scope& scope) const {
}
RecurrentGradientOp::RecurrentGradientOp(
const std::string& type, const framework::OperatorBase::VarNameMap& inputs,
const framework::OperatorBase::VarNameMap& outputs,
const std::string& type, const framework::VariableNameMap& inputs,
const framework::VariableNameMap& outputs,
const framework::AttributeMap& attrs)
: OperatorBase(type, inputs, outputs, attrs) {
rnn::InitArgument(kArgName, &arg_, *this);
......
......@@ -114,8 +114,9 @@ class RecurrentGradientAlgorithm {
class RecurrentOp : public framework::OperatorBase {
public:
RecurrentOp(const std::string& type, const VarNameMap& inputs,
const VarNameMap& outputs, const framework::AttributeMap& attrs);
RecurrentOp(const std::string& type, const framework::VariableNameMap& inputs,
const framework::VariableNameMap& outputs,
const framework::AttributeMap& attrs);
RecurrentOp(const RecurrentOp& o)
: framework::OperatorBase(
......@@ -150,8 +151,9 @@ class RecurrentOp : public framework::OperatorBase {
class RecurrentGradientOp : public framework::OperatorBase {
public:
RecurrentGradientOp(const std::string& type, const VarNameMap& inputs,
const VarNameMap& outputs,
RecurrentGradientOp(const std::string& type,
const framework::VariableNameMap& inputs,
const framework::VariableNameMap& outputs,
const framework::AttributeMap& attrs);
RecurrentGradientOp(const RecurrentGradientOp& o)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册