Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
576e7f47
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
576e7f47
编写于
5月 19, 2017
作者:
D
dangqingqing
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Support variable-dimension for convolution operation.
上级
dc530a71
变更
5
显示空白变更内容
内联
并排
Showing
5 changed file
with
73 addition
and
13 deletion
+73
-13
demo/sentiment/train_v2.py
demo/sentiment/train_v2.py
+2
-1
paddle/py_paddle/dataprovider_converter.py
paddle/py_paddle/dataprovider_converter.py
+31
-8
python/paddle/trainer/PyDataProvider2.py
python/paddle/trainer/PyDataProvider2.py
+14
-3
python/paddle/v2/data_type.py
python/paddle/v2/data_type.py
+2
-1
python/paddle/v2/tests/test_data_feeder.py
python/paddle/v2/tests/test_data_feeder.py
+24
-0
未找到文件。
demo/sentiment/train_v2.py
浏览文件 @
576e7f47
...
...
@@ -103,7 +103,7 @@ def stacked_lstm_net(input_dim,
if
__name__
==
'__main__'
:
# init
paddle
.
init
(
use_gpu
=
False
)
paddle
.
init
(
use_gpu
=
False
,
log_clipping
=
True
)
#data
print
'load dictionary...'
...
...
@@ -131,6 +131,7 @@ if __name__ == '__main__':
# create optimizer
adam_optimizer
=
paddle
.
optimizer
.
Adam
(
learning_rate
=
2e-3
,
gradient_clipping_threshold
=
0.003
,
regularization
=
paddle
.
optimizer
.
L2Regularization
(
rate
=
8e-4
),
model_average
=
paddle
.
optimizer
.
ModelAverage
(
average_window
=
0.5
))
...
...
paddle/py_paddle/dataprovider_converter.py
浏览文件 @
576e7f47
...
...
@@ -17,6 +17,7 @@ import collections
import
swig_paddle
import
numpy
import
itertools
from
functools
import
reduce
__all__
=
[
'DataProviderConverter'
]
...
...
@@ -59,12 +60,14 @@ class IScanner(object):
"""
pass
def
finish_pre_scan
(
self
,
argument
):
def
finish_pre_scan
(
self
,
argument
,
dat
=
None
):
"""
Finish first scan pass. Allocate the memory.
:param argument: Output arguments object.
:type argument: swig_paddle.Arguments
:param dat: Output arguments object.
:type dat: The Python object, numpy.array or List.
:return:
"""
pass
...
...
@@ -95,17 +98,27 @@ class DenseScanner(IScanner):
def
__init__
(
self
,
input_type
,
pos
):
IScanner
.
__init__
(
self
,
input_type
,
pos
)
self
.
__mat__
=
None
self
.
__shape__
=
None
self
.
__height__
=
0
def
pre_scan
(
self
,
dat
):
self
.
__height__
+=
1
def
finish_pre_scan
(
self
,
argument
):
def
finish_pre_scan
(
self
,
argument
,
dat
=
None
):
self
.
__shape__
=
numpy
.
array
(
dat
).
shape
if
len
(
self
.
__shape__
)
>
3
:
raise
ValueError
(
"The dimension of input is greater than 3."
)
dim
=
reduce
(
lambda
x
,
y
:
x
*
y
,
self
.
__shape__
)
if
len
(
self
.
__shape__
)
==
1
:
assert
dim
==
self
.
input_type
.
dim
self
.
__mat__
=
numpy
.
ndarray
(
shape
=
(
self
.
__height__
,
self
.
input_type
.
dim
),
dtype
=
numpy
.
float32
)
shape
=
(
self
.
__height__
,
dim
),
dtype
=
numpy
.
float32
)
self
.
__height__
=
0
def
scan
(
self
,
dat
):
if
isinstance
(
dat
,
numpy
.
ndarray
):
assert
self
.
__shape__
==
dat
.
shape
dat
=
dat
.
flatten
()
self
.
__mat__
[
self
.
__height__
]
=
dat
self
.
__height__
+=
1
...
...
@@ -116,6 +129,13 @@ class DenseScanner(IScanner):
m
=
swig_paddle
.
Matrix
.
createDenseFromNumpy
(
self
.
__mat__
,
True
,
self
.
data_in_gpu
)
argument
.
setSlotValue
(
self
.
pos
,
m
)
if
len
(
self
.
__shape__
)
>
1
:
# The last-two dimenstions are the frame height and width.
# For example, the layout is CHW for 3-D feature of image.
# The H and W are the fram height and width.
h
,
w
=
self
.
__shape__
[
-
2
:]
argument
.
setSlotFrameHeight
(
self
.
pos
,
h
)
argument
.
setSlotFrameWidth
(
self
.
pos
,
w
)
class
SparseBinaryScanner
(
IScanner
):
...
...
@@ -166,7 +186,7 @@ class IndexScanner(IScanner):
def
pre_scan
(
self
,
dat
):
self
.
__idx__
+=
1
def
finish_pre_scan
(
self
,
argument
):
def
finish_pre_scan
(
self
,
argument
,
dat
=
None
):
self
.
__ids__
=
[
0
]
*
self
.
__idx__
self
.
__idx__
=
0
...
...
@@ -191,8 +211,8 @@ class SequenceScanner(IScanner):
for
each
in
dat
:
self
.
__inner_scanner__
.
pre_scan
(
each
)
def
finish_pre_scan
(
self
,
argument
):
self
.
__inner_scanner__
.
finish_pre_scan
(
argument
)
def
finish_pre_scan
(
self
,
argument
,
dat
=
None
):
self
.
__inner_scanner__
.
finish_pre_scan
(
argument
,
dat
)
def
scan
(
self
,
dat
):
self
.
__seq__
.
append
(
self
.
__seq__
[
-
1
]
+
self
.
get_size
(
dat
))
...
...
@@ -233,8 +253,11 @@ class DataProviderConverter(object):
for
each_step
,
scanner
in
itertools
.
izip
(
each_sample
,
scanners
):
scanner
.
pre_scan
(
each_step
)
for
scanner
in
scanners
:
scanner
.
finish_pre_scan
(
argument
)
# Some scanners, like dense scanner, pre-allocate memory for mini-batch
# in finish_pre_scan function. The dat[0] is used to calculate the size
# of input data.
for
scanner
,
each_feature
in
itertools
.
izip
(
scanners
,
dat
[
0
]):
scanner
.
finish_pre_scan
(
argument
,
each_feature
)
for
each_sample
in
dat
:
for
each_step
,
scanner
in
itertools
.
izip
(
each_sample
,
scanners
):
...
...
python/paddle/trainer/PyDataProvider2.py
浏览文件 @
576e7f47
...
...
@@ -72,9 +72,16 @@ class InputType(object):
def
dense_slot
(
dim
,
seq_type
=
SequenceType
.
NO_SEQUENCE
):
"""
Dense Vector. It means the input feature is dense float vector. For example,
if the input is an image with 28*28 pixels, the input of Paddle neural
network should be a dense vector with dimension 784.
Dense Array. It means the input feature is dense array with float type.
For example, if the input is an image with 28*28 pixels, the input of
Paddle neural network could be a dense vector with dimension 784 or a
numpy array with shape (28, 28).
For the 2-D convolution operation, each sample in one mini-batch must have
the similarly size in PaddlePaddle now. But, it supports variable-dimension
feature across mini-batch. For the variable-dimension, the param dim is not
used. While the data reader must yield numpy array and the data feeder will
set the data shape correctly.
:param dim: dimension of this vector.
:type dim: int
...
...
@@ -135,6 +142,10 @@ sparse_binary_vector = sparse_non_value_slot
sparse_vector
=
sparse_value_slot
integer_value
=
index_slot
# dense_array can be used for variable-length input feature.
# Each feature is not a vector, but a multi-dimensional array.
dense_array
=
dense_slot
def
dense_vector_sequence
(
dim
):
"""
...
...
python/paddle/v2/data_type.py
浏览文件 @
576e7f47
...
...
@@ -16,7 +16,8 @@ import paddle.trainer.PyDataProvider2 as pydp2
import_list
=
[
nm
for
nm
in
dir
(
pydp2
)
if
'_'
in
nm
and
nm
[
0
]
!=
'_'
and
(
'value'
in
nm
or
'vector'
in
nm
)
if
'_'
in
nm
and
nm
[
0
]
!=
'_'
and
(
'value'
in
nm
or
'vector'
in
nm
or
'array'
in
nm
)
]
import_list
.
extend
([
'InputType'
])
...
...
python/paddle/v2/tests/test_data_feeder.py
浏览文件 @
576e7f47
...
...
@@ -233,6 +233,30 @@ class DataFeederTest(unittest.TestCase):
self
.
assertEqual
(
out_sparse
.
getSparseRowCols
(
i
),
data
[
i
][
1
])
self
.
assertEqual
(
out_index
[
i
],
data
[
i
][
0
])
def
test_dense_set_shape
(
self
):
# test 2-D data
def
gen_data
(
batch_size
,
shape
):
data
=
[]
for
i
in
xrange
(
batch_size
):
each_sample
=
[]
each_sample
.
append
(
np
.
random
.
random
(
shape
))
data
.
append
(
each_sample
)
return
data
feeder
=
DataFeeder
([(
'image'
,
data_type
.
dense_array
(
2352
))],
{
'image'
:
0
})
arg
=
feeder
(
gen_data
(
32
,
(
3
,
28
,
28
)))
h
=
arg
.
getSlotFrameHeight
(
0
)
w
=
arg
.
getSlotFrameWidth
(
0
)
self
.
assertEqual
(
h
,
28
)
self
.
assertEqual
(
w
,
28
)
arg
=
feeder
(
gen_data
(
32
,
(
3
,
30
,
32
)))
h
=
arg
.
getSlotFrameHeight
(
0
)
w
=
arg
.
getSlotFrameWidth
(
0
)
self
.
assertEqual
(
h
,
30
)
self
.
assertEqual
(
w
,
32
)
if
__name__
==
'__main__'
:
api
.
initPaddle
(
"--use_gpu=0"
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录