Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
56e21c55
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
56e21c55
编写于
1月 28, 2019
作者:
D
dengkaipeng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add comments and docs. test=develop
上级
577424e5
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
11 addition
and
6 deletion
+11
-6
paddle/fluid/operators/yolov3_loss_op.cc
paddle/fluid/operators/yolov3_loss_op.cc
+6
-1
paddle/fluid/operators/yolov3_loss_op.h
paddle/fluid/operators/yolov3_loss_op.h
+5
-5
未找到文件。
paddle/fluid/operators/yolov3_loss_op.cc
浏览文件 @
56e21c55
...
@@ -98,7 +98,7 @@ class Yolov3LossOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -98,7 +98,7 @@ class Yolov3LossOpMaker : public framework::OpProtoAndCheckerMaker {
"This is a 4-D tensor with shape of [N, C, H, W]."
"This is a 4-D tensor with shape of [N, C, H, W]."
"H and W should be same, and the second dimention(C) stores"
"H and W should be same, and the second dimention(C) stores"
"box locations, confidence score and classification one-hot"
"box locations, confidence score and classification one-hot"
"key of each anchor box"
);
"key
s
of each anchor box"
);
AddInput
(
"GTBox"
,
AddInput
(
"GTBox"
,
"The input tensor of ground truth boxes, "
"The input tensor of ground truth boxes, "
"This is a 3-D tensor with shape of [N, max_box_num, 5], "
"This is a 3-D tensor with shape of [N, max_box_num, 5], "
...
@@ -179,6 +179,11 @@ class Yolov3LossOpMaker : public framework::OpProtoAndCheckerMaker {
...
@@ -179,6 +179,11 @@ class Yolov3LossOpMaker : public framework::OpProtoAndCheckerMaker {
box coordinates (w, h), and sigmoid cross entropy loss is used for box
box coordinates (w, h), and sigmoid cross entropy loss is used for box
coordinates (x, y), confidence score loss and classification loss.
coordinates (x, y), confidence score loss and classification loss.
Each groud truth box find a best matching anchor box in all anchors,
prediction of this anchor box will incur all three parts of losses, and
prediction of anchor boxes with no GT box matched will only incur objectness
loss.
In order to trade off box coordinate losses between big boxes and small
In order to trade off box coordinate losses between big boxes and small
boxes, box coordinate losses will be mutiplied by scale weight, which is
boxes, box coordinate losses will be mutiplied by scale weight, which is
calculated as follow.
calculated as follow.
...
...
paddle/fluid/operators/yolov3_loss_op.h
浏览文件 @
56e21c55
...
@@ -308,13 +308,15 @@ class Yolov3LossKernel : public framework::OpKernel<T> {
...
@@ -308,13 +308,15 @@ class Yolov3LossKernel : public framework::OpKernel<T> {
}
}
}
}
// If best IoU is greater then ignore_thresh,
// ignore the objectness loss.
if
(
best_iou
>
ignore_thresh
)
{
if
(
best_iou
>
ignore_thresh
)
{
int
obj_idx
=
(
i
*
mask_num
+
j
)
*
stride
+
k
*
w
+
l
;
int
obj_idx
=
(
i
*
mask_num
+
j
)
*
stride
+
k
*
w
+
l
;
obj_mask_data
[
obj_idx
]
=
static_cast
<
T
>
(
-
1
);
obj_mask_data
[
obj_idx
]
=
static_cast
<
T
>
(
-
1
);
}
}
//
TODO(dengkaipeng):
all losses should be calculated if best IoU
// all losses should be calculated if best IoU
// is bigger then truth thresh
should be calculated here, but
// is bigger then truth thresh
, but currently,
//
currently,
truth thresh is an unreachable value as 1.0.
// truth thresh is an unreachable value as 1.0.
}
}
}
}
}
}
...
@@ -341,8 +343,6 @@ class Yolov3LossKernel : public framework::OpKernel<T> {
...
@@ -341,8 +343,6 @@ class Yolov3LossKernel : public framework::OpKernel<T> {
an_box
.
w
=
anchors
[
2
*
an_idx
]
/
static_cast
<
T
>
(
input_size
);
an_box
.
w
=
anchors
[
2
*
an_idx
]
/
static_cast
<
T
>
(
input_size
);
an_box
.
h
=
anchors
[
2
*
an_idx
+
1
]
/
static_cast
<
T
>
(
input_size
);
an_box
.
h
=
anchors
[
2
*
an_idx
+
1
]
/
static_cast
<
T
>
(
input_size
);
float
iou
=
CalcBoxIoU
<
T
>
(
an_box
,
gt_shift
);
float
iou
=
CalcBoxIoU
<
T
>
(
an_box
,
gt_shift
);
// TODO(dengkaipeng): In paper, objectness loss is ignore when
// best IoU > 0.5, but darknet code didn't implement this.
if
(
iou
>
best_iou
)
{
if
(
iou
>
best_iou
)
{
best_iou
=
iou
;
best_iou
=
iou
;
best_n
=
an_idx
;
best_n
=
an_idx
;
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录