未验证 提交 521a4a6a 编写于 作者: G Guanghua Yu 提交者: GitHub

add config link in model zoo (#529)

* add config link in model zoo

* fix link error

* add anchor free
上级 fb82692a
......@@ -22,15 +22,15 @@
#### COCO数据集上的mAP
| 网络结构 | 骨干网络 | 图片个数/GPU | 预训练模型 | mAP | FPS | 模型下载 |
|:------------:|:--------:|:----:|:-------:|:-------:|:---------:|:----------:|
| CornerNet-Squeeze | Hourglass104 | 14 | 无 | 34.5 | 35.5 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/cornernet_squeeze_hg104.tar) |
| CornerNet-Squeeze | ResNet50-vd | 14 | [faster\_rcnn\_r50\_vd\_fpn\_2x](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_vd_fpn_2x.tar) | 32.7 | 42.45 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/cornernet_squeeze_r50_vd_fpn.tar) |
| CornerNet-Squeeze-dcn | ResNet50-vd | 14 | [faster\_rcnn\_dcn\_r50\_vd\_fpn\_2x](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_dcn_r50_vd_fpn_2x.tar) | 34.9 | 40.05 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/cornernet_squeeze_dcn_r50_vd_fpn.tar) |
| CornerNet-Squeeze-dcn-mixup-cosine* | ResNet50-vd | 14 | [faster\_rcnn\_dcn\_r50\_vd\_fpn\_2x](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_dcn_r50_vd_fpn_2x.tar) | 38.2 | 40.05 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/cornernet_squeeze_dcn_r50_vd_fpn_mixup_cosine.pdparams) |
| FCOS | ResNet50 | 2 | [ResNet50\_cos\_pretrained](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_cos_pretrained.tar) | 39.8 | - | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/fcos_r50_fpn_1x.pdparams) |
| FCOS+multiscale_train | ResNet50 | 2 | [ResNet50\_cos\_pretrained](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_cos_pretrained.tar) | 42.0 | - | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/fcos_r50_fpn_multiscale_2x.pdparams) |
| FCOS+DCN | ResNet50 | 2 | [ResNet50\_cos\_pretrained](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_cos_pretrained.tar) | 44.4 | - | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/fcos_dcn_r50_fpn_1x.pdparams) |
| 网络结构 | 骨干网络 | 图片个数/GPU | 预训练模型 | mAP | FPS | 模型下载 | 配置文件 |
|:------------:|:--------:|:----:|:-------:|:-------:|:---------:|:----------:|:----------:|
| CornerNet-Squeeze | Hourglass104 | 14 | 无 | 34.5 | 35.5 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/cornernet_squeeze_hg104.tar) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/anchor_free/cornernet_squeeze_hg104.yml) |
| CornerNet-Squeeze | ResNet50-vd | 14 | [faster\_rcnn\_r50\_vd\_fpn\_2x](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_vd_fpn_2x.tar) | 32.7 | 42.45 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/cornernet_squeeze_r50_vd_fpn.tar) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/anchor_free/cornernet_squeeze_r50_vd_fpn.yml) |
| CornerNet-Squeeze-dcn | ResNet50-vd | 14 | [faster\_rcnn\_dcn\_r50\_vd\_fpn\_2x](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_dcn_r50_vd_fpn_2x.tar) | 34.9 | 40.05 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/cornernet_squeeze_dcn_r50_vd_fpn.tar) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/anchor_free/cornernet_squeeze_dcn_r50_vd_fpn.yml) |
| CornerNet-Squeeze-dcn-mixup-cosine* | ResNet50-vd | 14 | [faster\_rcnn\_dcn\_r50\_vd\_fpn\_2x](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_dcn_r50_vd_fpn_2x.tar) | 38.2 | 40.05 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/cornernet_squeeze_dcn_r50_vd_fpn_mixup_cosine.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/anchor_free/cornernet_squeeze_dcn_r50_vd_fpn_mixup_cosine.yml) |
| FCOS | ResNet50 | 2 | [ResNet50\_cos\_pretrained](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_cos_pretrained.tar) | 39.8 | - | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/fcos_r50_fpn_1x.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/anchor_free/fcos_r50_fpn_1x.yml) |
| FCOS+multiscale_train | ResNet50 | 2 | [ResNet50\_cos\_pretrained](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_cos_pretrained.tar) | 42.0 | - | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/fcos_r50_fpn_multiscale_2x.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/anchor_free/fcos_r50_fpn_multiscale_2x.yml) |
| FCOS+DCN | ResNet50 | 2 | [ResNet50\_cos\_pretrained](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_cos_pretrained.tar) | 44.4 | - | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/fcos_dcn_r50_fpn_1x.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/anchor_free/fcos_dcn_r50_fpn_1x.yml) |
**注意:**
......
......@@ -7,7 +7,7 @@ save_dir: output
snapshot_iter: 10000
metric: COCO
pretrain_weights: NULL
weights: output/cornernet_squeeze/model_final
weights: output/cornernet_squeeze_hg104/model_final
num_classes: 80
stack: 2
......
......@@ -17,7 +17,7 @@
## Model Zoo
| Backbone | Type | AutoAug policy | Image/gpu | Lr schd | Inf time (fps) | Box AP | Mask AP | Download |
| :---------------------- | :-------------:| :-------: | :-------: | :-----: | :------------: | :----: | :-----: | :----------------------------------------------------------: |
| ResNet50-vd-FPN | Faster | v1 | 2 | 3x | 22.800 | 39.9 | - | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_vd_fpn_aa_3x.tar) |
| ResNet101-vd-FPN | Faster | v1 | 2 | 3x | 17.652 | 42.5 | - | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r101_vd_fpn_aa_3x.tar) |
| Backbone | Type | AutoAug policy | Image/gpu | Lr schd | Inf time (fps) | Box AP | Mask AP | Download | Configs |
| :---------------------- | :-------------:| :-------: | :-------: | :-----: | :------------: | :----: | :-----: | :----------------------------------------------------------: | :-----: |
| ResNet50-vd-FPN | Faster | v1 | 2 | 3x | 22.800 | 39.9 | - | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_vd_fpn_aa_3x.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/autoaugment/faster_rcnn_r50_vd_fpn_aa_3x.yml) |
| ResNet101-vd-FPN | Faster | v1 | 2 | 3x | 17.652 | 42.5 | - | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r101_vd_fpn_aa_3x.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/autoaugment/faster_rcnn_r101_vd_fpn_aa_3x.yml) |
......@@ -28,7 +28,7 @@
## Model Zoo
| Backbone | Type | Context| Image/gpu | Lr schd | Inf time (fps) | Box AP | Mask AP | Download |
| :---------------------- | :-------------: | :-------------: | :-------: | :-----: | :------------: | :----: | :-----: | :----------------------------------------------------------: |
| ResNet50-vd-FPN | Mask | GC(c3-c5, r16, add) | 2 | 2x | 15.31 | 41.4 | 36.8 | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r50_vd_fpn_gcb_add_r16_2x.tar) |
| ResNet50-vd-FPN | Mask | GC(c3-c5, r16, mul) | 2 | 2x | 15.35 | 40.7 | 36.1 | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r50_vd_fpn_gcb_mul_r16_2x.tar) |
| Backbone | Type | Context| Image/gpu | Lr schd | Inf time (fps) | Box AP | Mask AP | Download | Configs |
| :---------------------- | :-------------: | :-------------: | :-------: | :-----: | :------------: | :----: | :-----: | :----------------------------------------------------------: | :-----: |
| ResNet50-vd-FPN | Mask | GC(c3-c5, r16, add) | 2 | 2x | 15.31 | 41.4 | 36.8 | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r50_vd_fpn_gcb_add_r16_2x.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/gcnet/mask_rcnn_r50_vd_fpn_gcb_add_r16_2x.yml) |
| ResNet50-vd-FPN | Mask | GC(c3-c5, r16, mul) | 2 | 2x | 15.35 | 40.7 | 36.1 | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r50_vd_fpn_gcb_mul_r16_2x.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/gcnet/mask_rcnn_r50_vd_fpn_gcb_mul_r16_2x.yml) |
......@@ -28,7 +28,7 @@
## Model Zoo
| Backbone | Type | deformable Conv | Image/gpu | Lr schd | Inf time (fps) | Box AP | Mask AP | Download |
| :---------------------- | :------------- | :---: | :-------: | :-----: | :------------: | :----: | :-----: | :----------------------------------------------------------: |
| HRNetV2p_W18 | Faster | False | 2 | 1x | 17.509 | 36.0 | - | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_hrnetv2p_w18_1x.tar) |
| HRNetV2p_W18 | Faster | False | 2 | 2x | 17.509 | 38.0 | - | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_hrnetv2p_w18_2x.tar) |
| Backbone | Type | deformable Conv | Image/gpu | Lr schd | Inf time (fps) | Box AP | Mask AP | Download | Configs |
| :---------------------- | :------------- | :---: | :-------: | :-----: | :------------: | :----: | :-----: | :----------------------------------------------------------: | :-----: |
| HRNetV2p_W18 | Faster | False | 2 | 1x | 17.509 | 36.0 | - | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_hrnetv2p_w18_1x.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/hrnet/faster_rcnn_hrnetv2p_w18_1x.yml) |
| HRNetV2p_W18 | Faster | False | 2 | 2x | 17.509 | 38.0 | - | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_hrnetv2p_w18_2x.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/hrnet/faster_rcnn_hrnetv2p_w18_2x.yml) |
......@@ -41,8 +41,8 @@
## Model Zoo
| Backbone | Type | Loss Type | Loss Weight | Image/gpu | Lr schd | Inf time (fps) | Box AP | Mask AP | Download |
| :---------------------- | :------------- | :---: | :---: | :-------: | :-----: | :------------: | :----: | :-----: | :----------------------------------------------------------: |
| ResNet50-vd-FPN | Faster | GIOU | 10 | 2 | 1x | 22.94 | 39.4 | - | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_vd_fpn_giou_loss_1x.tar) |
| ResNet50-vd-FPN | Faster | DIOU | 12 | 2 | 1x | 22.94 | 39.2 | - | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_vd_fpn_diou_loss_1x.tar) |
| ResNet50-vd-FPN | Faster | CIOU | 12 | 2 | 1x | 22.95 | 39.6 | - | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_vd_fpn_ciou_loss_1x.tar) |
| Backbone | Type | Loss Type | Loss Weight | Image/gpu | Lr schd | Inf time (fps) | Box AP | Mask AP | Download | Configs |
| :---------------------- | :------------- | :---: | :---: | :-------: | :-----: | :------------: | :----: | :-----: | :----------------------------------------------------------: | :---: |
| ResNet50-vd-FPN | Faster | GIOU | 10 | 2 | 1x | 22.94 | 39.4 | - | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_vd_fpn_giou_loss_1x.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/iou_loss/faster_rcnn_r50_vd_fpn_giou_loss_1x.yml) |
| ResNet50-vd-FPN | Faster | DIOU | 12 | 2 | 1x | 22.94 | 39.2 | - | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_vd_fpn_diou_loss_1x.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/iou_loss/faster_rcnn_r50_vd_fpn_diou_loss_1x.yml) |
| ResNet50-vd-FPN | Faster | CIOU | 12 | 2 | 1x | 22.95 | 39.6 | - | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_vd_fpn_ciou_loss_1x.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/iou_loss/faster_rcnn_r50_vd_fpn_ciou_loss_1x.yml) |
......@@ -17,7 +17,7 @@
## Model Zoo
| Backbone | Type | Image/gpu | Lr schd | Inf time (fps) | Box AP | Mask AP | Download |
| :---------------------- | :-------------: | :-------: | :-----: | :------------: | :----: | :-----: | :----------------------------------------------------------: |
| ResNet50-vd-BFP | Faster | 2 | 1x | 18.247 | 40.5 | - | [model](https://paddlemodels.bj.bcebos.com/object_detection/libra_rcnn_r50_vd_fpn_1x.tar) |
| ResNet101-vd-BFP | Faster | 2 | 1x | 14.865 | 42.5 | - | [model](https://paddlemodels.bj.bcebos.com/object_detection/libra_rcnn_r101_vd_fpn_1x.tar) |
| Backbone | Type | Image/gpu | Lr schd | Inf time (fps) | Box AP | Mask AP | Download | Configs |
| :---------------------- | :-------------: | :-------: | :-----: | :------------: | :----: | :-----: | :----------------------------------------------------------: | :-----: |
| ResNet50-vd-BFP | Faster | 2 | 1x | 18.247 | 40.5 | - | [model](https://paddlemodels.bj.bcebos.com/object_detection/libra_rcnn_r50_vd_fpn_1x.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/libra_rcnn/libra_rcnn_r50_vd_fpn_1x.yml) |
| ResNet101-vd-BFP | Faster | 2 | 1x | 14.865 | 42.5 | - | [model](https://paddlemodels.bj.bcebos.com/object_detection/libra_rcnn_r101_vd_fpn_1x.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/libra_rcnn/libra_rcnn_r101_vd_fpn_1x.yml) |
......@@ -7,7 +7,7 @@
## Model Zoo
| Backbone | Type | Image/gpu | Lr schd | Inf time (fps) | Box AP | Mask AP | Download |
| :---------------------- | :-------------: | :-------: | :-----: | :------------: | :----: | :-----: | :----------------------------------------------------------: |
| ResNet50-vd-FPN-Dcnv2 | Faster | 2 | 3x | 61.425 | 41.6 | - | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_dcn_r50_vd_fpn_3x_server_side.tar) |
| ResNet50-vd-FPN-Dcnv2 | Cascade Faster | 2 | 3x | 20.001 | 47.8 | - | [model](https://paddlemodels.bj.bcebos.com/object_detection/cascade_rcnn_dcn_r50_vd_fpn_3x_server_side.tar) |
| Backbone | Type | Image/gpu | Lr schd | Inf time (fps) | Box AP | Mask AP | Download | Configs |
| :---------------------- | :-------------: | :-------: | :-----: | :------------: | :----: | :-----: | :----------------------------------------------------------: | :-----: |
| ResNet50-vd-FPN-Dcnv2 | Faster | 2 | 3x | 61.425 | 41.6 | - | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_dcn_r50_vd_fpn_3x_server_side.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/rcnn_server_side_det/faster_rcnn_dcn_r50_vd_fpn_3x_server_side.yml) |
| ResNet50-vd-FPN-Dcnv2 | Cascade Faster | 2 | 3x | 20.001 | 47.8 | - | [model](https://paddlemodels.bj.bcebos.com/object_detection/cascade_rcnn_dcn_r50_vd_fpn_3x_server_side.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/rcnn_server_side_det/cascade_rcnn_dcn_r50_vd_fpn_3x_server_side.yml) |
......@@ -28,9 +28,9 @@
## Model Zoo
| Backbone | Type | deformable Conv | Image/gpu | Lr schd | Inf time (fps) | Box AP | Mask AP | Download |
| :---------------------- | :------------- | :---: | :-------: | :-----: | :------------: | :----: | :-----: | :----------------------------------------------------------: |
| Res2Net50-FPN | Faster | False | 2 | 1x | 20.320 | 39.5 | - | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_res2net50_vb_26w_4s_fpn_1x.tar) |
| Res2Net50-FPN | Mask | False | 2 | 2x | 16.069 | 40.7 | 36.2 | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_res2net50_vb_26w_4s_fpn_2x.tar) |
| Res2Net50-vd-FPN | Mask | False | 2 | 2x | 15.816 | 40.9 | 36.2 | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_res2net50_vd_26w_4s_fpn_2x.tar) |
| Res2Net50-vd-FPN | Mask | True | 2 | 2x | 14.478 | 43.5 | 38.4 | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_res2net50_vd_26w_4s_fpn_dcnv2_1x.tar) |
| Backbone | Type | deformable Conv | Image/gpu | Lr schd | Inf time (fps) | Box AP | Mask AP | Download | Configs |
| :---------------------- | :------------- | :---: | :-------: | :-----: | :------------: | :----: | :-----: | :----------------------------------------------------------: | :-----: |
| Res2Net50-FPN | Faster | False | 2 | 1x | 20.320 | 39.5 | - | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_res2net50_vb_26w_4s_fpn_1x.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/res2net/faster_rcnn_res2net50_vb_26w_4s_fpn_1x.yml) |
| Res2Net50-FPN | Mask | False | 2 | 2x | 16.069 | 40.7 | 36.2 | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_res2net50_vb_26w_4s_fpn_2x.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/res2net/faster_rcnn_res2net50_vb_26w_4s_fpn_2x.yml) |
| Res2Net50-vd-FPN | Mask | False | 2 | 2x | 15.816 | 40.9 | 36.2 | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_res2net50_vd_26w_4s_fpn_2x.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/res2net/mask_rcnn_res2net50_vd_26w_4s_fpn_2x.yml) |
| Res2Net50-vd-FPN | Mask | True | 2 | 2x | 14.478 | 43.5 | 38.4 | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_res2net50_vd_26w_4s_fpn_dcnv2_1x.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/res2net/mask_rcnn_res2net50_vd_26w_4s_fpn_dcnv2_1x.yml) |
此差异已折叠。
此差异已折叠。
......@@ -10,7 +10,7 @@
- 测试方式:
- 为了方便比较不同模型的推理速度,输入采用同样大小的图片,为 3x640x640,采用 `demo/000000014439_640x640.jpg` 图片。
- Batch Size=1
- 去掉前10轮warmup时间,测试100轮的平均时间,单位ms/image,包括输入数据拷贝至GPU的时间、计算时间、数据拷贝CPU的时间。
- 去掉前10轮warmup时间,测试100轮的平均时间,单位ms/image,包括输入数据拷贝至GPU的时间、计算时间、数据拷贝CPU的时间。
- 采用Fluid C++预测引擎: 包含Fluid C++预测、Fluid-TensorRT预测,下面同时测试了Float32 (FP32) 和Float16 (FP16)的推理速度。
- 测试时开启了 FLAGS_cudnn_exhaustive_search=True,使用exhaustive方式搜索卷积计算算法。
......
......@@ -31,14 +31,14 @@ ${THIS REPO ROOT}
2.启动训练模型
```bash
python tools/train.py -c configs/obj365/cascade_rcnn_dcnv2_se154_vd_fpn_gn.yml
python tools/train.py -c configs/obj365/cascade_rcnn_dcnv2_se154_vd_fpn_gn_cas.yml
```
3.模型预测结果
| 模型 | 验证集 mAP | 下载链接 |
| :-----------------: | :--------: | :----------------------------------------------------------: |
| CACascadeRCNN SE154 | 31.6 | [model](https://paddlemodels.bj.bcebos.com/object_detection/cascade_rcnn_dcnv2_se154_vd_fpn_gn_cas_obj365.tar) |
| 模型 | 验证集 mAP | 下载链接 | 配置文件 |
| :-----------------: | :--------: | :----------------------------------------------------------: | :--------: |
| CACascadeRCNN SE154 | 31.6 | [model](https://paddlemodels.bj.bcebos.com/object_detection/cascade_rcnn_dcnv2_se154_vd_fpn_gn_cas_obj365.tar) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/obj365/cascade_rcnn_dcnv2_se154_vd_fpn_gn_cas.yml) |
## 模型效果
......
......@@ -3,10 +3,10 @@ English | [简体中文](CONTRIB_cn.md)
We provide some models implemented by PaddlePaddle to detect objects in specific scenarios, users can download the models and use them in these scenarios.
| Task | Algorithm | Box AP | Download |
|:---------------------|:---------:|:------:| :-------------------------------------------------------------------------------------: |
| Vehicle Detection | YOLOv3 | 54.5 | [model](https://paddlemodels.bj.bcebos.com/object_detection/vehicle_yolov3_darknet.tar) |
| Pedestrian Detection | YOLOv3 | 51.8 | [model](https://paddlemodels.bj.bcebos.com/object_detection/pedestrian_yolov3_darknet.tar) |
| Task | Algorithm | Box AP | Download | Configs |
|:---------------------|:---------:|:------:| :-------------------------------------------------------------------------------------: |:------:|
| Vehicle Detection | YOLOv3 | 54.5 | [model](https://paddlemodels.bj.bcebos.com/object_detection/vehicle_yolov3_darknet.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/contrib/VehicleDetection/vehicle_yolov3_darknet.yml) |
| Pedestrian Detection | YOLOv3 | 51.8 | [model](https://paddlemodels.bj.bcebos.com/object_detection/pedestrian_yolov3_darknet.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/contrib/PedestrianDetection/pedestrian_yolov3_darknet.yml) |
## Vehicle Detection
......
......@@ -3,10 +3,10 @@
我们提供了针对不同场景的基于PaddlePaddle的检测模型,用户可以下载模型进行使用。
| 任务 | 算法 | 精度(Box AP) | 下载 |
|:---------------------|:---------:|:------:| :---------------------------------------------------------------------------------: |
| 车辆检测 | YOLOv3 | 54.5 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/vehicle_yolov3_darknet.tar) |
| 行人检测 | YOLOv3 | 51.8 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/pedestrian_yolov3_darknet.tar) |
| 任务 | 算法 | 精度(Box AP) | 下载 | 配置文件 |
|:---------------------|:---------:|:------:| :---------------------------------------------------------------------------------: | :------:|
| 车辆检测 | YOLOv3 | 54.5 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/vehicle_yolov3_darknet.tar) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/master/contrib/VehicleDetection/vehicle_yolov3_darknet.yml) |
| 行人检测 | YOLOv3 | 51.8 | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/pedestrian_yolov3_darknet.tar) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/master/contrib/PedestrianDetection/pedestrian_yolov3_darknet.yml) |
## 车辆检测(Vehicle Detection)
......
......@@ -31,14 +31,14 @@ FaceDetection的目标是提供高效、高速的人脸检测解决方案,包
#### WIDER-FACE数据集上的mAP
| 网络结构 | 类型 | 输入尺寸 | 图片个数/GPU | 学习率策略 | Easy Set | Medium Set | Hard Set | 下载 |
|:------------:|:--------:|:----:|:-------:|:-------:|:---------:|:----------:|:---------:|:--------:|
| BlazeFace | 原始版本 | 640 | 8 | 32w | **0.915** | **0.892** | **0.797** | [模型](https://paddlemodels.bj.bcebos.com/object_detection/blazeface_original.tar) |
| BlazeFace | Lite版本 | 640 | 8 | 32w | 0.909 | 0.885 | 0.781 | [模型](https://paddlemodels.bj.bcebos.com/object_detection/blazeface_lite.tar) |
| BlazeFace | NAS版本 | 640 | 8 | 32w | 0.837 | 0.807 | 0.658 | [模型](https://paddlemodels.bj.bcebos.com/object_detection/blazeface_nas.tar) |
| BlazeFace | NAS_V2版本 | 640 | 8 | 32W | 0.870 | 0.837 | 0.685 | [模型](https://paddlemodels.bj.bcebos.com/object_detection/blazeface_nas2.tar)
| FaceBoxes | 原始版本 | 640 | 8 | 32w | 0.878 | 0.851 | 0.576 | [模型](https://paddlemodels.bj.bcebos.com/object_detection/faceboxes_original.tar) |
| FaceBoxes | Lite版本 | 640 | 8 | 32w | 0.901 | 0.875 | 0.760 | [模型](https://paddlemodels.bj.bcebos.com/object_detection/faceboxes_lite.tar) |
| 网络结构 | 类型 | 输入尺寸 | 图片个数/GPU | 学习率策略 | Easy Set | Medium Set | Hard Set | 下载 | 配置文件 |
|:------------:|:--------:|:----:|:-------:|:-------:|:---------:|:----------:|:---------:|:--------:|:--------:|
| BlazeFace | 原始版本 | 640 | 8 | 32w | **0.915** | **0.892** | **0.797** | [模型](https://paddlemodels.bj.bcebos.com/object_detection/blazeface_original.tar) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/face_detection/blazeface.yml) |
| BlazeFace | Lite版本 | 640 | 8 | 32w | 0.909 | 0.885 | 0.781 | [模型](https://paddlemodels.bj.bcebos.com/object_detection/blazeface_lite.tar) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/face_detection/blazeface.yml) |
| BlazeFace | NAS版本 | 640 | 8 | 32w | 0.837 | 0.807 | 0.658 | [模型](https://paddlemodels.bj.bcebos.com/object_detection/blazeface_nas.tar) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/face_detection/blazeface_nas.yml) |
| BlazeFace | NAS_V2版本 | 640 | 8 | 32W | 0.870 | 0.837 | 0.685 | [模型](https://paddlemodels.bj.bcebos.com/object_detection/blazeface_nas2.tar) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/face_detection/blazeface_nas_v2.yml) |
| FaceBoxes | 原始版本 | 640 | 8 | 32w | 0.878 | 0.851 | 0.576 | [模型](https://paddlemodels.bj.bcebos.com/object_detection/faceboxes_original.tar) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/face_detection/faceboxes.yml) |
| FaceBoxes | Lite版本 | 640 | 8 | 32w | 0.901 | 0.875 | 0.760 | [模型](https://paddlemodels.bj.bcebos.com/object_detection/faceboxes_lite.tar) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/face_detection/faceboxes_lite.yml) |
**注意:**
- 我们使用`tools/face_eval.py`中多尺度评估策略得到`Easy/Medium/Hard Set`里的mAP。具体细节请参考[在WIDER-FACE数据集上评估](#在WIDER-FACE数据集上评估)
......
......@@ -35,14 +35,14 @@ optimized network structure.
#### mAP in WIDER FACE
| Architecture | Type | Size | Img/gpu | Lr schd | Easy Set | Medium Set | Hard Set | Download |
|:------------:|:--------:|:----:|:-------:|:-------:|:---------:|:----------:|:---------:|:--------:|
| BlazeFace | Original | 640 | 8 | 32w | **0.915** | **0.892** | **0.797** | [model](https://paddlemodels.bj.bcebos.com/object_detection/blazeface_original.tar) |
| BlazeFace | Lite | 640 | 8 | 32w | 0.909 | 0.885 | 0.781 | [model](https://paddlemodels.bj.bcebos.com/object_detection/blazeface_lite.tar) |
| BlazeFace | NAS | 640 | 8 | 32w | 0.837 | 0.807 | 0.658 | [model](https://paddlemodels.bj.bcebos.com/object_detection/blazeface_nas.tar) |
| BlazeFace | NAS_V2 | 640 | 8 | 32W | 0.870 | 0.837 | 0.685 | [model](https://paddlemodels.bj.bcebos.com/object_detection/blazeface_nas2.tar)
| FaceBoxes | Original | 640 | 8 | 32w | 0.878 | 0.851 | 0.576 | [model](https://paddlemodels.bj.bcebos.com/object_detection/faceboxes_original.tar) |
| FaceBoxes | Lite | 640 | 8 | 32w | 0.901 | 0.875 | 0.760 | [model](https://paddlemodels.bj.bcebos.com/object_detection/faceboxes_lite.tar) |
| Architecture | Type | Size | Img/gpu | Lr schd | Easy Set | Medium Set | Hard Set | Download | Configs |
|:------------:|:--------:|:----:|:-------:|:-------:|:---------:|:----------:|:---------:|:--------:|:--------:|
| BlazeFace | Original | 640 | 8 | 32w | **0.915** | **0.892** | **0.797** | [model](https://paddlemodels.bj.bcebos.com/object_detection/blazeface_original.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/face_detection/blazeface.yml) |
| BlazeFace | Lite | 640 | 8 | 32w | 0.909 | 0.885 | 0.781 | [model](https://paddlemodels.bj.bcebos.com/object_detection/blazeface_lite.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/face_detection/blazeface.yml) |
| BlazeFace | NAS | 640 | 8 | 32w | 0.837 | 0.807 | 0.658 | [model](https://paddlemodels.bj.bcebos.com/object_detection/blazeface_nas.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/face_detection/blazeface_nas.yml) |
| BlazeFace | NAS_V2 | 640 | 8 | 32W | 0.870 | 0.837 | 0.685 | [model](https://paddlemodels.bj.bcebos.com/object_detection/blazeface_nas2.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/face_detection/blazeface_nas_v2.yml) |
| FaceBoxes | Original | 640 | 8 | 32w | 0.878 | 0.851 | 0.576 | [model](https://paddlemodels.bj.bcebos.com/object_detection/faceboxes_original.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/face_detection/faceboxes.yml) |
| FaceBoxes | Lite | 640 | 8 | 32w | 0.901 | 0.875 | 0.760 | [model](https://paddlemodels.bj.bcebos.com/object_detection/faceboxes_lite.tar) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/face_detection/faceboxes_lite.yml) |
**NOTES:**
- Get mAP in `Easy/Medium/Hard Set` by multi-scale evaluation in `tools/face_eval.py`.
......
......@@ -17,17 +17,17 @@ Objects365 Dataset和OIDV5有大约189个类别是重复的,因此将两个数
OIDV5模型训练结果如下。
| 模型结构 | Public/Private Score | 下载链接 |
| :-----------------: | :--------: | :----------------------------------------------------------: |
| CascadeCARCNN-FPN-Dcnv2-Nonlocal ResNet200-vd | 0.62690/0.59459 | [模型](https://paddlemodels.bj.bcebos.com/object_detection/oidv5_cascade_rcnn_cls_aware_r200_vd_fpn_dcnv2_nonlocal_softnms.tar) |
| 模型结构 | Public/Private Score | 下载链接 | 配置文件 |
| :-----------------: | :--------: | :----------------------------------------------------------: | :--------: |
| CascadeCARCNN-FPN-Dcnv2-Nonlocal ResNet200-vd | 0.62690/0.59459 | [模型](https://paddlemodels.bj.bcebos.com/object_detection/oidv5_cascade_rcnn_cls_aware_r200_vd_fpn_dcnv2_nonlocal_softnms.tar) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/oidv5/cascade_rcnn_cls_aware_r200_vd_fpn_dcnv2_nonlocal_softnms.yml) |
此外,为验证模型的性能,团队基于该模型结构,也训练了针对COCO2017和Objects365 Dataset的模型,模型和验证集指标如下表。
此外,为验证模型的性能,PaddleDetection基于该模型结构,也训练了针对COCO2017和Objects365 Dataset的模型,模型和验证集指标如下表。
| 模型结构 | 数据集 | 验证集mAP | 下载链接 |
| :-----------------: | :--------: | :--------: | :----------------------------------------------------------: |
| CascadeCARCNN-FPN-Dcnv2-Nonlocal ResNet200-vd | COCO2017 | 51.7% | [模型](https://paddlemodels.bj.bcebos.com/object_detection/cascade_rcnn_cls_aware_r200_vd_fpn_dcnv2_nonlocal_softnms.tar) |
| CascadeCARCNN-FPN-Dcnv2-Nonlocal ResNet200-vd | Objects365 | 34.5% | [模型](https://paddlemodels.bj.bcebos.com/object_detection/obj365_cascade_rcnn_cls_aware_r200_vd_fpn_dcnv2_nonlocal_softnms.tar) |
| 模型结构 | 数据集 | 验证集mAP | 下载链接 | 配置文件 |
| :-----------------: | :--------: | :--------: | :----------------------------------------------------------: | :--------: |
| CascadeCARCNN-FPN-Dcnv2-Nonlocal ResNet200-vd | COCO2017 | 51.7% | [模型](https://paddlemodels.bj.bcebos.com/object_detection/cascade_rcnn_cls_aware_r200_vd_fpn_dcnv2_nonlocal_softnms.tar) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/obj365/cascade_rcnn_cls_aware_r200_vd_fpn_dcnv2_nonlocal_softnms.yml) |
| CascadeCARCNN-FPN-Dcnv2-Nonlocal ResNet200-vd | Objects365 | 34.5% | [模型](https://paddlemodels.bj.bcebos.com/object_detection/obj365_cascade_rcnn_cls_aware_r200_vd_fpn_dcnv2_nonlocal_softnms.tar) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/obj365/cascade_rcnn_cls_aware_r200_vd_fpn_dcnv2_nonlocal_softnms.yml) |
COCO和Objects365 Dataset数据格式相同,目前只支持预测和评估。
......
......@@ -34,18 +34,18 @@ PaddleDetection实现版本中使用了 [Bag of Freebies for Training Object Det
```bash
export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
python tools/train.py -c configs/dcn/yolov3_r50vd_dcn_iouloss_obj365_pretrained_coco.yml
python tools/train.py -c configs/dcn/yolov3_r50vd_dcn_db_iouloss_obj365_pretrained_coco.yml
```
更多模型参数请使用``python tools/train.py --help``查看,或参考[训练、评估及参数说明](../tutorials/GETTING_STARTED_cn.md)文档
### 模型效果
| 模型 | 预训练模型 | 验证集 mAP | P4预测速度 | 下载 |
| :--------------------------------------: | :----------------------------------------------------------: | :--------: | :------------------------------------: | :----------------------------------------------------------: |
| YOLOv3 DarkNet | [DarkNet pretrain](https://paddle-imagenet-models-name.bj.bcebos.com/DarkNet53_pretrained.tar) | 38.9 | 原生:88.3ms<br>tensorRT-FP32: 42.5ms | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_darknet.tar) |
| YOLOv3 ResNet50_vd DCN | [ImageNet pretrain](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_pretrained.tar) | 39.1 | 原生:74.4ms<br>tensorRT-FP32: 35.2ms | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r50vd_dcn_imagenet.tar) |
| YOLOv3 ResNet50_vd DCN | [Object365 pretrain](https://paddlemodels.bj.bcebos.com/object_detection/ResNet50_vd_dcn_db_obj365_pretrained.tar) | 42.5 | 原生:74.4ms<br>tensorRT-FP32: 35.2ms | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r50vd_dcn_obj365_v2.tar) |
| YOLOv3 ResNet50_vd DCN DropBlock | [Object365 pretrain](https://paddlemodels.bj.bcebos.com/object_detection/ResNet50_vd_dcn_db_obj365_pretrained.tar) | 42.8 | 原生:74.4ms<br/>tensorRT-FP32: 35.2ms | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r50vd_dcn_obj365_dropblock.tar) |
| YOLOv3 ResNet50_vd DCN DropBlock IoULoss | [Object365 pretrain](https://paddlemodels.bj.bcebos.com/object_detection/ResNet50_vd_dcn_db_obj365_pretrained.tar) | 43.2 | 原生:74.4ms<br/>tensorRT-FP32: 35.2ms | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r50vd_dcn_obj365_dropblock_iouloss.tar) |
| YOLOv3 ResNet50_vd DCN DropBlock IoU-Aware | [Object365 pretrain](https://paddlemodels.bj.bcebos.com/object_detection/ResNet50_vd_dcn_db_obj365_pretrained.tar) | 43.6 | 原生:74.4ms<br/>tensorRT-FP32: 35.2ms | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r50vd_dcn_db_iouaware_obj365_pretrained_coco.pdparams) |
| 模型 | 预训练模型 | 验证集 mAP | P4预测速度 | 下载 | 配置文件 |
| :--------------------------------------: | :----------------------------------------------------------: | :--------: | :------------------------------------: | :----------------------------------------------------------: | :--------: |
| YOLOv3 DarkNet | [DarkNet pretrain](https://paddle-imagenet-models-name.bj.bcebos.com/DarkNet53_pretrained.tar) | 38.9 | 原生:88.3ms<br>tensorRT-FP32: 42.5ms | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_darknet.tar) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/yolov3_darknet.yml) |
| YOLOv3 ResNet50_vd DCN | [ImageNet pretrain](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_pretrained.tar) | 39.1 | 原生:74.4ms<br>tensorRT-FP32: 35.2ms | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r50vd_dcn_imagenet.tar) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/dcn/yolov3_r50vd_dcn.yml) |
| YOLOv3 ResNet50_vd DCN | [Object365 pretrain](https://paddlemodels.bj.bcebos.com/object_detection/ResNet50_vd_dcn_db_obj365_pretrained.tar) | 42.5 | 原生:74.4ms<br>tensorRT-FP32: 35.2ms | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r50vd_dcn_obj365_v2.tar) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/dcn/yolov3_r50vd_dcn_obj365_pretrained_coco.yml) |
| YOLOv3 ResNet50_vd DCN DropBlock | [Object365 pretrain](https://paddlemodels.bj.bcebos.com/object_detection/ResNet50_vd_dcn_db_obj365_pretrained.tar) | 42.8 | 原生:74.4ms<br/>tensorRT-FP32: 35.2ms | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r50vd_dcn_obj365_dropblock.tar) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/dcn/yolov3_r50vd_dcn_db_obj365_pretrained_coco.yml) |
| YOLOv3 ResNet50_vd DCN DropBlock IoULoss | [Object365 pretrain](https://paddlemodels.bj.bcebos.com/object_detection/ResNet50_vd_dcn_db_obj365_pretrained.tar) | 43.2 | 原生:74.4ms<br/>tensorRT-FP32: 35.2ms | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r50vd_dcn_obj365_dropblock_iouloss.tar) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/dcn/yolov3_r50vd_dcn_db_iouloss_obj365_pretrained_coco.yml) |
| YOLOv3 ResNet50_vd DCN DropBlock IoU-Aware | [Object365 pretrain](https://paddlemodels.bj.bcebos.com/object_detection/ResNet50_vd_dcn_db_obj365_pretrained.tar) | 43.6 | 原生:74.4ms<br/>tensorRT-FP32: 35.2ms | [下载链接](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r50vd_dcn_db_iouaware_obj365_pretrained_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/master/configs/dcn/yolov3_r50vd_dcn_db_iouaware_obj365_pretrained_coco.yml) |
......@@ -13,7 +13,7 @@ export CUDA_VISIBLE_DEVICES=0
## 数据准备
数据集参考[Kaggle数据集](https://www.kaggle.com/mbkinaci/fruit-images-for-object-detection),其中训练数据集240张图片,测试数据集60张图片,数据类别为3类:苹果,橘子,香蕉。[下载链接](https://dataset.bj.bcebos.com/PaddleDetection_demo/fruit-detection.tar)。数据下载后分别解压即可, 数据准备脚本位于[download_fruit.py](../../dataset/fruit/download_fruit.py)。下载数据方式如下:
数据集参考[Kaggle数据集](https://www.kaggle.com/mbkinaci/fruit-images-for-object-detection),其中训练数据集240张图片,测试数据集60张图片,数据类别为3类:苹果,橘子,香蕉。[下载链接](https://dataset.bj.bcebos.com/PaddleDetection_demo/fruit-detection.tar)。数据下载后分别解压即可, 数据准备脚本位于[download_fruit.py](https://github.com/PaddlePaddle/PaddleDetection/tree/master/dataset/fruit/download_fruit.py)。下载数据方式如下:
```bash
python dataset/fruit/download_fruit.py
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册