From 510601b2793047858763032b7816af07ab2b2bc7 Mon Sep 17 00:00:00 2001 From: JiabinYang Date: Thu, 22 Nov 2018 09:01:08 +0000 Subject: [PATCH] test=develop --- python/paddle/fluid/layers/nn.py | 10 +++++++--- python/paddle/fluid/tests/unittests/test_layers.py | 7 ++++++- 2 files changed, 13 insertions(+), 4 deletions(-) diff --git a/python/paddle/fluid/layers/nn.py b/python/paddle/fluid/layers/nn.py index 32d411b83..27f83a60b 100644 --- a/python/paddle/fluid/layers/nn.py +++ b/python/paddle/fluid/layers/nn.py @@ -2139,12 +2139,16 @@ def pool2d(input, input tensor is NCHW, where N is batch size, C is the number of channels, H is the height of the feature, and W is the width of the feature. - pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple, + pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list, it must contain two integers, (pool_size_Height, pool_size_Width). Otherwise, the pool kernel size will be a square of an int. pool_type: ${pooling_type_comment} - pool_stride (int): stride of the pooling layer. - pool_padding (int): padding size. + pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list, + it must contain two integers, (pool_stride_Height, pool_stride_Width). + Otherwise, the pool stride size will be a square of an int. + pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple, + it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width). + Otherwise, the pool padding size will be a square of an int. global_pooling (bool): ${global_pooling_comment} use_cudnn (bool): ${use_cudnn_comment} ceil_mode (bool): ${ceil_mode_comment} diff --git a/python/paddle/fluid/tests/unittests/test_layers.py b/python/paddle/fluid/tests/unittests/test_layers.py index c4310fe00..559c9cda4 100644 --- a/python/paddle/fluid/tests/unittests/test_layers.py +++ b/python/paddle/fluid/tests/unittests/test_layers.py @@ -206,7 +206,12 @@ class TestBook(unittest.TestCase): program = Program() with program_guard(program): x = layers.data(name='x', shape=[3, 224, 224], dtype='float32') - self.assertIsNotNone(layers.pool2d(x, pool_size=[5, 3])) + self.assertIsNotNone( + layers.pool2d( + x, + pool_size=[5, 3], + pool_stride=[1, 2], + pool_padding=(2, 1))) def test_lstm_unit(self): program = Program() -- GitLab