未验证 提交 4bcc0b64 编写于 作者: Y Yang Yang(Tony) 提交者: GitHub

[WIP] feature/parallel_gpu (#7293)

feature/parallel_gpu
上级 df927768
......@@ -44,9 +44,19 @@ std::ostream &operator<<(std::ostream &os, const LoD &lod) {
}
std::ostream &operator<<(std::ostream &os, const LoDTensor &t) {
PADDLE_ENFORCE(platform::is_cpu_place(t.place()));
PADDLE_ENFORCE(t.type().hash_code() == typeid(float).hash_code());
if (!platform::is_cpu_place(t.place())) {
LoDTensor tt;
framework::Copy(t, platform::CPUPlace(), &tt);
platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
auto &dev_ctx = *pool.Get(t.place());
dev_ctx.Wait();
os << tt;
return os;
}
os << "dim: " << t.dims() << "\n";
os << "lod: " << t.lod() << "\n";
......@@ -211,38 +221,23 @@ void DeserializeFromStream(std::istream &is, LoDTensor *tensor,
DeserializeFromStream(is, static_cast<Tensor *>(tensor), dev_ctx);
}
// TODO(tonyyang-svail): make this function support LoD
std::vector<LoDTensor> LoDTensor::SplitLoDTensor(
const std::vector<platform::Place> places) const {
check_memory_size();
// PADDLE_ENFORCE(lod().empty() || (lod().size() == 1 && lod()[0].empty())
// , "Disable parallel lod for now");
PADDLE_ENFORCE(lod().empty(), "Disable parallel lod for now");
PADDLE_ENFORCE(dims()[0] % places.size() == 0,
"Batch size should be divided by places size");
std::vector<LoDTensor> lods;
for (size_t place_idx = 0; place_idx < places.size(); ++place_idx) {
size_t begin = place_idx * dims()[0] / places.size();
size_t end = (place_idx + 1) * dims()[0] / places.size();
auto src = Slice(static_cast<int>(begin), static_cast<int>(end));
int begin = place_idx * dims()[0] / places.size();
int end = (place_idx + 1) * dims()[0] / places.size();
LoDTensor dst;
dst.Resize(src.dims());
auto src = Slice(begin, end);
auto &dst_place = places[place_idx];
auto dst_ptr = dst.mutable_data(dst_place, src.type());
// TODO(tonyyang-svail):
// change the following to framework::Copy
auto src_place = src.place();
auto src_ptr = src.data<void>();
auto size = src.numel() * SizeOfType(src.type());
if (platform::is_cpu_place(src_place) &&
platform::is_cpu_place(dst_place)) {
memory::Copy(boost::get<platform::CPUPlace>(dst_place), dst_ptr,
boost::get<platform::CPUPlace>(src_place), src_ptr, size);
} else {
PADDLE_THROW("Not Implemented");
}
LoDTensor dst;
framework::Copy(src, dst_place, &dst);
lods.emplace_back(dst);
}
......@@ -250,28 +245,30 @@ std::vector<LoDTensor> LoDTensor::SplitLoDTensor(
return lods;
}
// TODO(tonyyang-svail): make this function support LoD
void LoDTensor::MergeLoDTensor(
const std::vector<const LoDTensor *> &lod_tensors, platform::Place place) {
PADDLE_ENFORCE(platform::is_cpu_place(place));
const std::vector<const LoDTensor *> &lod_tensors,
platform::Place dst_place) {
PADDLE_ENFORCE(!lod_tensors.empty());
framework::DDim new_dim = lod_tensors[0]->dims();
std::type_index new_type = lod_tensors[0]->type();
auto new_layout = lod_tensors[0]->layout();
for (auto *lod : lod_tensors) {
PADDLE_ENFORCE(new_dim == lod->dims());
PADDLE_ENFORCE(new_type == lod->type());
PADDLE_ENFORCE(platform::is_cpu_place(lod->place()));
PADDLE_ENFORCE(new_layout == lod->layout());
}
new_dim[0] *= lod_tensors.size();
Resize(new_dim);
set_layout(new_layout);
auto *dst_ptr = reinterpret_cast<uint8_t *>(mutable_data(place, new_type));
mutable_data(dst_place, new_type);
int begin = 0;
for (auto *src : lod_tensors) {
auto size = src->numel() * SizeOfType(src->type());
memory::Copy(boost::get<platform::CPUPlace>(place), dst_ptr,
boost::get<platform::CPUPlace>(src->place()),
src->data<void>(), size);
dst_ptr += size;
int end = begin + src->dims()[0];
auto dst = Slice(begin, end);
framework::Copy(*src, dst_place, &dst);
begin = end;
}
}
......
......@@ -31,9 +31,10 @@ namespace framework {
*
* @note Copy supports CPU <-> GPU, GPU <-> GPU.
*/
inline void Copy(const Tensor& src, const platform::Place& dst_place,
const platform::DeviceContext& ctx, Tensor* dst) {
VLOG(3) << "Copy " << src.dims() << " from " << src.place() << " to "
<< dst_place;
src.check_memory_size();
dst->Resize(src.dims());
......@@ -88,26 +89,25 @@ inline void Copy(const Tensor& src, const platform::Place& dst_place,
}
/**
* @brief Copy supports CPU <-> CPU
* @brief Wrapper on
* Copy(const Tensor& src, const platform::Place& dst_place,
* const platform::DeviceContext& ctx, Tensor* dst);
*
* @param[in] src The external tensor.
* @param[in] dst_place The dst place.
*
* @note Copy supports CPU <-> GPU, GPU <-> GPU.
*/
inline void Copy(const Tensor& src, const platform::Place& dst_place,
Tensor* dst) {
src.check_memory_size();
dst->Resize(src.dims());
dst->set_layout(src.layout());
auto src_place = src.place();
auto src_ptr = src.data<void>();
auto dst_ptr = dst->mutable_data(dst_place, src.type());
auto size = src.numel() * SizeOfType(src.type());
PADDLE_ENFORCE(platform::is_cpu_place(src_place) &&
platform::is_cpu_place(dst_place));
memory::Copy(boost::get<platform::CPUPlace>(dst_place), dst_ptr,
boost::get<platform::CPUPlace>(src_place), src_ptr, size);
platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
const platform::DeviceContext* dev_ctx;
if (platform::is_gpu_place(src.place())) {
dev_ctx = pool.Get(src.place());
} else {
dev_ctx = pool.Get(dst_place);
}
Copy(src, dst_place, *dev_ctx, dst);
}
/**
......
......@@ -74,7 +74,7 @@ const proto::TensorDesc &VarDesc::tensor_desc() const {
case proto::VarDesc::LOD_TENSOR_ARRAY:
return desc_.tensor_array().tensor();
default:
PADDLE_THROW("The type of var '", this->Name(), "' is unsupported.");
PADDLE_THROW("The type of var %s is unsupported.", this->Name());
}
}
......
......@@ -111,4 +111,5 @@ class GetPlacesInferShape : public framework::InferShapeBase {
namespace ops = paddle::operators;
REGISTER_OPERATOR(get_places, ops::GetPlacesOp, ops::GetPlacesOpProtoMaker,
ops::GetPlacesInferVarType, ops::GetPlacesInferShape);
ops::GetPlacesInferVarType, ops::GetPlacesInferShape,
paddle::framework::EmptyGradOpMaker);
......@@ -39,6 +39,7 @@ void SplitTensorAndMoveTensorToScopes(
const std::vector<framework::Scope *> &sub_scopes,
const std::vector<platform::Place> &places,
const std::vector<std::string> &names) {
PADDLE_ENFORCE_EQ(sub_scopes.size(), places.size());
for (auto &argu : names) {
auto *var = scope.FindVar(argu);
const auto &tensor = var->Get<LoDTensor>();
......@@ -54,6 +55,15 @@ void SplitTensorAndMoveTensorToScopes(
}
}
void WaitOnPlaces(const std::vector<platform::Place> places) {
platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
for (auto &place : places) {
auto &dev_ctx = *pool.Get(place);
dev_ctx.Wait();
}
}
class ParallelDoOp : public framework::OperatorBase {
public:
ParallelDoOp(const std::string &type,
......@@ -71,10 +81,7 @@ class ParallelDoOp : public framework::OperatorBase {
auto *block = Attr<framework::BlockDesc *>(kParallelBlock);
auto *program = block->Program();
// TODO(tonyyang-svail): get places from input
std::vector<platform::Place> places;
places.emplace_back(platform::CPUPlace());
places.emplace_back(platform::CPUPlace());
auto &places = scope.FindVar(Input(kPlaces))->Get<platform::PlaceList>();
auto &sub_scopes = *scope.FindVar(Output(kParallelScopes))
->GetMutable<std::vector<framework::Scope *>>();
......@@ -82,8 +89,22 @@ class ParallelDoOp : public framework::OperatorBase {
sub_scopes.push_back(&scope.NewScope());
}
// split input
SplitTensorAndMoveTensorToScopes(scope, sub_scopes, places,
Inputs(kInputs));
// copy parameter
for (auto &param : Inputs(kParameters)) {
PADDLE_ENFORCE(scope.FindVar(param)->IsType<LoDTensor>(),
"Only support parameter type as LoDTensor");
auto &src = scope.FindVar(param)->Get<LoDTensor>();
for (size_t i = 0; i < places.size(); ++i) {
auto &place = places[i];
auto *sub_scope = sub_scopes[i];
auto *dst = sub_scope->Var(param)->GetMutable<LoDTensor>();
framework::Copy(src, place, dst);
}
}
WaitOnPlaces(places);
std::vector<std::future<void>> workers;
workers.reserve(places.size());
......@@ -93,12 +114,6 @@ class ParallelDoOp : public framework::OperatorBase {
auto &place = places[place_idx];
auto *cur_scope = sub_scopes[place_idx];
// copy parameter
// some version of boost lacks != for boost::variant
if (!(dev_ctx.GetPlace() == place)) {
PADDLE_THROW("Not Implemented");
}
workers.emplace_back(framework::Async([program, cur_scope, place, block] {
framework::Executor executor(place);
executor.Run(*program, cur_scope, block->ID(),
......@@ -108,6 +123,7 @@ class ParallelDoOp : public framework::OperatorBase {
for (auto &worker : workers) {
worker.wait();
}
WaitOnPlaces(places);
// merge output
for (auto &o_name : Outputs(kOutputs)) {
......@@ -121,6 +137,7 @@ class ParallelDoOp : public framework::OperatorBase {
scope.FindVar(o_name)->GetMutable<LoDTensor>();
lod_tensor_to_be_merged->MergeLoDTensor(lod_tensors, dev_ctx.GetPlace());
}
WaitOnPlaces(places);
}
};
......@@ -161,15 +178,14 @@ class ParallelDoGradOp : public OperatorBase {
auto &sub_scopes = scope.FindVar(Input(kParallelScopes))
->Get<std::vector<framework::Scope *>>();
// TODO(tonyyang-svail): get places from input
std::vector<platform::Place> places;
places.emplace_back(platform::CPUPlace());
places.emplace_back(platform::CPUPlace());
auto &places = scope.FindVar(Input(kPlaces))->Get<platform::PlaceList>();
// feed output@grad
SplitTensorAndMoveTensorToScopes(scope, sub_scopes, places,
Inputs(framework::GradVarName(kOutputs)));
WaitOnPlaces(places);
// for debugging
for (auto &s : Inputs(framework::GradVarName(kOutputs))) {
VLOG(3) << s;
VLOG(3) << scope.FindVar(s)->Get<LoDTensor>();
......@@ -196,10 +212,11 @@ class ParallelDoGradOp : public OperatorBase {
for (auto &worker : workers) {
worker.wait();
}
WaitOnPlaces(places);
// merge grad
for (auto &s : Outputs(framework::GradVarName(kParameters))) {
VLOG(3) << s;
VLOG(3) << "merge grad " << s;
auto &t = sub_scopes[0]->FindVar(s)->Get<LoDTensor>();
VLOG(3) << t;
......@@ -216,7 +233,8 @@ class ParallelDoGradOp : public OperatorBase {
auto sum_op = framework::OpRegistry::CreateOp(
"sum", {{"X", {s, s_buf}}}, {{"Out", {s}}},
framework::AttributeMap{});
sum_op->Run(*sub_scopes[0], place);
sum_op->Run(*sub_scopes[0], places[0]);
WaitOnPlaces(places);
}
VLOG(3) << t;
......@@ -236,9 +254,11 @@ class ParallelDoGradOpDescMaker : public framework::SingleGradOpDescMaker {
for (auto &input_param : this->InputNames()) {
VLOG(3) << input_param;
grad->SetInput(input_param, this->Input(input_param));
if (input_param != kPlaces) {
grad->SetOutput(framework::GradVarName(input_param),
this->InputGrad(input_param, false));
}
}
for (auto &output_param : this->OutputNames()) {
if (output_param == kParallelScopes) {
......
......@@ -18,7 +18,7 @@ class ParallelOpTest(unittest.TestCase):
append_batch_size=False,
stop_gradient=False)
places = fluid.default_main_program().global_block().create_var()
places = layers.get_places(device_count=4)
pd = layers.ParallelDo(places=places)
with pd.do():
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册