diff --git a/ppdet/engine/export_utils.py b/ppdet/engine/export_utils.py index a17518f10f5ac9e13074d8181889ebac83807779..44ef8125fa6305f4eafe3822437a49e644425979 100644 --- a/ppdet/engine/export_utils.py +++ b/ppdet/engine/export_utils.py @@ -57,6 +57,39 @@ TRT_MIN_SUBGRAPH = { KEYPOINT_ARCH = ['HigherHRNet', 'TopDownHRNet'] MOT_ARCH = ['DeepSORT', 'JDE', 'FairMOT', 'ByteTrack'] +TO_STATIC_SPEC = { + 'yolov3_darknet53_270e_coco': [{ + 'im_id': paddle.static.InputSpec( + name='im_id', shape=[-1, 1], dtype='float32'), + 'is_crowd': paddle.static.InputSpec( + name='is_crowd', shape=[-1, 50], dtype='float32'), + 'gt_bbox': paddle.static.InputSpec( + name='gt_bbox', shape=[-1, 50, 4], dtype='float32'), + 'curr_iter': paddle.static.InputSpec( + name='curr_iter', shape=[-1], dtype='float32'), + 'image': paddle.static.InputSpec( + name='image', shape=[-1, 3, -1, -1], dtype='float32'), + 'im_shape': paddle.static.InputSpec( + name='im_shape', shape=[-1, 2], dtype='float32'), + 'scale_factor': paddle.static.InputSpec( + name='scale_factor', shape=[-1, 2], dtype='float32'), + 'target0': paddle.static.InputSpec( + name='target0', shape=[-1, 3, 86, -1, -1], dtype='float32'), + 'target1': paddle.static.InputSpec( + name='target1', shape=[-1, 3, 86, -1, -1], dtype='float32'), + 'target2': paddle.static.InputSpec( + name='target2', shape=[-1, 3, 86, -1, -1], dtype='float32'), + }], +} + + +def apply_to_static(config, model): + filename = config.get('filename', None) + spec = TO_STATIC_SPEC.get(filename, None) + model = paddle.jit.to_static(model, input_spec=spec) + logger.info("Successfully to apply @to_static with specs: {}".format(spec)) + return model + def _prune_input_spec(input_spec, program, targets): # try to prune static program to figure out pruned input spec diff --git a/ppdet/engine/trainer.py b/ppdet/engine/trainer.py index 59f5573fa460f0f443bfe8b5aff88f0698b2aa18..abab5372b2dcc0458531e373e14254627bc90a70 100644 --- a/ppdet/engine/trainer.py +++ b/ppdet/engine/trainer.py @@ -48,7 +48,7 @@ from ppdet.utils import profiler from ppdet.modeling.post_process import multiclass_nms from .callbacks import Callback, ComposeCallback, LogPrinter, Checkpointer, WiferFaceEval, VisualDLWriter, SniperProposalsGenerator, WandbCallback -from .export_utils import _dump_infer_config, _prune_input_spec +from .export_utils import _dump_infer_config, _prune_input_spec, apply_to_static from paddle.distributed.fleet.utils.hybrid_parallel_util import fused_allreduce_gradients @@ -419,6 +419,8 @@ class Trainer(object): "EvalDataset")() model = self.model + if self.cfg.get('to_static', False): + model = apply_to_static(self.cfg, model) sync_bn = (getattr(self.cfg, 'norm_type', None) == 'sync_bn' and (self.cfg.use_gpu or self.cfg.use_mlu) and self._nranks > 1) if sync_bn: diff --git a/test_tipc/benchmark_train.sh b/test_tipc/benchmark_train.sh index 0c3f56bd5e128ad52474b9e9619a6839821306e7..f178c4d184dbf68e8e50c217a50f51cc14adc489 100644 --- a/test_tipc/benchmark_train.sh +++ b/test_tipc/benchmark_train.sh @@ -165,6 +165,16 @@ else device_num_list=($device_num) fi +# for log name +to_static="" +# parse "to_static" options and modify trainer into "to_static_trainer" +if [[ ${model_type} = "dynamicTostatic" ]];then + to_static="d2sT_" + sed -i 's/trainer:norm_train/trainer:to_static_train/g' $FILENAME +fi + + + if [[ ${model_name} =~ "higherhrnet" ]] || [[ ${model_name} =~ "hrnet" ]] || [[ ${model_name} =~ "tinypose" ]];then echo "${model_name} run on full coco dataset" epoch=$(set_dynamic_epoch $device_num $epoch) @@ -189,7 +199,7 @@ for batch_size in ${batch_size_list[*]}; do if [ ${#gpu_id} -le 1 ];then log_path="$SAVE_LOG/profiling_log" mkdir -p $log_path - log_name="${repo_name}_${model_name}_bs${batch_size}_${precision}_${run_mode}_${device_num}_profiling" + log_name="${repo_name}_${model_name}_bs${batch_size}_${precision}_${run_mode}_${device_num}_${to_static}profiling" func_sed_params "$FILENAME" "${line_gpuid}" "0" # sed used gpu_id # set profile_option params tmp=`sed -i "${line_profile}s/.*/${profile_option}/" "${FILENAME}"` @@ -205,8 +215,8 @@ for batch_size in ${batch_size_list[*]}; do speed_log_path="$SAVE_LOG/index" mkdir -p $log_path mkdir -p $speed_log_path - log_name="${repo_name}_${model_name}_bs${batch_size}_${precision}_${run_mode}_${device_num}_log" - speed_log_name="${repo_name}_${model_name}_bs${batch_size}_${precision}_${run_mode}_${device_num}_speed" + log_name="${repo_name}_${model_name}_bs${batch_size}_${precision}_${run_mode}_${device_num}_${to_static}log" + speed_log_name="${repo_name}_${model_name}_bs${batch_size}_${precision}_${run_mode}_${device_num}_${to_static}speed" func_sed_params "$FILENAME" "${line_profile}" "null" # sed profile_id as null cmd="bash test_tipc/test_train_inference_python.sh ${FILENAME} benchmark_train > ${log_path}/${log_name} 2>&1 " echo $cmd @@ -240,8 +250,8 @@ for batch_size in ${batch_size_list[*]}; do speed_log_path="$SAVE_LOG/index" mkdir -p $log_path mkdir -p $speed_log_path - log_name="${repo_name}_${model_name}_bs${batch_size}_${precision}_${run_mode}_${device_num}_log" - speed_log_name="${repo_name}_${model_name}_bs${batch_size}_${precision}_${run_mode}_${device_num}_speed" + log_name="${repo_name}_${model_name}_bs${batch_size}_${precision}_${run_mode}_${device_num}_${to_static}log" + speed_log_name="${repo_name}_${model_name}_bs${batch_size}_${precision}_${run_mode}_${device_num}_${to_static}speed" func_sed_params "$FILENAME" "${line_gpuid}" "$gpu_id" # sed used gpu_id func_sed_params "$FILENAME" "${line_profile}" "null" # sed --profile_option as null cmd="bash test_tipc/test_train_inference_python.sh ${FILENAME} benchmark_train > ${log_path}/${log_name} 2>&1 " diff --git a/test_tipc/configs/yolov3/yolov3_darknet53_270e_coco_train_infer_python.txt b/test_tipc/configs/yolov3/yolov3_darknet53_270e_coco_train_infer_python.txt index 2ad00d2c357685cfd92af5c30e3a34efdbd4c837..22c0357022fa27f79c97c3993322a1193c5f4ef5 100644 --- a/test_tipc/configs/yolov3/yolov3_darknet53_270e_coco_train_infer_python.txt +++ b/test_tipc/configs/yolov3/yolov3_darknet53_270e_coco_train_infer_python.txt @@ -17,7 +17,7 @@ norm_train:tools/train.py -c configs/yolov3/yolov3_darknet53_270e_coco.yml -o wo pact_train:tools/train.py -c configs/yolov3/yolov3_darknet53_270e_coco.yml --slim_config configs/slim/quant/yolov3_darknet_qat.yml -o fpgm_train:tools/train.py -c configs/yolov3/yolov3_darknet53_270e_coco.yml --slim_config configs/slim/prune/yolov3_darknet_prune_fpgm.yml -o distill_train:null -null:null +to_static_train:--to_static null:null ## ===========================eval_params=========================== diff --git a/test_tipc/test_train_inference_python.sh b/test_tipc/test_train_inference_python.sh index 6ea5b99db9924c70e11914f9ce8b0d383a63c0b5..e56d726ce22ba0f91734d27f3b55c983934dc47d 100644 --- a/test_tipc/test_train_inference_python.sh +++ b/test_tipc/test_train_inference_python.sh @@ -41,8 +41,8 @@ fpgm_key=$(func_parser_key "${lines[17]}") fpgm_trainer=$(func_parser_value "${lines[17]}") distill_key=$(func_parser_key "${lines[18]}") distill_trainer=$(func_parser_value "${lines[18]}") -trainer_key1=$(func_parser_key "${lines[19]}") -trainer_value1=$(func_parser_value "${lines[19]}") +to_static_key=$(func_parser_key "${lines[19]}") +to_static_trainer=$(func_parser_value "${lines[19]}") trainer_key2=$(func_parser_key "${lines[20]}") trainer_value2=$(func_parser_value "${lines[20]}") @@ -237,6 +237,7 @@ else for autocast in ${autocast_list[*]}; do for trainer in ${trainer_list[*]}; do flag_quant=False + set_to_static="" if [ ${trainer} = "${norm_key}" ]; then run_train=${norm_trainer} run_export=${norm_export} @@ -250,9 +251,10 @@ else elif [ ${trainer} = "${distill_key}" ]; then run_train=${distill_trainer} run_export=${distill_export} - elif [ ${trainer} = "${trainer_key1}" ]; then - run_train=${trainer_value1} - run_export=${export_value1} + elif [ ${trainer} = "${to_static_key}" ]; then + run_train=${norm_trainer} + run_export=${norm_export} + set_to_static=${to_static_trainer} elif [ ${trainer} = "${trainer_key2}" ]; then run_train=${trainer_value2} run_export=${export_value2} @@ -289,9 +291,9 @@ else set_save_model=$(func_set_params "${save_model_key}" "${save_log}") nodes="1" if [ ${#gpu} -le 2 ];then # train with cpu or single gpu - cmd="${python} ${run_train} LearningRate.base_lr=0.0001 log_iter=1 ${set_use_gpu} ${set_save_model} ${set_epoch} ${set_pretrain} ${set_batchsize} ${set_filename} ${set_shuffle} ${set_amp_level} ${set_enable_ce} ${set_autocast} ${set_train_params1}" + cmd="${python} ${run_train} LearningRate.base_lr=0.0001 log_iter=1 ${set_use_gpu} ${set_save_model} ${set_epoch} ${set_pretrain} ${set_batchsize} ${set_filename} ${set_shuffle} ${set_amp_level} ${set_enable_ce} ${set_autocast} ${set_to_static} ${set_train_params1}" elif [ ${#ips} -le 15 ];then # train with multi-gpu - cmd="${python} -m paddle.distributed.launch --gpus=${gpu} ${run_train} log_iter=1 ${set_use_gpu} ${set_save_model} ${set_epoch} ${set_pretrain} ${set_batchsize} ${set_filename} ${set_shuffle} ${set_amp_level} ${set_enable_ce} ${set_autocast} ${set_train_params1}" + cmd="${python} -m paddle.distributed.launch --gpus=${gpu} ${run_train} log_iter=1 ${set_use_gpu} ${set_save_model} ${set_epoch} ${set_pretrain} ${set_batchsize} ${set_filename} ${set_shuffle} ${set_amp_level} ${set_enable_ce} ${set_autocast} ${set_to_static} ${set_train_params1}" else # train with multi-machine IFS="," ips_array=(${ips}) @@ -299,7 +301,7 @@ else save_log="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}_nodes_${nodes}" IFS="|" set_save_model=$(func_set_params "${save_model_key}" "${save_log}") - cmd="${python} -m paddle.distributed.launch --ips=${ips} --gpus=${gpu} ${run_train} log_iter=1 ${set_use_gpu} ${set_save_model} ${set_epoch} ${set_pretrain} ${set_batchsize} ${set_filename} ${set_shuffle} ${set_amp_level} ${set_enable_ce} ${set_autocast} ${set_train_params1}" + cmd="${python} -m paddle.distributed.launch --ips=${ips} --gpus=${gpu} ${run_train} log_iter=1 ${set_use_gpu} ${set_save_model} ${set_epoch} ${set_pretrain} ${set_batchsize} ${set_filename} ${set_shuffle} ${set_amp_level} ${set_enable_ce} ${set_autocast} ${set_to_static} ${set_train_params1}" fi # run train train_log_path="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}_nodes_${nodes}.log" diff --git a/tools/train.py b/tools/train.py index 7b91aafa5db96e0849bfaa3dc83ce1af934f9b17..9c2f8aabf7a29bde85f2ec4d46fe6608dec916b4 100755 --- a/tools/train.py +++ b/tools/train.py @@ -103,6 +103,11 @@ def parse_args(): type=str, default="sniper/proposals.json", help='Train proposals directory') + parser.add_argument( + "--to_static", + action='store_true', + default=False, + help="Enable dy2st to train.") args = parser.parse_args() return args