From 4625f83f92c7f5d549be3666c830fd513789a82f Mon Sep 17 00:00:00 2001 From: Xin Pan Date: Fri, 19 Oct 2018 10:58:53 +0800 Subject: [PATCH] better handle var type inference avoid the default one that usually overwrites manually set ones test=develop --- paddle/fluid/framework/op_desc.cc | 16 +- python/paddle/fluid/layer_helper.py | 15 +- python/paddle/fluid/layers/control_flow.py | 33 +- python/paddle/fluid/layers/detection.py | 65 ++-- python/paddle/fluid/layers/io.py | 2 +- .../fluid/layers/layer_function_generator.py | 8 +- python/paddle/fluid/layers/metric_op.py | 10 +- python/paddle/fluid/layers/nn.py | 350 +++++++++--------- python/paddle/fluid/layers/tensor.py | 31 +- python/paddle/fluid/regularizer.py | 4 +- .../fluid/tests/unittests/test_slice_var.py | 1 - 11 files changed, 286 insertions(+), 249 deletions(-) diff --git a/paddle/fluid/framework/op_desc.cc b/paddle/fluid/framework/op_desc.cc index 121e00b1a..c293cf92b 100644 --- a/paddle/fluid/framework/op_desc.cc +++ b/paddle/fluid/framework/op_desc.cc @@ -515,20 +515,14 @@ void OpDesc::InferShape(const BlockDesc &block) const { } void OpDesc::InferVarType(BlockDesc *block) const { + // There are a few places that var type can be set. + // When VarDesc is created, default set to LOD_TENSOR. + // When output variable is created, default is defaut set to LOD_TENSOR. + // We limit here to be the only place that operator defines its customized + // var type inference. Hence, we don't do any "default" setting here. auto &info = OpInfoMap::Instance().Get(this->Type()); if (info.infer_var_type_) { info.infer_var_type_(*this, block); - } else { - // all output type is LoDTensor by default - VLOG(10) << this->Type() - << " has not registered InferVarType. Set output variables to " - "LOD_TENSOR"; - for (auto &out_pair : this->outputs_) { - for (auto &out_var_name : out_pair.second) { - block->FindRecursiveOrCreateVar(out_var_name) - .SetType(proto::VarType::LOD_TENSOR); - } - } } } diff --git a/python/paddle/fluid/layer_helper.py b/python/paddle/fluid/layer_helper.py index bd9727b6a..dc317de9a 100644 --- a/python/paddle/fluid/layer_helper.py +++ b/python/paddle/fluid/layer_helper.py @@ -324,10 +324,19 @@ class LayerHelper(object): raise ValueError("no Parameter name %s found" % name) return param - def create_tmp_variable(self, dtype, stop_gradient=False): + def create_variable_for_type_inference(self, dtype, stop_gradient=False): + """Create a temporary variable that should be type inferred layer. + + Note: + The default type will be set to LOD_TENSOR. However, when + the var is used as operator output, its type will be updated + based on operator's `VarTypeInference` implementation in + infer_var_type. + """ return self.main_program.current_block().create_var( name=unique_name.generate(".".join([self.name, 'tmp'])), dtype=dtype, + type=core.VarDesc.VarType.LOD_TENSOR, persistable=False, stop_gradient=stop_gradient) @@ -388,7 +397,7 @@ class LayerHelper(object): b = self.create_parameter( attr=bias_attr, shape=size, dtype=input_var.dtype, is_bias=True) - tmp = self.create_tmp_variable(dtype=input_var.dtype) + tmp = self.create_variable_for_type_inference(dtype=input_var.dtype) self.append_op( type='elementwise_add', inputs={'X': [input_var], @@ -414,7 +423,7 @@ class LayerHelper(object): tmp = input_var # NOTE(dzhwinter): some activation support inplace compution. if not core.IsInplace(act_type): - tmp = self.create_tmp_variable(dtype=input_var.dtype) + tmp = self.create_variable_for_type_inference(dtype=input_var.dtype) self.append_op( type=act_type, inputs={"X": [input_var]}, diff --git a/python/paddle/fluid/layers/control_flow.py b/python/paddle/fluid/layers/control_flow.py index 4af97e863..459be4339 100644 --- a/python/paddle/fluid/layers/control_flow.py +++ b/python/paddle/fluid/layers/control_flow.py @@ -80,8 +80,8 @@ def split_lod_tensor(input, mask, level=0): """ helper = LayerHelper('split_lod_tensor', **locals()) - out_true = helper.create_tmp_variable(dtype=input.dtype) - out_false = helper.create_tmp_variable(dtype=input.dtype) + out_true = helper.create_variable_for_type_inference(dtype=input.dtype) + out_false = helper.create_variable_for_type_inference(dtype=input.dtype) helper.append_op( type='split_lod_tensor', inputs={ @@ -131,7 +131,7 @@ def merge_lod_tensor(in_true, in_false, x, mask, level=0): in_true=out_true, in_false=out_false, mask=y, x=x, level=level) """ helper = LayerHelper('merge_lod_tensor', **locals()) - out = helper.create_tmp_variable(dtype=in_true.dtype) + out = helper.create_variable_for_type_inference(dtype=in_true.dtype) helper.append_op( type='merge_lod_tensor', inputs={'X': x, @@ -524,7 +524,7 @@ class StaticRNN(object): if not isinstance(o, Variable): raise TypeError("step output takes a Variable") - tmp_o = self.helper.create_tmp_variable(dtype=o.dtype) + tmp_o = self.helper.create_variable_for_type_inference(dtype=o.dtype) self.helper.append_op( type='rnn_memory_helper', inputs={'X': [o]}, @@ -606,7 +606,8 @@ class StaticRNN(object): pre_memories.append(mem.pre_mem.name) mem_var = rnn_block.var(mem.mem.name) assert isinstance(mem_var, Variable) - new_mem = self.helper.create_tmp_variable(dtype=mem_var.dtype) + new_mem = self.helper.create_variable_for_type_inference( + dtype=mem_var.dtype) rnn_block.append_op( type='rnn_memory_helper', @@ -813,7 +814,7 @@ def max_sequence_len(rank_table): ${out_comment}. """ helper = LayerHelper("max_seqence_len", **locals()) - res = helper.create_tmp_variable(dtype="int64") + res = helper.create_variable_for_type_inference(dtype="int64") helper.append_op( type="max_sequence_len", inputs={"RankTable": rank_table}, @@ -884,7 +885,7 @@ def array_to_lod_tensor(x, table): lod_tensor = fluid.layers.array_to_lod_tensor(array, table) """ helper = LayerHelper("array_to_lod_tensor", **locals()) - tmp = helper.create_tmp_variable(dtype=x.dtype) + tmp = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op( type="array_to_lod_tensor", inputs={'X': x, @@ -915,7 +916,7 @@ def increment(x, value=1.0, in_place=True): """ helper = LayerHelper("increment", **locals()) if not in_place: - out = helper.create_tmp_variable(dtype=x.dtype) + out = helper.create_variable_for_type_inference(dtype=x.dtype) else: out = x helper.append_op( @@ -1012,7 +1013,7 @@ def less_than(x, y, force_cpu=None, cond=None, **ignored): """ helper = LayerHelper("less_than", **locals()) if cond is None: - cond = helper.create_tmp_variable(dtype='bool') + cond = helper.create_variable_for_type_inference(dtype='bool') cond.stop_gradient = True attrs = dict() @@ -1051,7 +1052,7 @@ def equal(x, y, cond=None, **ignored): """ helper = LayerHelper("equal", **locals()) if cond is None: - cond = helper.create_tmp_variable(dtype='bool') + cond = helper.create_variable_for_type_inference(dtype='bool') cond.stop_gradient = True helper.append_op( @@ -1098,7 +1099,7 @@ def array_read(array, i): array, Variable) or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY: raise TypeError("array should be tensor array vairable") - out = helper.create_tmp_variable(dtype=array.dtype) + out = helper.create_variable_for_type_inference(dtype=array.dtype) helper.append_op( type='read_from_array', inputs={'X': [array], @@ -1133,7 +1134,7 @@ def shrink_memory(x, i, table): usage. """ helper = LayerHelper('shrink_memory', **locals()) - out = helper.create_tmp_variable(dtype=x.dtype) + out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op( type='shrink_rnn_memory', inputs={'X': [x], @@ -1170,7 +1171,7 @@ def array_length(array): """ helper = LayerHelper('array_length', **locals()) - tmp = helper.create_tmp_variable(dtype='int64') + tmp = helper.create_variable_for_type_inference(dtype='int64') tmp.stop_gradient = True helper.append_op( type='lod_array_length', inputs={'X': [array]}, outputs={'Out': [tmp]}) @@ -1590,7 +1591,7 @@ class DynamicRNN(object): self.mem_dict = dict() self.output_array = [] self.outputs = [] - self.cond = self.helper.create_tmp_variable(dtype='bool') + self.cond = self.helper.create_variable_for_type_inference(dtype='bool') self.cond.stop_gradient = False self.while_op = While(self.cond) self.input_array = [] @@ -1924,7 +1925,7 @@ def reorder_lod_tensor_by_rank(x, rank_table): helper.is_instance('x', Variable) helper.is_instance('rank_table', Variable) - out = helper.create_tmp_variable(dtype=x.dtype) + out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op( type='reorder_lod_tensor_by_rank', inputs={'X': [x], @@ -1958,7 +1959,7 @@ def is_empty(x, cond=None, **ignored): """ helper = LayerHelper("is_empty", **locals()) if cond is None: - cond = helper.create_tmp_variable(dtype='bool') + cond = helper.create_variable_for_type_inference(dtype='bool') cond.stop_gradient = True elif not isinstance(cond, Variable): raise TypeError("cond takes a variable") diff --git a/python/paddle/fluid/layers/detection.py b/python/paddle/fluid/layers/detection.py index 1cfcbbb9c..b94b59631 100644 --- a/python/paddle/fluid/layers/detection.py +++ b/python/paddle/fluid/layers/detection.py @@ -147,10 +147,11 @@ def rpn_target_assign(bbox_pred, helper = LayerHelper('rpn_target_assign', **locals()) # Assign target label to anchors - loc_index = helper.create_tmp_variable(dtype='int32') - score_index = helper.create_tmp_variable(dtype='int32') - target_label = helper.create_tmp_variable(dtype='int32') - target_bbox = helper.create_tmp_variable(dtype=anchor_box.dtype) + loc_index = helper.create_variable_for_type_inference(dtype='int32') + score_index = helper.create_variable_for_type_inference(dtype='int32') + target_label = helper.create_variable_for_type_inference(dtype='int32') + target_bbox = helper.create_variable_for_type_inference( + dtype=anchor_box.dtype) helper.append_op( type="rpn_target_assign", inputs={ @@ -282,7 +283,8 @@ def detection_output(loc, scores = nn.reshape(x=scores, shape=compile_shape, actual_shape=run_shape) scores = nn.transpose(scores, perm=[0, 2, 1]) scores.stop_gradient = True - nmsed_outs = helper.create_tmp_variable(dtype=decoded_box.dtype) + nmsed_outs = helper.create_variable_for_type_inference( + dtype=decoded_box.dtype) helper.append_op( type="multiclass_nms", inputs={'Scores': scores, @@ -314,7 +316,7 @@ def iou_similarity(x, y, name=None): """ helper = LayerHelper("iou_similarity", **locals()) if name is None: - out = helper.create_tmp_variable(dtype=x.dtype) + out = helper.create_variable_for_type_inference(dtype=x.dtype) else: out = helper.create_variable( name=name, dtype=x.dtype, persistable=False) @@ -351,7 +353,8 @@ def box_coder(prior_box, helper = LayerHelper("box_coder", **locals()) if name is None: - output_box = helper.create_tmp_variable(dtype=prior_box.dtype) + output_box = helper.create_variable_for_type_inference( + dtype=prior_box.dtype) else: output_box = helper.create_variable( name=name, dtype=prior_box.dtype, persistable=False) @@ -382,7 +385,7 @@ def polygon_box_transform(input, name=None): """ helper = LayerHelper("polygon_box_transform", **locals()) if name is None: - output = helper.create_tmp_variable(dtype=input.dtype) + output = helper.create_variable_for_type_inference(dtype=input.dtype) else: output = helper.create_variable( name=name, dtype=prior_box.input, persistable=False) @@ -450,7 +453,7 @@ def detection_map(detect_res, helper = LayerHelper("detection_map", **locals()) def __create_var(type): - return helper.create_tmp_variable(dtype=type) + return helper.create_variable_for_type_inference(dtype=type) map_out = __create_var('float32') accum_pos_count_out = out_states[0] if out_states else __create_var('int32') @@ -557,8 +560,9 @@ def bipartite_match(dist_matrix, >>> matched_indices, matched_dist = fluid.layers.bipartite_match(iou) """ helper = LayerHelper('bipartite_match', **locals()) - match_indices = helper.create_tmp_variable(dtype='int32') - match_distance = helper.create_tmp_variable(dtype=dist_matrix.dtype) + match_indices = helper.create_variable_for_type_inference(dtype='int32') + match_distance = helper.create_variable_for_type_inference( + dtype=dist_matrix.dtype) helper.append_op( type='bipartite_match', inputs={'DistMat': dist_matrix}, @@ -644,8 +648,8 @@ def target_assign(input, gt, matched_indices, mismatch_value=0) """ helper = LayerHelper('target_assign', **locals()) - out = helper.create_tmp_variable(dtype=input.dtype) - out_weight = helper.create_tmp_variable(dtype='float32') + out = helper.create_variable_for_type_inference(dtype=input.dtype) + out_weight = helper.create_variable_for_type_inference(dtype='float32') helper.append_op( type='target_assign', inputs={ @@ -816,9 +820,10 @@ def ssd_loss(location, conf_loss = nn.reshape( x=conf_loss, shape=(num, num_prior), actual_shape=actual_shape) conf_loss.stop_gradient = True - neg_indices = helper.create_tmp_variable(dtype='int32') + neg_indices = helper.create_variable_for_type_inference(dtype='int32') dtype = matched_indices.dtype - updated_matched_indices = helper.create_tmp_variable(dtype=dtype) + updated_matched_indices = helper.create_variable_for_type_inference( + dtype=dtype) helper.append_op( type='mine_hard_examples', inputs={ @@ -998,8 +1003,8 @@ def prior_box(input, max_sizes = [max_sizes] attrs['max_sizes'] = max_sizes - box = helper.create_tmp_variable(dtype) - var = helper.create_tmp_variable(dtype) + box = helper.create_variable_for_type_inference(dtype) + var = helper.create_variable_for_type_inference(dtype) helper.append_op( type="prior_box", inputs={"Input": input, @@ -1337,8 +1342,8 @@ def anchor_generator(input, 'offset': offset } - anchor = helper.create_tmp_variable(dtype) - var = helper.create_tmp_variable(dtype) + anchor = helper.create_variable_for_type_inference(dtype) + var = helper.create_variable_for_type_inference(dtype) helper.append_op( type="anchor_generator", inputs={"Input": input}, @@ -1384,7 +1389,7 @@ def roi_perspective_transform(input, """ helper = LayerHelper('roi_perspective_transform', **locals()) dtype = helper.input_dtype() - out = helper.create_tmp_variable(dtype) + out = helper.create_variable_for_type_inference(dtype) helper.append_op( type="roi_perspective_transform", inputs={"X": input, @@ -1418,11 +1423,15 @@ def generate_proposal_labels(rpn_rois, helper = LayerHelper('generate_proposal_labels', **locals()) - rois = helper.create_tmp_variable(dtype=rpn_rois.dtype) - labels_int32 = helper.create_tmp_variable(dtype=gt_classes.dtype) - bbox_targets = helper.create_tmp_variable(dtype=rpn_rois.dtype) - bbox_inside_weights = helper.create_tmp_variable(dtype=rpn_rois.dtype) - bbox_outside_weights = helper.create_tmp_variable(dtype=rpn_rois.dtype) + rois = helper.create_variable_for_type_inference(dtype=rpn_rois.dtype) + labels_int32 = helper.create_variable_for_type_inference( + dtype=gt_classes.dtype) + bbox_targets = helper.create_variable_for_type_inference( + dtype=rpn_rois.dtype) + bbox_inside_weights = helper.create_variable_for_type_inference( + dtype=rpn_rois.dtype) + bbox_outside_weights = helper.create_variable_for_type_inference( + dtype=rpn_rois.dtype) helper.append_op( type="generate_proposal_labels", @@ -1504,8 +1513,10 @@ def generate_proposals(scores, """ helper = LayerHelper('generate_proposals', **locals()) - rpn_rois = helper.create_tmp_variable(dtype=bbox_deltas.dtype) - rpn_roi_probs = helper.create_tmp_variable(dtype=scores.dtype) + rpn_rois = helper.create_variable_for_type_inference( + dtype=bbox_deltas.dtype) + rpn_roi_probs = helper.create_variable_for_type_inference( + dtype=scores.dtype) helper.append_op( type="generate_proposals", inputs={ diff --git a/python/paddle/fluid/layers/io.py b/python/paddle/fluid/layers/io.py index dcd5a064a..95e13669a 100644 --- a/python/paddle/fluid/layers/io.py +++ b/python/paddle/fluid/layers/io.py @@ -954,7 +954,7 @@ def read_file(reader): """ helper = LayerHelper('read_file') out = [ - helper.create_tmp_variable( + helper.create_variable_for_type_inference( stop_gradient=True, dtype='float32') for _ in range(len(reader.desc.shapes())) ] diff --git a/python/paddle/fluid/layers/layer_function_generator.py b/python/paddle/fluid/layers/layer_function_generator.py index 8c11921d9..eea0a362a 100644 --- a/python/paddle/fluid/layers/layer_function_generator.py +++ b/python/paddle/fluid/layers/layer_function_generator.py @@ -202,10 +202,12 @@ def generate_layer_fn(op_type): out_var = out[0] if (isinstance(out, list) or isinstance(out, tuple)) else out else: - out_var = helper.create_tmp_variable(dtype=dtype) + out_var = helper.create_variable_for_type_inference(dtype=dtype) outputs[o_name] = [out_var] for name in intermediate_output_names: - outputs[name] = [helper.create_tmp_variable(dtype=dtype)] + outputs[name] = [ + helper.create_variable_for_type_inference(dtype=dtype) + ] helper.append_op( type=op_type, inputs=inputs, outputs=outputs, attrs=kwargs) return helper.append_activation(out_var) @@ -229,7 +231,7 @@ def generate_layer_fn_noattr(op_type): def func(x, name=None): helper = LayerHelper(op_type, **locals()) - output = helper.create_tmp_variable(dtype=x.dtype) + output = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op(type=op_type, inputs={"X": x}, outputs={"Out": output}) return output diff --git a/python/paddle/fluid/layers/metric_op.py b/python/paddle/fluid/layers/metric_op.py index a3064b565..b2d2c93ea 100644 --- a/python/paddle/fluid/layers/metric_op.py +++ b/python/paddle/fluid/layers/metric_op.py @@ -58,11 +58,11 @@ def accuracy(input, label, k=1, correct=None, total=None): """ helper = LayerHelper("accuracy", **locals()) topk_out, topk_indices = nn.topk(input, k=k) - acc_out = helper.create_tmp_variable(dtype="float32") + acc_out = helper.create_variable_for_type_inference(dtype="float32") if correct is None: - correct = helper.create_tmp_variable(dtype="int64") + correct = helper.create_variable_for_type_inference(dtype="int64") if total is None: - total = helper.create_tmp_variable(dtype="int64") + total = helper.create_variable_for_type_inference(dtype="int64") helper.append_op( type="accuracy", inputs={ @@ -124,8 +124,8 @@ def auc(input, auc_out=fluid.layers.auc(input=prediction, label=label) """ helper = LayerHelper("auc", **locals()) - auc_out = helper.create_tmp_variable(dtype="float64") - batch_auc_out = helper.create_tmp_variable(dtype="float64") + auc_out = helper.create_variable_for_type_inference(dtype="float64") + batch_auc_out = helper.create_variable_for_type_inference(dtype="float64") # make tp, tn, fp, fn persistable, so that can accumulate all batches. # for batch auc diff --git a/python/paddle/fluid/layers/nn.py b/python/paddle/fluid/layers/nn.py index 538035de1..d8e497731 100644 --- a/python/paddle/fluid/layers/nn.py +++ b/python/paddle/fluid/layers/nn.py @@ -242,7 +242,7 @@ def fc(input, w = helper.create_parameter( attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False) - tmp = helper.create_tmp_variable(dtype) + tmp = helper.create_variable_for_type_inference(dtype) helper.append_op( type="mul", inputs={"X": input_var, @@ -255,7 +255,7 @@ def fc(input, if len(mul_results) == 1: pre_bias = mul_results[0] else: - pre_bias = helper.create_tmp_variable(dtype) + pre_bias = helper.create_variable_for_type_inference(dtype) helper.append_op( type="sum", inputs={"X": mul_results}, @@ -314,7 +314,7 @@ def embedding(input, helper = LayerHelper('embedding', **locals()) w = helper.create_parameter( attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False) - tmp = helper.create_tmp_variable(dtype) + tmp = helper.create_variable_for_type_inference(dtype) padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else ( size[0] + padding_idx) helper.append_op( @@ -418,10 +418,10 @@ def dynamic_lstm(input, bias = helper.create_parameter( attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True) - hidden = helper.create_tmp_variable(dtype) - cell = helper.create_tmp_variable(dtype) - batch_gate = helper.create_tmp_variable(dtype) - batch_cell_pre_act = helper.create_tmp_variable(dtype) + hidden = helper.create_variable_for_type_inference(dtype) + cell = helper.create_variable_for_type_inference(dtype) + batch_gate = helper.create_variable_for_type_inference(dtype) + batch_cell_pre_act = helper.create_variable_for_type_inference(dtype) inputs = {'Input': input, 'Weight': weight, 'Bias': bias} batch_size = input.shape[0] if h_0: @@ -621,12 +621,12 @@ def dynamic_lstmp(input, bias = helper.create_parameter( attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True) - projection = helper.create_tmp_variable(dtype) - cell = helper.create_tmp_variable(dtype) - ordered_proj0 = helper.create_tmp_variable(dtype) - batch_hidden = helper.create_tmp_variable(dtype) - batch_gate = helper.create_tmp_variable(dtype) - batch_cell_pre_act = helper.create_tmp_variable(dtype) + projection = helper.create_variable_for_type_inference(dtype) + cell = helper.create_variable_for_type_inference(dtype) + ordered_proj0 = helper.create_variable_for_type_inference(dtype) + batch_hidden = helper.create_variable_for_type_inference(dtype) + batch_gate = helper.create_variable_for_type_inference(dtype) + batch_cell_pre_act = helper.create_variable_for_type_inference(dtype) helper.append_op( type='lstmp', @@ -751,10 +751,10 @@ def dynamic_gru(input, ), 'The shape of h0 should be(batch_size, %d)' % size inputs['H0'] = h_0 - hidden = helper.create_tmp_variable(dtype) - batch_gate = helper.create_tmp_variable(dtype) - batch_reset_hidden_prev = helper.create_tmp_variable(dtype) - batch_hidden = helper.create_tmp_variable(dtype) + hidden = helper.create_variable_for_type_inference(dtype) + batch_gate = helper.create_variable_for_type_inference(dtype) + batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype) + batch_hidden = helper.create_variable_for_type_inference(dtype) helper.append_op( type='gru', @@ -844,9 +844,9 @@ def gru_unit(input, weight = helper.create_parameter( attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype) - gate = helper.create_tmp_variable(dtype) - reset_hidden_pre = helper.create_tmp_variable(dtype) - updated_hidden = helper.create_tmp_variable(dtype) + gate = helper.create_variable_for_type_inference(dtype) + reset_hidden_pre = helper.create_variable_for_type_inference(dtype) + updated_hidden = helper.create_variable_for_type_inference(dtype) inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight} # create bias if helper.bias_attr: @@ -896,10 +896,14 @@ def linear_chain_crf(input, label, param_attr=None): attr=helper.param_attr, shape=[size + 2, size], dtype=helper.input_dtype()) - alpha = helper.create_tmp_variable(dtype=helper.input_dtype()) - emission_exps = helper.create_tmp_variable(dtype=helper.input_dtype()) - transition_exps = helper.create_tmp_variable(dtype=helper.input_dtype()) - log_likelihood = helper.create_tmp_variable(dtype=helper.input_dtype()) + alpha = helper.create_variable_for_type_inference( + dtype=helper.input_dtype()) + emission_exps = helper.create_variable_for_type_inference( + dtype=helper.input_dtype()) + transition_exps = helper.create_variable_for_type_inference( + dtype=helper.input_dtype()) + log_likelihood = helper.create_variable_for_type_inference( + dtype=helper.input_dtype()) helper.append_op( type='linear_chain_crf', inputs={"Emission": [input], @@ -938,7 +942,8 @@ def crf_decoding(input, param_attr, label=None): """ helper = LayerHelper('crf_decoding', **locals()) transition = helper.get_parameter(param_attr.name) - viterbi_path = helper.create_tmp_variable(dtype=helper.input_dtype()) + viterbi_path = helper.create_variable_for_type_inference( + dtype=helper.input_dtype()) helper.append_op( type='crf_decoding', inputs={"Emission": [input], @@ -962,9 +967,9 @@ def cos_sim(X, Y): Variable: the output of cosine(X, Y). """ helper = LayerHelper('cos_sim', **locals()) - out = helper.create_tmp_variable(dtype=X.dtype) - xnorm = helper.create_tmp_variable(dtype=X.dtype) - ynorm = helper.create_tmp_variable(dtype=X.dtype) + out = helper.create_variable_for_type_inference(dtype=X.dtype) + xnorm = helper.create_variable_for_type_inference(dtype=X.dtype) + ynorm = helper.create_variable_for_type_inference(dtype=X.dtype) helper.append_op( type='cos_sim', inputs={'X': [X], @@ -1008,8 +1013,9 @@ def dropout(x, dropout_prob, is_test=False, seed=None, name=None): """ helper = LayerHelper('dropout', **locals()) - out = helper.create_tmp_variable(dtype=x.dtype) - mask = helper.create_tmp_variable(dtype=x.dtype, stop_gradient=True) + out = helper.create_variable_for_type_inference(dtype=x.dtype) + mask = helper.create_variable_for_type_inference( + dtype=x.dtype, stop_gradient=True) if (seed is None or seed == 0) and helper.main_program.random_seed != 0: seed = helper.main_program.random_seed @@ -1094,7 +1100,7 @@ def cross_entropy(input, label, soft_label=False, ignore_index=-100): cost = fluid.layers.cross_entropy(input=predict, label=label) """ helper = LayerHelper('cross_entropy', **locals()) - out = helper.create_tmp_variable(dtype=input.dtype) + out = helper.create_variable_for_type_inference(dtype=input.dtype) helper.append_op( type='cross_entropy', inputs={'X': [input], @@ -1141,14 +1147,14 @@ def square_error_cost(input, label): """ helper = LayerHelper('square_error_cost', **locals()) - minus_out = helper.create_tmp_variable(dtype=input.dtype) + minus_out = helper.create_variable_for_type_inference(dtype=input.dtype) helper.append_op( type='elementwise_sub', inputs={'X': [input], 'Y': [label]}, outputs={'Out': [minus_out]}) - square_out = helper.create_tmp_variable(dtype=input.dtype) + square_out = helper.create_variable_for_type_inference(dtype=input.dtype) helper.append_op( type='square', inputs={'X': [minus_out]}, outputs={'Out': [square_out]}) @@ -1254,12 +1260,13 @@ def chunk_eval(input, helper = LayerHelper("chunk_eval", **locals()) # prepare output - precision = helper.create_tmp_variable(dtype="float32") - recall = helper.create_tmp_variable(dtype="float32") - f1_score = helper.create_tmp_variable(dtype="float32") - num_infer_chunks = helper.create_tmp_variable(dtype="int64") - num_label_chunks = helper.create_tmp_variable(dtype="int64") - num_correct_chunks = helper.create_tmp_variable(dtype="int64") + precision = helper.create_variable_for_type_inference(dtype="float32") + recall = helper.create_variable_for_type_inference(dtype="float32") + f1_score = helper.create_variable_for_type_inference(dtype="float32") + num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64") + num_label_chunks = helper.create_variable_for_type_inference(dtype="int64") + num_correct_chunks = helper.create_variable_for_type_inference( + dtype="int64") helper.append_op( type="chunk_eval", @@ -1326,7 +1333,7 @@ def sequence_conv(input, filter_shape = [filter_size * input.shape[1], num_filters] filter_param = helper.create_parameter( attr=helper.param_attr, shape=filter_shape, dtype=dtype) - pre_bias = helper.create_tmp_variable(dtype) + pre_bias = helper.create_variable_for_type_inference(dtype) helper.append_op( type='sequence_conv', @@ -1382,7 +1389,7 @@ def sequence_softmax(input, use_cudnn=False, name=None): """ helper = LayerHelper('sequence_softmax', **locals()) dtype = helper.input_dtype() - softmax_out = helper.create_tmp_variable(dtype) + softmax_out = helper.create_variable_for_type_inference(dtype) helper.append_op( type="sequence_softmax", inputs={"X": input}, @@ -1436,7 +1443,7 @@ def softmax(input, use_cudnn=True, name=None): """ helper = LayerHelper('softmax', **locals()) dtype = helper.input_dtype() - softmax_out = helper.create_tmp_variable(dtype) + softmax_out = helper.create_variable_for_type_inference(dtype) helper.append_op( type="softmax", inputs={"X": input}, @@ -1599,7 +1606,7 @@ def conv2d(input, dtype=dtype, default_initializer=_get_default_param_initializer()) - pre_bias = helper.create_tmp_variable(dtype) + pre_bias = helper.create_variable_for_type_inference(dtype) helper.append_op( type=l_type, @@ -1770,7 +1777,7 @@ def conv3d(input, dtype=dtype, default_initializer=_get_default_param_initializer()) - pre_bias = helper.create_tmp_variable(dtype) + pre_bias = helper.create_variable_for_type_inference(dtype) helper.append_op( type=l_type, @@ -1849,8 +1856,8 @@ def sequence_pool(input, pool_type): """ helper = LayerHelper('sequence_pool', **locals()) dtype = helper.input_dtype() - pool_out = helper.create_tmp_variable(dtype) - max_index = helper.create_tmp_variable(dtype) + pool_out = helper.create_variable_for_type_inference(dtype) + max_index = helper.create_variable_for_type_inference(dtype) helper.append_op( type="sequence_pool", @@ -1886,7 +1893,7 @@ def sequence_concat(input, name=None): out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3]) """ helper = LayerHelper('sequence_concat', **locals()) - out = helper.create_tmp_variable(dtype=helper.input_dtype()) + out = helper.create_variable_for_type_inference(dtype=helper.input_dtype()) helper.append_op( type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]}) return out @@ -2013,7 +2020,7 @@ def sequence_slice(input, offset, length, name=None): """ helper = LayerHelper("sequence_slice", **locals()) dtype = helper.input_dtype() - out = helper.create_tmp_variable(dtype) + out = helper.create_variable_for_type_inference(dtype) offset.stop_gradient = True length.stop_gradient = True @@ -2099,7 +2106,7 @@ def pool2d(input, helper = LayerHelper(l_type, **locals()) dtype = helper.input_dtype() - pool_out = helper.create_tmp_variable(dtype) + pool_out = helper.create_variable_for_type_inference(dtype) helper.append_op( type=l_type, @@ -2167,7 +2174,7 @@ def pool3d(input, l_type = "pool3d" helper = LayerHelper(l_type, **locals()) dtype = helper.input_dtype() - pool_out = helper.create_tmp_variable(dtype) + pool_out = helper.create_variable_for_type_inference(dtype) helper.append_op( type=l_type, @@ -2310,10 +2317,13 @@ def batch_norm(input, mean_out = mean # variance and variance out share the same memory variance_out = variance - saved_mean = helper.create_tmp_variable(dtype=dtype, stop_gradient=True) - saved_variance = helper.create_tmp_variable(dtype=dtype, stop_gradient=True) + saved_mean = helper.create_variable_for_type_inference( + dtype=dtype, stop_gradient=True) + saved_variance = helper.create_variable_for_type_inference( + dtype=dtype, stop_gradient=True) - batch_norm_out = input if in_place else helper.create_tmp_variable(dtype) + batch_norm_out = input if in_place else helper.create_variable_for_type_inference( + dtype) helper.append_op( type="batch_norm", @@ -2430,9 +2440,11 @@ def layer_norm(input, inputs['Bias'] = bias # create output - mean_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True) - variance_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True) - layer_norm_out = helper.create_tmp_variable(dtype) + mean_out = helper.create_variable_for_type_inference( + dtype=dtype, stop_gradient=True) + variance_out = helper.create_variable_for_type_inference( + dtype=dtype, stop_gradient=True) + layer_norm_out = helper.create_variable_for_type_inference(dtype) helper.append_op( type="layer_norm", @@ -2619,7 +2631,7 @@ def conv2d_transpose(input, img_filter = helper.create_parameter( dtype=input.dtype, shape=filter_shape, attr=helper.param_attr) - pre_bias = helper.create_tmp_variable(dtype=input.dtype) + pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype) helper.append_op( type=op_type, inputs={'Input': [input], @@ -2797,7 +2809,7 @@ def conv3d_transpose(input, img_filter = helper.create_parameter( dtype=input.dtype, shape=filter_shape, attr=helper.param_attr) - pre_bias = helper.create_tmp_variable(dtype=input.dtype) + pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype) helper.append_op( type=l_type, inputs={'Input': [input], @@ -2876,7 +2888,7 @@ def sequence_expand(x, y, ref_level=-1, name=None): """ helper = LayerHelper('sequence_expand', input=x, **locals()) dtype = helper.input_dtype() - tmp = helper.create_tmp_variable(dtype) + tmp = helper.create_variable_for_type_inference(dtype) helper.append_op( type='sequence_expand', inputs={'X': x, @@ -2942,7 +2954,7 @@ def sequence_expand_as(x, y, name=None): """ helper = LayerHelper('sequence_expand_as', input=x, **locals()) dtype = helper.input_dtype() - tmp = helper.create_tmp_variable(dtype) + tmp = helper.create_variable_for_type_inference(dtype) helper.append_op( type='sequence_expand_as', inputs={'X': x, @@ -2987,8 +2999,8 @@ def sequence_pad(x, pad_value, maxlen=None, name=None): helper = LayerHelper('sequence_pad', input=x, **locals()) dtype = helper.input_dtype() - out = helper.create_tmp_variable(dtype) - length = helper.create_tmp_variable(dtype) + out = helper.create_variable_for_type_inference(dtype) + length = helper.create_variable_for_type_inference(dtype) pad_value.stop_gradient = True length.stop_gradient = True @@ -3053,7 +3065,7 @@ def sequence_unpad(x, length, name=None): helper = LayerHelper('sequence_unpad', input=x, **locals()) dtype = helper.input_dtype() - out = helper.create_tmp_variable(dtype) + out = helper.create_variable_for_type_inference(dtype) length.stop_gradient = True @@ -3152,8 +3164,9 @@ def beam_search(pre_ids, score_type = scores.dtype id_type = ids.dtype - selected_scores = helper.create_tmp_variable(dtype=score_type) - selected_ids = helper.create_tmp_variable(dtype=id_type) + selected_scores = helper.create_variable_for_type_inference( + dtype=score_type) + selected_ids = helper.create_variable_for_type_inference(dtype=id_type) helper.append_op( type='beam_search', @@ -3210,8 +3223,8 @@ def beam_search_decode(ids, scores, beam_size, end_id, name=None): ids, scores, beam_size=5, end_id=0) """ helper = LayerHelper('beam_search_decode', **locals()) - sentence_ids = helper.create_tmp_variable(dtype=ids.dtype) - sentence_scores = helper.create_tmp_variable(dtype=ids.dtype) + sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype) + sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype) helper.append_op( type="beam_search_decode", @@ -3341,8 +3354,8 @@ def lstm_unit(x_t, param_attr=param_attr, bias_attr=bias_attr) dtype = x_t.dtype - c = helper.create_tmp_variable(dtype) - h = helper.create_tmp_variable(dtype) + c = helper.create_variable_for_type_inference(dtype) + h = helper.create_variable_for_type_inference(dtype) helper.append_op( type='lstm_unit', @@ -3396,7 +3409,7 @@ def reduce_sum(input, dim=None, keep_dim=False, name=None): """ helper = LayerHelper('reduce_sum', **locals()) - out = helper.create_tmp_variable(dtype=helper.input_dtype()) + out = helper.create_variable_for_type_inference(dtype=helper.input_dtype()) if dim is not None and not isinstance(dim, list): dim = [dim] helper.append_op( @@ -3453,7 +3466,7 @@ def reduce_mean(input, dim=None, keep_dim=False, name=None): fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0] """ helper = LayerHelper('reduce_mean', **locals()) - out = helper.create_tmp_variable(dtype=helper.input_dtype()) + out = helper.create_variable_for_type_inference(dtype=helper.input_dtype()) if dim is not None and not isinstance(dim, list): dim = [dim] helper.append_op( @@ -3508,7 +3521,7 @@ def reduce_max(input, dim=None, keep_dim=False, name=None): fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0] """ helper = LayerHelper('reduce_max', **locals()) - out = helper.create_tmp_variable(dtype=helper.input_dtype()) + out = helper.create_variable_for_type_inference(dtype=helper.input_dtype()) if dim is not None and not isinstance(dim, list): dim = [dim] helper.append_op( @@ -3563,7 +3576,7 @@ def reduce_min(input, dim=None, keep_dim=False, name=None): fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0] """ helper = LayerHelper('reduce_min', **locals()) - out = helper.create_tmp_variable(dtype=helper.input_dtype()) + out = helper.create_variable_for_type_inference(dtype=helper.input_dtype()) if dim is not None and not isinstance(dim, list): dim = [dim] helper.append_op( @@ -3619,7 +3632,7 @@ def reduce_prod(input, dim=None, keep_dim=False, name=None): fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0] """ helper = LayerHelper('reduce_prod', **locals()) - out = helper.create_tmp_variable(dtype=helper.input_dtype()) + out = helper.create_variable_for_type_inference(dtype=helper.input_dtype()) if dim is not None and not isinstance(dim, list): dim = [dim] helper.append_op( @@ -3679,7 +3692,7 @@ def split(input, num_or_sections, dim=-1, name=None): dim], 'len(num_or_sections) must not be more than input.shape[dim].' num = len(num_or_sections) outs = [ - helper.create_tmp_variable(dtype=helper.input_dtype()) + helper.create_variable_for_type_inference(dtype=helper.input_dtype()) for i in range(num) ] helper.append_op( @@ -3736,8 +3749,8 @@ def l2_normalize(x, axis, epsilon=1e-12, name=None): axis = 0 helper = LayerHelper("l2_normalize", **locals()) - out = helper.create_tmp_variable(dtype=x.dtype) - norm = helper.create_tmp_variable(dtype=x.dtype) + out = helper.create_variable_for_type_inference(dtype=x.dtype) + norm = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op( type="norm", inputs={"X": x}, @@ -3846,7 +3859,7 @@ def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None): __check_input(x, y) helper = LayerHelper('matmul', **locals()) - out = helper.create_tmp_variable(dtype=x.dtype) + out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op( type='matmul', inputs={'X': x, @@ -3917,8 +3930,8 @@ def topk(input, k, name=None): top5_values, top5_indices = layers.topk(input, k=5) """ helper = LayerHelper("top_k", **locals()) - values = helper.create_tmp_variable(dtype=input.dtype) - indices = helper.create_tmp_variable(dtype="int64") + values = helper.create_variable_for_type_inference(dtype=input.dtype) + indices = helper.create_variable_for_type_inference(dtype="int64") helper.append_op( type="top_k", inputs={"X": [input]}, @@ -3976,8 +3989,8 @@ def edit_distance(input, label, normalized=True, ignored_tokens=None): # remove some tokens from input and labels if ignored_tokens is not None and len(ignored_tokens) > 0: - erased_input = helper.create_tmp_variable(dtype="int64") - erased_label = helper.create_tmp_variable(dtype="int64") + erased_input = helper.create_variable_for_type_inference(dtype="int64") + erased_label = helper.create_variable_for_type_inference(dtype="int64") helper.append_op( type="sequence_erase", @@ -3994,8 +4007,8 @@ def edit_distance(input, label, normalized=True, ignored_tokens=None): label = erased_label # edit distance op - edit_distance_out = helper.create_tmp_variable(dtype="int64") - sequence_num = helper.create_tmp_variable(dtype="int64") + edit_distance_out = helper.create_variable_for_type_inference(dtype="int64") + sequence_num = helper.create_variable_for_type_inference(dtype="int64") helper.append_op( type="edit_distance", inputs={"Hyps": [input], @@ -4070,7 +4083,7 @@ def ctc_greedy_decoder(input, blank, name=None): _, topk_indices = topk(input, k=1) # ctc align op - ctc_out = helper.create_tmp_variable(dtype="int64") + ctc_out = helper.create_variable_for_type_inference(dtype="int64") helper.append_op( type="ctc_align", inputs={"Input": [topk_indices]}, @@ -4120,8 +4133,8 @@ def warpctc(input, label, blank=0, norm_by_times=False): """ helper = LayerHelper('warpctc', **locals()) - loss_out = helper.create_tmp_variable(dtype=input.dtype) - grad_out = helper.create_tmp_variable(dtype=input.dtype) + loss_out = helper.create_variable_for_type_inference(dtype=input.dtype) + grad_out = helper.create_variable_for_type_inference(dtype=input.dtype) helper.append_op( type='warpctc', inputs={'Logits': [input], @@ -4182,7 +4195,7 @@ def sequence_reshape(input, new_dim): x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10) """ helper = LayerHelper('sequence_reshape', **locals()) - out = helper.create_tmp_variable(helper.input_dtype()) + out = helper.create_variable_for_type_inference(helper.input_dtype()) helper.append_op( type='sequence_reshape', inputs={'X': [input]}, @@ -4279,9 +4292,9 @@ def nce(input, is_bias=True, dtype=input.dtype) inputs['Bias'] = b - cost = helper.create_tmp_variable(dtype=input.dtype) - sample_logits = helper.create_tmp_variable(dtype=input.dtype) - sample_labels = helper.create_tmp_variable(dtype=label.dtype) + cost = helper.create_variable_for_type_inference(dtype=input.dtype) + sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype) + sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype) if num_neg_samples is None: num_neg_samples = 10 @@ -4357,8 +4370,8 @@ def hsigmoid(input, helper = LayerHelper('hierarchical_sigmoid', **locals()) dtype = helper.input_dtype() - out = helper.create_tmp_variable(dtype) - pre_out = helper.create_tmp_variable(dtype) + out = helper.create_variable_for_type_inference(dtype) + pre_out = helper.create_variable_for_type_inference(dtype) dim = input.shape[1] if num_classes < 2: raise ValueError("num_classes must not be less than 2.") @@ -4418,8 +4431,8 @@ def transpose(x, perm, name=None): (idx, perm[idx], len(x.shape))) helper = LayerHelper('transpose', **locals()) - out = helper.create_tmp_variable(x.dtype) - x_shape = helper.create_tmp_variable(x.dtype) + out = helper.create_variable_for_type_inference(x.dtype) + x_shape = helper.create_variable_for_type_inference(x.dtype) helper.append_op( type='transpose2', inputs={'X': [x]}, @@ -4561,7 +4574,7 @@ def im2sequence(input, inputs["Y"] = input_image_size attrs["out_stride"] = out_stride helper = LayerHelper('im2sequence', **locals()) - out = helper.create_tmp_variable(dtype=helper.input_dtype()) + out = helper.create_variable_for_type_inference(dtype=helper.input_dtype()) helper.append_op( type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs) return out @@ -4594,7 +4607,7 @@ def row_conv(input, future_context_size, param_attr=None, act=None): filter_shape = [future_context_size + 1, input.shape[1]] filter_param = helper.create_parameter( attr=helper.param_attr, shape=filter_shape, dtype=dtype) - out = helper.create_tmp_variable(dtype) + out = helper.create_variable_for_type_inference(dtype) helper.append_op( type='row_conv', inputs={'X': [input], @@ -4627,7 +4640,7 @@ def multiplex(inputs, index): raise ValueError("inputs should be a list object and contains at least " "2 elements.") - out = helper.create_tmp_variable(inputs[0].dtype) + out = helper.create_variable_for_type_inference(inputs[0].dtype) helper.append_op( type='multiplex', inputs={'X': inputs, @@ -4698,8 +4711,8 @@ def softmax_with_cross_entropy(logits, logits=fc, label=label) """ helper = LayerHelper('softmax_with_cross_entropy', **locals()) - softmax = helper.create_tmp_variable(dtype=logits.dtype) - loss = helper.create_tmp_variable(dtype=logits.dtype) + softmax = helper.create_variable_for_type_inference(dtype=logits.dtype) + loss = helper.create_variable_for_type_inference(dtype=logits.dtype) helper.append_op( type='softmax_with_cross_entropy', inputs={'Logits': logits, @@ -4749,8 +4762,8 @@ def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None): """ helper = LayerHelper('smooth_l1_loss', **locals()) - diff = helper.create_tmp_variable(dtype=x.dtype) - loss = helper.create_tmp_variable(dtype=x.dtype) + diff = helper.create_variable_for_type_inference(dtype=x.dtype) + loss = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op( type='smooth_l1_loss', inputs={ @@ -4783,7 +4796,7 @@ def one_hot(input, depth): one_hot_label = layers.one_hot(input=label, depth=10) """ helper = LayerHelper("one_hot", **locals()) - one_hot_out = helper.create_tmp_variable(dtype='float32') + one_hot_out = helper.create_variable_for_type_inference(dtype='float32') helper.append_op( type="one_hot", inputs={'X': input}, @@ -4925,8 +4938,8 @@ def reshape(x, shape, actual_shape=None, act=None, inplace=True, name=None): "except one unknown dimension.") helper = LayerHelper("reshape2", **locals()) - out = helper.create_tmp_variable(dtype=x.dtype) - x_shape = helper.create_tmp_variable(dtype=x.dtype) + out = helper.create_variable_for_type_inference(dtype=x.dtype) + x_shape = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op( type="reshape2", inputs=inputs, @@ -4975,8 +4988,8 @@ def squeeze(input, axes, name=None): y = layers.sequeeze(input=x, axes=[1]) """ helper = LayerHelper("squeeze", **locals()) - out = helper.create_tmp_variable(dtype=input.dtype) - x_shape = helper.create_tmp_variable(dtype=input.dtype) + out = helper.create_variable_for_type_inference(dtype=input.dtype) + x_shape = helper.create_variable_for_type_inference(dtype=input.dtype) helper.append_op( type="squeeze2", inputs={"X": input}, @@ -5012,8 +5025,8 @@ def unsqueeze(input, axes, name=None): y = layers.unsequeeze(input=x, axes=[1]) """ helper = LayerHelper("unsqueeze", **locals()) - out = helper.create_tmp_variable(dtype=input.dtype) - x_shape = helper.create_tmp_variable(dtype=input.dtype) + out = helper.create_variable_for_type_inference(dtype=input.dtype) + x_shape = helper.create_variable_for_type_inference(dtype=input.dtype) helper.append_op( type="unsqueeze2", inputs={"X": input}, @@ -5103,7 +5116,7 @@ def lod_reset(x, y=None, target_lod=None): out = layers.lod_reset(x=x, y=y) """ helper = LayerHelper("lod_reset", **locals()) - out = helper.create_tmp_variable(dtype=x.dtype) + out = helper.create_variable_for_type_inference(dtype=x.dtype) if y is not None: helper.append_op( type="lod_reset", inputs={'X': x, @@ -5172,8 +5185,9 @@ def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None): "dims of input must be 4(not %d), and it's order must be NCHW" % (dims)) - mid_out = helper.create_tmp_variable(dtype=dtype, stop_gradient=True) - lrn_out = helper.create_tmp_variable(dtype) + mid_out = helper.create_variable_for_type_inference( + dtype=dtype, stop_gradient=True) + lrn_out = helper.create_variable_for_type_inference(dtype) helper.append_op( type="lrn", inputs={"X": input}, @@ -5238,7 +5252,7 @@ def pad(x, paddings, pad_value=0., name=None): """ helper = LayerHelper('pad', input=x, **locals()) dtype = helper.input_dtype() - out = helper.create_tmp_variable(dtype) + out = helper.create_variable_for_type_inference(dtype) helper.append_op( type='pad', inputs={'X': x}, @@ -5318,7 +5332,7 @@ def pad_constant_like(x, y, pad_value=0., name=None): """ helper = LayerHelper('pad_constant_like', input=x, **locals()) dtype = helper.input_dtype() - out = helper.create_tmp_variable(dtype) + out = helper.create_variable_for_type_inference(dtype) helper.append_op( type='pad_constant_like', inputs={'X': x, @@ -5383,7 +5397,7 @@ def label_smooth(label, raise ValueError("The value of epsilon must be between 0 and 1.") helper = LayerHelper("label_smooth", **locals()) label.stop_gradient = True - smooth_label = helper.create_tmp_variable(dtype) + smooth_label = helper.create_variable_for_type_inference(dtype) helper.append_op( type="label_smooth", inputs={"X": label, @@ -5415,8 +5429,8 @@ def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0): """ helper = LayerHelper('roi_pool', **locals()) dtype = helper.input_dtype() - pool_out = helper.create_tmp_variable(dtype) - argmaxes = helper.create_tmp_variable(dtype='int32') + pool_out = helper.create_variable_for_type_inference(dtype) + argmaxes = helper.create_variable_for_type_inference(dtype='int32') helper.append_op( type="roi_pool", inputs={"X": input, @@ -5589,7 +5603,7 @@ def image_resize(input, out_h = int(input.shape[2] * scale) out_w = int(input.shape[3] * scale) - out = helper.create_tmp_variable(dtype) + out = helper.create_variable_for_type_inference(dtype) helper.append_op( type=resample_methods[resample], inputs=inputs, @@ -5698,7 +5712,7 @@ def gather(input, index): """ helper = LayerHelper('gather', **locals()) dtype = helper.input_dtype() - out = helper.create_tmp_variable(dtype) + out = helper.create_variable_for_type_inference(dtype) helper.append_op( type="gather", inputs={"X": input, @@ -5738,7 +5752,7 @@ def scatter(input, index, updates, name=None): """ helper = LayerHelper('scatter', **locals()) dtype = helper.input_dtype() - out = helper.create_tmp_variable(dtype) + out = helper.create_variable_for_type_inference(dtype) helper.append_op( type="scatter", inputs={"X": input, @@ -5798,7 +5812,7 @@ def sequence_scatter(input, index, updates, name=None): """ helper = LayerHelper('sequence_scatter', **locals()) dtype = helper.input_dtype() - out = helper.create_tmp_variable(dtype) + out = helper.create_variable_for_type_inference(dtype) helper.append_op( type="sequence_scatter", inputs={"X": input, @@ -5828,7 +5842,7 @@ def random_crop(x, shape, seed=None): """ helper = LayerHelper("random_crop", **locals()) dtype = x.dtype - out = helper.create_tmp_variable(dtype) + out = helper.create_variable_for_type_inference(dtype) if seed is None: seed = np.random.randint(-65536, 65536) op_attrs = {"shape": shape} @@ -5874,7 +5888,7 @@ def log(x, name=None): """ helper = LayerHelper('log', **locals()) dtype = helper.input_dtype(input_param_name='x') - out = helper.create_tmp_variable(dtype) + out = helper.create_variable_for_type_inference(dtype) helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out}) return out @@ -5905,7 +5919,7 @@ def relu(x, name=None): """ helper = LayerHelper('relu', **locals()) dtype = helper.input_dtype(input_param_name='x') - out = helper.create_tmp_variable(dtype) + out = helper.create_variable_for_type_inference(dtype) helper.append_op(type="relu", inputs={"X": x}, outputs={"Out": out}) return out @@ -5944,9 +5958,9 @@ def mean_iou(input, label, num_classes): """ helper = LayerHelper('mean_iou', **locals()) dtype = helper.input_dtype() - out_mean_iou = helper.create_tmp_variable(dtype='float32') - out_wrong = helper.create_tmp_variable(dtype='int32') - out_correct = helper.create_tmp_variable(dtype='int32') + out_mean_iou = helper.create_variable_for_type_inference(dtype='float32') + out_wrong = helper.create_variable_for_type_inference(dtype='int32') + out_correct = helper.create_variable_for_type_inference(dtype='int32') helper.append_op( type="mean_iou", inputs={"Predictions": input, @@ -6038,7 +6052,7 @@ def crop(x, shape=None, offsets=None, name=None): if offsets is None: offsets = [0] * len(x.shape) - out = helper.create_tmp_variable(x.dtype) + out = helper.create_variable_for_type_inference(x.dtype) ipts = {'X': x} attrs = {} if isinstance(shape, Variable): @@ -6118,7 +6132,7 @@ def rank_loss(label, left, right, name=None): if not (isinstance(right, Variable)): raise ValueError("The right should be a Variable") - out = helper.create_tmp_variable("float32") + out = helper.create_variable_for_type_inference("float32") helper.append_op( type='rank_loss', @@ -6164,8 +6178,8 @@ def margin_rank_loss(label, left, right, margin=0.1, name=None): raise ValueError("The left should be a Variable.") if not isinstance(right, Variable): raise ValueError("The right should be a Variable.") - out = helper.create_tmp_variable(left.dtype) - act = helper.create_tmp_variable(left.dtype) + out = helper.create_variable_for_type_inference(left.dtype) + act = helper.create_variable_for_type_inference(left.dtype) helper.append_op( type='margin_rank_loss', inputs={"Label": label, @@ -6250,7 +6264,7 @@ def pad2d(input, helper = LayerHelper('pad2d', **locals()) dtype = helper.input_dtype(input_param_name='input') - out = helper.create_tmp_variable(dtype) + out = helper.create_variable_for_type_inference(dtype) helper.append_op( type='pad2d', inputs={'X': input}, @@ -6279,7 +6293,7 @@ def elu(x, alpha=1.0, name=None): output(${out_type}): ${out_comment} """ helper = LayerHelper('elu', **locals()) - out = helper.create_tmp_variable(dtype=x.dtype) + out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op( type='elu', inputs={'X': x}, @@ -6302,7 +6316,7 @@ def relu6(x, threshold=6.0, name=None): output(${out_type}): ${out_comment} """ helper = LayerHelper('relu6', **locals()) - out = helper.create_tmp_variable(dtype=x.dtype) + out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op( type='relu6', inputs={'X': x}, @@ -6325,7 +6339,7 @@ def pow(x, factor=1.0, name=None): output(${out_type}): ${out_comment} """ helper = LayerHelper('pow', **locals()) - out = helper.create_tmp_variable(dtype=x.dtype) + out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op( type='pow', inputs={'X': x}, @@ -6349,7 +6363,7 @@ def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None): output(${out_type}): ${out_comment} """ helper = LayerHelper('stanh', **locals()) - out = helper.create_tmp_variable(dtype=x.dtype) + out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op( type='stanh', inputs={'X': x}, @@ -6374,7 +6388,7 @@ def hard_sigmoid(x, slope=0.2, offset=0.5, name=None): output(${out_type}): ${out_comment} """ helper = LayerHelper('hard_sigmoid', **locals()) - out = helper.create_tmp_variable(dtype=x.dtype) + out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op( type='hard_sigmoid', inputs={'X': x}, @@ -6398,7 +6412,7 @@ def swish(x, beta=1.0, name=None): output(${out_type}): ${out_comment} """ helper = LayerHelper('swish', **locals()) - out = helper.create_tmp_variable(dtype=x.dtype) + out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op( type='swish', inputs={'X': x}, @@ -6450,7 +6464,7 @@ def prelu(x, mode, param_attr=None, name=None): dtype='float32', is_bias=False, default_initializer=Constant(1.0)) - out = helper.create_tmp_variable(dtype) + out = helper.create_variable_for_type_inference(dtype) helper.append_op( type="prelu", inputs={"X": x, @@ -6474,7 +6488,7 @@ def brelu(x, t_min=0.0, t_max=24.0, name=None): output(${out_type}): ${out_comment} """ helper = LayerHelper('brelu', **locals()) - out = helper.create_tmp_variable(dtype=x.dtype) + out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op( type='brelu', inputs={'X': x}, @@ -6497,7 +6511,7 @@ def leaky_relu(x, alpha=0.02, name=None): output(${out_type}): ${out_comment} """ helper = LayerHelper('leaky_relu', **locals()) - out = helper.create_tmp_variable(dtype=x.dtype) + out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op( type='leaky_relu', inputs={'X': x}, @@ -6519,7 +6533,7 @@ def soft_relu(x, threshold=40.0, name=None): output(${out_type}): ${out_comment} """ helper = LayerHelper('soft_relu', **locals()) - out = helper.create_tmp_variable(dtype=x.dtype) + out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op( type='soft_relu', inputs={'X': x}, @@ -6586,8 +6600,8 @@ def flatten(x, axis=1, name=None): if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0: raise ValueError("The axis should be a int, and in range [0, rank(x)]") - out = helper.create_tmp_variable(x.dtype) - x_shape = helper.create_tmp_variable(x.dtype) + out = helper.create_variable_for_type_inference(x.dtype) + x_shape = helper.create_variable_for_type_inference(x.dtype) helper.append_op( type='flatten2', inputs={"X": x}, @@ -6633,7 +6647,8 @@ def sequence_enumerate(input, win_size, pad_value=0, name=None): out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0) """ helper = LayerHelper('sequence_enumerate', **locals()) - out = helper.create_tmp_variable(helper.input_dtype(), stop_gradient=True) + out = helper.create_variable_for_type_inference( + helper.input_dtype(), stop_gradient=True) helper.append_op( type='sequence_enumerate', inputs={'X': input}, @@ -6673,9 +6688,9 @@ def sequence_mask(x, maxlen=None, dtype='int64', name=None): helper = LayerHelper('sequence_mask', **locals()) if name is None: - out = helper.create_tmp_variable(dtype=dtype) + out = helper.create_variable_for_type_inference(dtype=dtype) else: - out = helper.create_tmp_variable(dtype=dtype, name=name) + out = helper.create_variable_for_type_inference(dtype=dtype, name=name) helper.append_op( type='sequence_mask', @@ -6718,7 +6733,7 @@ def stack(x, axis=0): if not isinstance(x, list) and not isinstance(x, tuple): x = [x] - out = helper.create_tmp_variable(x[0].dtype) + out = helper.create_variable_for_type_inference(x[0].dtype) helper.append_op( type='stack', inputs={'X': x}, outputs={'Y': out}, attrs={'axis': axis}) @@ -6756,7 +6771,7 @@ def unstack(x, axis=0, num=None): outs = [] for _ in num: - outs.append(helper.create_tmp_variable(x.dtype)) + outs.append(helper.create_variable_for_type_inference(x.dtype)) helper.append_op( type='unstack', @@ -6808,7 +6823,7 @@ def expand(x, expand_times, name=None): """ helper = LayerHelper('expand', input=x, **locals()) dtype = helper.input_dtype(input_param_name='x') - out = helper.create_tmp_variable(dtype) + out = helper.create_variable_for_type_inference(dtype) helper.append_op( type='expand', inputs={'X': x}, @@ -6847,7 +6862,7 @@ def uniform_random_batch_size_like(input, """ helper = LayerHelper('uniform_random_batch_size_like', **locals()) - out = helper.create_tmp_variable(dtype) + out = helper.create_variable_for_type_inference(dtype) c_dtype = convert_np_dtype_to_dtype_(dtype) helper.append_op( type='uniform_random_batch_size_like', @@ -6884,7 +6899,7 @@ def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'): """ helper = LayerHelper('gaussian_random', **locals()) - out = helper.create_tmp_variable(dtype) + out = helper.create_variable_for_type_inference(dtype) c_dtype = convert_np_dtype_to_dtype_(dtype) helper.append_op( type='gaussian_random', @@ -6919,7 +6934,7 @@ def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'): """ helper = LayerHelper('sampling_id', **locals()) - out = helper.create_tmp_variable(dtype) + out = helper.create_variable_for_type_inference(dtype) helper.append_op( type='sampling_id', inputs={'X': x}, @@ -6958,7 +6973,7 @@ def gaussian_random_batch_size_like(input, """ helper = LayerHelper('gaussian_random_batch_size_like', **locals()) - out = helper.create_tmp_variable(dtype) + out = helper.create_variable_for_type_inference(dtype) c_dtype = convert_np_dtype_to_dtype_(dtype) helper.append_op( type='gaussian_random_batch_size_like', @@ -6990,7 +7005,8 @@ def sum(x): """ helper = LayerHelper('sum', **locals()) - out = helper.create_tmp_variable(dtype=helper.input_dtype('x')) + out = helper.create_variable_for_type_inference( + dtype=helper.input_dtype('x')) helper.append_op( type='sum', inputs={'X': x}, @@ -7017,7 +7033,8 @@ def slice(input, axes, starts, ends): """ helper = LayerHelper('slice', **locals()) - out = helper.create_tmp_variable(dtype=helper.input_dtype('input')) + out = helper.create_variable_for_type_inference( + dtype=helper.input_dtype('input')) helper.append_op( type='slice', inputs={'Input': input}, @@ -7043,7 +7060,8 @@ def shape(input): """ helper = LayerHelper('shape', **locals()) - out = helper.create_tmp_variable(dtype=helper.input_dtype('input')) + out = helper.create_variable_for_type_inference( + dtype=helper.input_dtype('input')) helper.append_op( type='shape', inputs={'Input': input}, outputs={'Out': out}) @@ -7060,7 +7078,7 @@ def _elementwise_op(helper): use_mkldnn = helper.kwargs.get('use_mkldnn', False) name = helper.kwargs.get('name', None) if name is None: - out = helper.create_tmp_variable(dtype=x.dtype) + out = helper.create_variable_for_type_inference(dtype=x.dtype) else: out = helper.create_variable( name=name, dtype=x.dtype, persistable=False) @@ -7094,7 +7112,7 @@ def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None): helper = LayerHelper('scale', **locals()) if name is None: - out = helper.create_tmp_variable(dtype=x.dtype) + out = helper.create_variable_for_type_inference(dtype=x.dtype) else: out = helper.create_variable( name=name, dtype=x.dtype, persistable=False) @@ -7160,7 +7178,7 @@ def _logical_op(op_name, x, y, out=None, name=None, binary_op=True): if out is None: if name is None: - out = helper.create_tmp_variable(dtype=x.dtype) + out = helper.create_variable_for_type_inference(dtype=x.dtype) else: out = helper.create_variable( name=name, dtype=x.dtype, persistable=False) @@ -7268,7 +7286,7 @@ def clip(x, min, max, name=None): helper = LayerHelper("clip", **locals()) if name is None: - out = helper.create_tmp_variable(dtype=x.dtype) + out = helper.create_variable_for_type_inference(dtype=x.dtype) else: out = helper.create_variable( name=name, dtype=x.dtype, persistable=False) @@ -7300,7 +7318,7 @@ def clip_by_norm(x, max_norm, name=None): helper = LayerHelper("clip_by_norm", **locals()) if name is None: - out = helper.create_tmp_variable(dtype=x.dtype) + out = helper.create_variable_for_type_inference(dtype=x.dtype) else: out = helper.create_variable( name=name, dtype=x.dtype, persistable=False) @@ -7330,7 +7348,7 @@ def mean(x, name=None): helper = LayerHelper("mean", **locals()) if name is None: - out = helper.create_tmp_variable(dtype=x.dtype) + out = helper.create_variable_for_type_inference(dtype=x.dtype) else: out = helper.create_variable( name=name, dtype=x.dtype, persistable=False) @@ -7360,7 +7378,7 @@ def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None): helper = LayerHelper("mul", **locals()) if name is None: - out = helper.create_tmp_variable(dtype=x.dtype) + out = helper.create_variable_for_type_inference(dtype=x.dtype) else: out = helper.create_variable( name=name, dtype=x.dtype, persistable=False) @@ -7394,7 +7412,7 @@ def sigmoid_cross_entropy_with_logits(x, label, name=None): helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals()) if name is None: - out = helper.create_tmp_variable(dtype=x.dtype) + out = helper.create_variable_for_type_inference(dtype=x.dtype) else: out = helper.create_variable( name=name, dtype=x.dtype, persistable=False) @@ -7424,7 +7442,7 @@ def maxout(x, groups, name=None): helper = LayerHelper("maxout", **locals()) if name is None: - out = helper.create_tmp_variable(dtype=x.dtype) + out = helper.create_variable_for_type_inference(dtype=x.dtype) else: out = helper.create_variable( name=name, dtype=x.dtype, persistable=False) diff --git a/python/paddle/fluid/layers/tensor.py b/python/paddle/fluid/layers/tensor.py index 9c6a2112a..09a7cb8dc 100644 --- a/python/paddle/fluid/layers/tensor.py +++ b/python/paddle/fluid/layers/tensor.py @@ -152,7 +152,7 @@ def cast(x, dtype): result = fluid.layers.cast(x=data, dtype='float64') """ helper = LayerHelper('cast', **locals()) - out = helper.create_tmp_variable(dtype=dtype) + out = helper.create_variable_for_type_inference(dtype=dtype) helper.append_op( type='cast', inputs={'X': [x]}, @@ -184,7 +184,7 @@ def concat(input, axis=0, name=None): out = fluid.layers.concat(input=[Efirst, Esecond, Ethird, Efourth]) """ helper = LayerHelper('concat', **locals()) - out = helper.create_tmp_variable(dtype=helper.input_dtype()) + out = helper.create_variable_for_type_inference(dtype=helper.input_dtype()) helper.append_op( type='concat', inputs={'X': input}, @@ -221,7 +221,8 @@ def sums(input, out=None): """ helper = LayerHelper('sum', **locals()) if out is None: - out = helper.create_tmp_variable(dtype=helper.input_dtype()) + out = helper.create_variable_for_type_inference( + dtype=helper.input_dtype()) helper.append_op( type='sum', inputs={'X': input}, @@ -252,7 +253,7 @@ def assign(input, output=None): """ helper = LayerHelper('assign', **locals()) if output is None: - output = helper.create_tmp_variable(dtype=input.dtype) + output = helper.create_variable_for_type_inference(dtype=input.dtype) if isinstance(input, Variable): helper.append_op( type='assign', inputs={'X': [input]}, outputs={'Out': [output]}) @@ -311,7 +312,7 @@ def fill_constant(shape, dtype, value, force_cpu=False, out=None): helper = LayerHelper("fill_constant", **locals()) if out is None: - out = helper.create_tmp_variable(dtype=dtype) + out = helper.create_variable_for_type_inference(dtype=dtype) helper.append_op( type='fill_constant', inputs={}, @@ -358,7 +359,7 @@ def fill_constant_batch_size_like(input, ${out_comment}. """ helper = LayerHelper("fill_constant_batch_size_like", **locals()) - out = helper.create_tmp_variable(dtype=dtype) + out = helper.create_variable_for_type_inference(dtype=dtype) helper.append_op( type='fill_constant_batch_size_like', inputs={'Input': input}, @@ -396,7 +397,7 @@ def argmin(x, axis=0): out = fluid.layers.argmin(x=in, axis=-1) """ helper = LayerHelper("arg_min", **locals()) - out = helper.create_tmp_variable(VarDesc.VarType.INT64) + out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64) helper.append_op( type='arg_min', inputs={'X': x}, @@ -427,7 +428,7 @@ def argmax(x, axis=0): out = fluid.layers.argmax(x=in, axis=-1) """ helper = LayerHelper("arg_max", **locals()) - out = helper.create_tmp_variable(VarDesc.VarType.INT64) + out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64) helper.append_op( type='arg_max', inputs={'X': x}, @@ -477,8 +478,10 @@ def argsort(input, axis=-1, name=None): out, indices = fluid.layers.argsort(input, axis=0) """ helper = LayerHelper("argsort", **locals()) - out = helper.create_tmp_variable(dtype=input.dtype, stop_gradient=True) - ids = helper.create_tmp_variable(VarDesc.VarType.INT64, stop_gradient=True) + out = helper.create_variable_for_type_inference( + dtype=input.dtype, stop_gradient=True) + ids = helper.create_variable_for_type_inference( + VarDesc.VarType.INT64, stop_gradient=True) helper.append_op( type='argsort', inputs={'X': input}, @@ -562,7 +565,7 @@ def reverse(x, axis): if isinstance(axis, int): axis = [axis] helper = LayerHelper("reverse", **locals()) - out = helper.create_tmp_variable(dtype=x.dtype) + out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op( type='reverse', inputs={'Input': x}, @@ -654,7 +657,7 @@ def has_inf(x): Variable: The tensor variable storing the output, only a bool value. """ helper = LayerHelper("isinf", **locals()) - out = helper.create_tmp_variable(dtype=x.dtype) + out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op(type="isinf", inputs={"X": x}, outputs={"Out": out}) return out @@ -670,7 +673,7 @@ def has_nan(x): Variable: The tensor variable storing the output, only a bool value. """ helper = LayerHelper("isnan", **locals()) - out = helper.create_tmp_variable(dtype=x.dtype) + out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op(type="isnan", inputs={"X": x}, outputs={"Out": out}) return out @@ -687,6 +690,6 @@ def isfinite(x): Variable: The tensor variable storing the output, contains a bool value. """ helper = LayerHelper("isfinite", **locals()) - out = helper.create_tmp_variable(dtype=x.dtype) + out = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op(type="isfinite", inputs={"X": x}, outputs={"Out": out}) return out diff --git a/python/paddle/fluid/regularizer.py b/python/paddle/fluid/regularizer.py index 97644df00..c151fbd17 100644 --- a/python/paddle/fluid/regularizer.py +++ b/python/paddle/fluid/regularizer.py @@ -151,7 +151,7 @@ class L2DecayRegularizer(WeightDecayRegularizer): decay = block.create_var( dtype="float32", shape=param.shape, - type=core.VarDesc.VarType.SELECTED_ROWS) + type=core.VarDesc.VarType.LOD_TENSOR) block.append_op( type='extract_rows', inputs={'X': grad}, outputs={'Out': idx}) block.append_op( @@ -228,7 +228,7 @@ class L1DecayRegularizer(WeightDecayRegularizer): decay = block.create_var( dtype="float32", shape=param.shape, - type=core.VarDesc.VarType.SELECTED_ROWS) + type=core.VarDesc.VarType.LOD_TENSOR) block.append_op( type='extract_rows', inputs={'X': grad}, outputs={'Out': idx}) block.append_op( diff --git a/python/paddle/fluid/tests/unittests/test_slice_var.py b/python/paddle/fluid/tests/unittests/test_slice_var.py index fab63b7d5..b16c74460 100644 --- a/python/paddle/fluid/tests/unittests/test_slice_var.py +++ b/python/paddle/fluid/tests/unittests/test_slice_var.py @@ -30,7 +30,6 @@ class TestSliceVar(unittest.TestCase): var = program.global_block().create_var( name=str(random.randint(10000, 99999)), persistable=True, - # dtype=core.VarDesc.VarType.LOD_TENSOR, shape=shape) var_list.append(var) blocks = slice_variable(var_list, 10, min_size) -- GitLab