From 4363d2e4bd32330514651f9a49e8985d7cadb1de Mon Sep 17 00:00:00 2001 From: qiaolongfei Date: Mon, 18 Jun 2018 13:23:51 +0800 Subject: [PATCH] add doc for Inferencer --- python/paddle/fluid/inferencer.py | 46 +++++++++++++++++++++++++------ 1 file changed, 37 insertions(+), 9 deletions(-) diff --git a/python/paddle/fluid/inferencer.py b/python/paddle/fluid/inferencer.py index 6baac0090..a81e39695 100644 --- a/python/paddle/fluid/inferencer.py +++ b/python/paddle/fluid/inferencer.py @@ -27,13 +27,30 @@ __all__ = ['Inferencer', ] class Inferencer(object): + """ + Inferencer High Level API. + + Args: + infer_func (Python func): Infer function that will return predict Variable + param_path (str): The path where the inference model is saved by fluid.io.save_params + place (Place): place to do the inference + parallel (bool): use parallel_executor to run the inference, it will use multi CPU/GPU. + + Examples: + .. code-block:: python + + def inference_program(): + x = fluid.layers.data(name='x', shape=[13], dtype='float32') + y_predict = fluid.layers.fc(input=x, size=1, act=None) + return y_predict + + place = fluid.CPUPlace() + inferencer = fluid.Inferencer( + infer_func=inference_program, param_path="/tmp/model", place=place) + + """ + def __init__(self, infer_func, param_path, place=None, parallel=False): - """ - :param infer_func: a function that will return predict Variable - :param param_path: the path where the inference model is saved by fluid.io.save_params - :param place: place to do the inference - :param parallel: use parallel_executor to run the inference, it will use multi CPU/GPU. - """ self.param_path = param_path self.scope = core.Scope() self.parallel = parallel @@ -60,9 +77,20 @@ class Inferencer(object): def infer(self, inputs, return_numpy=True): """ - :param inputs: a map of {"input_name": input_var} that will be feed into the inference program - to get the predict value - :return: the predict value of the inference model + Do Inference for Inputs + + Args: + inputs (map): a map of {"input_name": input_var} that will be feed into the inference program + return_numpy (bool): transform return value into numpy or not + + Returns: + Tensor or Numpy: the predict value of the inference model for the inputs + + Examples: + .. code-block:: python + + tensor_x = numpy.random.uniform(0, 10, [batch_size, 13]).astype("float32") + results = inferencer.infer({'x': tensor_x}) """ if not isinstance(inputs, dict): raise ValueError( -- GitLab