提交 426d7328 编写于 作者: D dongzhihong

Merge remote-tracking branch 'origin/develop' into mul_op

...@@ -37,8 +37,8 @@ before_install: ...@@ -37,8 +37,8 @@ before_install:
- if [[ "$JOB" == "check_style" ]]; then sudo ln -s /usr/bin/clang-format-3.8 /usr/bin/clang-format; fi - if [[ "$JOB" == "check_style" ]]; then sudo ln -s /usr/bin/clang-format-3.8 /usr/bin/clang-format; fi
# Paddle is using protobuf 3.1 currently. Protobuf 3.2 breaks the compatibility. So we specify the python # Paddle is using protobuf 3.1 currently. Protobuf 3.2 breaks the compatibility. So we specify the python
# protobuf version. # protobuf version.
- pip install numpy wheel 'protobuf==3.1' sphinx==1.5.6 recommonmark sphinx-rtd-theme==0.1.9 virtualenv pre-commit requests==2.9.2 LinkChecker - pip install -r $TRAVIS_BUILD_DIR/python/requirements.txt
- pip install rarfile nltk==3.2.2 scipy==0.19.0 recordio matplotlib Pillow - pip install wheel sphinx==1.5.6 recommonmark sphinx-rtd-theme==0.1.9 virtualenv pre-commit LinkChecker
- curl https://glide.sh/get | bash - curl https://glide.sh/get | bash
- eval "$(GIMME_GO_VERSION=1.8.3 gimme)" - eval "$(GIMME_GO_VERSION=1.8.3 gimme)"
- go get -u github.com/alecthomas/gometalinter - go get -u github.com/alecthomas/gometalinter
......
...@@ -14,8 +14,8 @@ ...@@ -14,8 +14,8 @@
cmake_minimum_required(VERSION 3.0) cmake_minimum_required(VERSION 3.0)
set(CMAKE_MODULE_PATH ${CMAKE_MODULE_PATH} "${CMAKE_CURRENT_SOURCE_DIR}/cmake") set(CMAKE_MODULE_PATH ${CMAKE_MODULE_PATH} "${CMAKE_CURRENT_SOURCE_DIR}/cmake")
set(PROJ_ROOT ${CMAKE_CURRENT_SOURCE_DIR}) set(PADDLE_SOURCE_DIR ${CMAKE_CURRENT_SOURCE_DIR})
set(PROJ_BINARY_ROOT ${CMAKE_CURRENT_BINARY_DIR}) set(PADDLE_BINARY_DIR ${CMAKE_CURRENT_BINARY_DIR})
include(system) include(system)
...@@ -36,8 +36,8 @@ include(simd) ...@@ -36,8 +36,8 @@ include(simd)
################################ Configurations ####################################### ################################ Configurations #######################################
option(WITH_GPU "Compile PaddlePaddle with NVIDIA GPU" ${CUDA_FOUND}) option(WITH_GPU "Compile PaddlePaddle with NVIDIA GPU" ${CUDA_FOUND})
option(WITH_AVX "Compile PaddlePaddle with AVX intrinsics" ${AVX_FOUND}) option(WITH_AVX "Compile PaddlePaddle with AVX intrinsics" ${AVX_FOUND})
option(WITH_MKLDNN "Compile PaddlePaddle with mkl-dnn support." ${AVX_FOUND}) option(WITH_MKLDNN "Compile PaddlePaddle with mkl-dnn support." OFF)
option(WITH_MKLML "Compile PaddlePaddle with mklml package." ${AVX_FOUND}) option(WITH_MKLML "Compile PaddlePaddle with mklml package." OFF)
option(WITH_DSO "Compile PaddlePaddle with dynamic linked CUDA" ON) option(WITH_DSO "Compile PaddlePaddle with dynamic linked CUDA" ON)
option(WITH_TESTING "Compile PaddlePaddle with unit testing" ON) option(WITH_TESTING "Compile PaddlePaddle with unit testing" ON)
option(WITH_SWIG_PY "Compile PaddlePaddle with inference api" ON) option(WITH_SWIG_PY "Compile PaddlePaddle with inference api" ON)
...@@ -121,8 +121,8 @@ include(version) # set PADDLE_VERSION ...@@ -121,8 +121,8 @@ include(version) # set PADDLE_VERSION
include(coveralls) # set code coverage include(coveralls) # set code coverage
include_directories("${PROJ_ROOT}") include_directories("${PADDLE_SOURCE_DIR}")
include_directories("${PROJ_ROOT}/paddle/cuda/include") include_directories("${PADDLE_SOURCE_DIR}/paddle/cuda/include")
include_directories("${CMAKE_CURRENT_BINARY_DIR}/proto") include_directories("${CMAKE_CURRENT_BINARY_DIR}/proto")
include_directories("${CMAKE_CURRENT_BINARY_DIR}/go/pserver/client/c") include_directories("${CMAKE_CURRENT_BINARY_DIR}/go/pserver/client/c")
include_directories(${Boost_INCLUDE_DIRS}) include_directories(${Boost_INCLUDE_DIRS})
...@@ -144,7 +144,7 @@ if(WITH_GPU) ...@@ -144,7 +144,7 @@ if(WITH_GPU)
endif(WITH_GPU) endif(WITH_GPU)
if(WITH_MKLDNN) if(WITH_MKLDNN)
list(APPEND EXTERNAL_LIBS ${MKLDNN_LIBRARY} ${MKLDNN_IOMP_LIB}) list(APPEND EXTERNAL_LIBS ${MKLDNN_LIB} ${MKLDNN_IOMP_LIB})
endif() endif()
if(USE_NNPACK) if(USE_NNPACK)
...@@ -164,10 +164,12 @@ if(WITH_GOLANG) ...@@ -164,10 +164,12 @@ if(WITH_GOLANG)
add_subdirectory(go) add_subdirectory(go)
endif(WITH_GOLANG) endif(WITH_GOLANG)
set(PADDLE_PYTHON_BUILD_DIR "${CMAKE_CURRENT_BINARY_DIR}/python/build")
add_subdirectory(paddle) add_subdirectory(paddle)
if(WITH_PYTHON) if(WITH_PYTHON)
add_subdirectory(python) add_subdirectory(python)
endif() endif()
if(WITH_DOC) if(WITH_DOC)
add_subdirectory(doc) add_subdirectory(doc)
endif() endif()
...@@ -64,13 +64,28 @@ RUN pip install --upgrade pip && \ ...@@ -64,13 +64,28 @@ RUN pip install --upgrade pip && \
pip install -U sphinx-rtd-theme==0.1.9 recommonmark && \ pip install -U sphinx-rtd-theme==0.1.9 recommonmark && \
pip install pre-commit 'requests==2.9.2' 'ipython==5.3.0' && \ pip install pre-commit 'requests==2.9.2' 'ipython==5.3.0' && \
pip install 'ipykernel==4.6.0' 'jupyter==1.0.0' && \ pip install 'ipykernel==4.6.0' 'jupyter==1.0.0' && \
pip install rarfile pip install opencv-python rarfile 'scipy>=0.19.0' 'nltk>=3.2.2'
# To fix https://github.com/PaddlePaddle/Paddle/issues/1954, we use # To fix https://github.com/PaddlePaddle/Paddle/issues/1954, we use
# the solution in https://urllib3.readthedocs.io/en/latest/user-guide.html#ssl-py2 # the solution in https://urllib3.readthedocs.io/en/latest/user-guide.html#ssl-py2
RUN apt-get install -y libssl-dev libffi-dev RUN apt-get install -y libssl-dev libffi-dev
RUN pip install certifi urllib3[secure] RUN pip install certifi urllib3[secure]
# TODO(qijun) The template library Eigen doesn't work well with GCC 5
# coming with the default Docker image, so we switch to use GCC 4.8
# by default. And I will check Eigen library later.
RUN ln -sf gcc-4.8 /usr/bin/gcc && \
ln -sf gcc-ar-4.8 /usr/bin/gcc-ar && \
ln -sf gcc-nm-4.8 /usr/bin/gcc-nm && \
ln -sf gcc-ranlib-4.8 /usr/bin/gcc-ranlib && \
ln -sf gcc-4.8 /usr/bin/x86_64-linux-gnu-gcc && \
ln -sf gcc-ar-4.8 /usr/bin/x86_64-linux-gnu-gcc-ar && \
ln -sf gcc-nm-4.8 /usr/bin/x86_64-linux-gnu-gcc-nm && \
ln -sf gcc-ranlib-4.8 /usr/bin/x86_64-linux-gnu-gcc-ranlib && \
ln -sf g++-4.8 /usr/bin/g++ && \
ln -sf g++-4.8 /usr/bin/x86_64-linux-gnu-g++
# Install woboq_codebrowser to /woboq # Install woboq_codebrowser to /woboq
RUN git clone https://github.com/woboq/woboq_codebrowser /woboq && \ RUN git clone https://github.com/woboq/woboq_codebrowser /woboq && \
(cd /woboq \ (cd /woboq \
......
...@@ -129,7 +129,7 @@ if(WITH_GOLANG) ...@@ -129,7 +129,7 @@ if(WITH_GOLANG)
add_custom_command(OUTPUT ${CMAKE_BINARY_DIR}/glide add_custom_command(OUTPUT ${CMAKE_BINARY_DIR}/glide
COMMAND env GOPATH=${GOPATH} ${GLIDE} install COMMAND env GOPATH=${GOPATH} ${GLIDE} install
COMMAND touch ${CMAKE_BINARY_DIR}/glide COMMAND touch ${CMAKE_BINARY_DIR}/glide
DEPENDS ${PROJ_ROOT}/go/glide.lock DEPENDS ${PADDLE_SOURCE_DIR}/go/glide.lock
WORKING_DIRECTORY "${PADDLE_IN_GOPATH}/go" WORKING_DIRECTORY "${PADDLE_IN_GOPATH}/go"
) )
......
...@@ -52,7 +52,7 @@ macro(add_style_check_target TARGET_NAME) ...@@ -52,7 +52,7 @@ macro(add_style_check_target TARGET_NAME)
if(SOURCES_LIST) if(SOURCES_LIST)
add_custom_command(TARGET ${TARGET_NAME} POST_BUILD add_custom_command(TARGET ${TARGET_NAME} POST_BUILD
COMMAND "${PYTHON_EXECUTABLE}" "${PROJ_ROOT}/paddle/scripts/cpplint.py" COMMAND "${PYTHON_EXECUTABLE}" "${PADDLE_SOURCE_DIR}/paddle/scripts/cpplint.py"
"--filter=${STYLE_FILTER}" "--filter=${STYLE_FILTER}"
${SOURCES_LIST} ${SOURCES_LIST}
COMMENT "cpplint: Checking source code style" COMMENT "cpplint: Checking source code style"
......
...@@ -9,11 +9,13 @@ function(CheckCompilerCXX11Flag) ...@@ -9,11 +9,13 @@ function(CheckCompilerCXX11Flag)
if(${CMAKE_CXX_COMPILER_VERSION} VERSION_LESS 4.8) if(${CMAKE_CXX_COMPILER_VERSION} VERSION_LESS 4.8)
message(FATAL_ERROR "Unsupported GCC version. GCC >= 4.8 required.") message(FATAL_ERROR "Unsupported GCC version. GCC >= 4.8 required.")
endif() endif()
if(NOT ANDROID)
# TODO(qijun) gcc 4.9 or later versions raise SEGV due to the optimization problem. # TODO(qijun) gcc 4.9 or later versions raise SEGV due to the optimization problem.
# Use Debug mode instead for now. # Use Debug mode instead for now.
if(CMAKE_CXX_COMPILER_VERSION VERSION_GREATER 4.9 OR CMAKE_CXX_COMPILER_VERSION VERSION_EQUAL 4.9) if(CMAKE_CXX_COMPILER_VERSION VERSION_GREATER 4.9 OR CMAKE_CXX_COMPILER_VERSION VERSION_EQUAL 4.9)
set(CMAKE_BUILD_TYPE "Debug" CACHE STRING "" FORCE) set(CMAKE_BUILD_TYPE "Debug" CACHE STRING "" FORCE)
endif() endif()
endif()
elseif(CMAKE_CXX_COMPILER_ID STREQUAL "AppleClang" OR CMAKE_CXX_COMPILER_ID STREQUAL "Clang") elseif(CMAKE_CXX_COMPILER_ID STREQUAL "AppleClang" OR CMAKE_CXX_COMPILER_ID STREQUAL "Clang")
# cmake >= 3.0 compiler id "AppleClang" on Mac OS X, otherwise "Clang" # cmake >= 3.0 compiler id "AppleClang" on Mac OS X, otherwise "Clang"
# Apple Clang is a different compiler than upstream Clang which havs different version numbers. # Apple Clang is a different compiler than upstream Clang which havs different version numbers.
......
...@@ -411,7 +411,7 @@ function(py_test TARGET_NAME) ...@@ -411,7 +411,7 @@ function(py_test TARGET_NAME)
set(multiValueArgs SRCS DEPS) set(multiValueArgs SRCS DEPS)
cmake_parse_arguments(py_test "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN}) cmake_parse_arguments(py_test "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
add_test(NAME ${TARGET_NAME} add_test(NAME ${TARGET_NAME}
COMMAND env PYTHONPATH=${PADDLE_PYTHON_PACKAGE_DIR} COMMAND env PYTHONPATH=${PADDLE_PYTHON_BUILD_DIR}/lib-python
python2 ${py_test_SRCS} python2 ${py_test_SRCS}
WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}) WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR})
endif() endif()
......
...@@ -12,7 +12,7 @@ set(CPACK_PACKAGE_DESCRIPTION "") ...@@ -12,7 +12,7 @@ set(CPACK_PACKAGE_DESCRIPTION "")
set(CPACK_DEBIAN_PACKAGE_DEPENDS "libpython2.7-dev, libstdc++6, python-pip, curl, libgfortran3, python-pip-whl") set(CPACK_DEBIAN_PACKAGE_DEPENDS "libpython2.7-dev, libstdc++6, python-pip, curl, libgfortran3, python-pip-whl")
set(CPACK_DEBIAN_PACKAGE_SECTION Devel) set(CPACK_DEBIAN_PACKAGE_SECTION Devel)
set(CPACK_DEBIAN_PACKAGE_VERSION ${PADDLE_VERSION}) set(CPACK_DEBIAN_PACKAGE_VERSION ${PADDLE_VERSION})
set(CPACK_DEBIAN_PACKAGE_CONTROL_EXTRA "${PROJ_ROOT}/paddle/scripts/deb/postinst") set(CPACK_DEBIAN_PACKAGE_CONTROL_EXTRA "${PADDLE_SOURCE_DIR}/paddle/scripts/deb/postinst")
#set(CPACK_GENERATOR "DEB") #set(CPACK_GENERATOR "DEB")
# Start cpack # Start cpack
include (CMakePackageConfigHelpers) include (CMakePackageConfigHelpers)
......
...@@ -141,8 +141,8 @@ endmacro() ...@@ -141,8 +141,8 @@ endmacro()
function(create_resources res_file output_file) function(create_resources res_file output_file)
add_custom_command( add_custom_command(
OUTPUT ${output_file} OUTPUT ${output_file}
COMMAND python ARGS ${PROJ_ROOT}/cmake/make_resource.py ${res_file} ${output_file} COMMAND python ARGS ${PADDLE_SOURCE_DIR}/cmake/make_resource.py ${res_file} ${output_file}
DEPENDS ${res_file} ${PROJ_ROOT}/cmake/make_resource.py) DEPENDS ${res_file} ${PADDLE_SOURCE_DIR}/cmake/make_resource.py)
endfunction() endfunction()
......
...@@ -4,7 +4,7 @@ set(tmp_version "HEAD") ...@@ -4,7 +4,7 @@ set(tmp_version "HEAD")
while ("${PADDLE_VERSION}" STREQUAL "") while ("${PADDLE_VERSION}" STREQUAL "")
execute_process( execute_process(
COMMAND ${GIT_EXECUTABLE} describe --tags --abbrev=0 ${tmp_version} COMMAND ${GIT_EXECUTABLE} describe --tags --abbrev=0 ${tmp_version}
WORKING_DIRECTORY ${PROJ_ROOT} WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}
OUTPUT_VARIABLE GIT_TAG_NAME OUTPUT_VARIABLE GIT_TAG_NAME
RESULT_VARIABLE GIT_RESULT RESULT_VARIABLE GIT_RESULT
ERROR_QUIET OUTPUT_STRIP_TRAILING_WHITESPACE) ERROR_QUIET OUTPUT_STRIP_TRAILING_WHITESPACE)
......
## Auto Gradient Checker Design
## Backgraound:
- Operator forward computing is easy to check if the result is right because it has a clear definition. **But** backpropagation is a notoriously difficult algorithm to debug and get right:
- 1. you should get the right backpropagation formula according to the forward computation.
- 2. you should implement it right in CPP.
- 3. it's difficult to prepare test data.
- Auto gradient check gets a numeric gradient by forward Operator and use it as a reference of the backward Operator's result. It has several advantages:
- 1. numeric gradient checker only need forward operator.
- 2. user only need to prepare the input data for forward Operator.
## Mathematical Theory
The following two document from stanford has a detailed explanation of how to get numeric gradient and why it's useful.
- [Gradient checking and advanced optimization(en)](http://deeplearning.stanford.edu/wiki/index.php/Gradient_checking_and_advanced_optimization)
- [Gradient checking and advanced optimization(cn)](http://ufldl.stanford.edu/wiki/index.php/%E6%A2%AF%E5%BA%A6%E6%A3%80%E9%AA%8C%E4%B8%8E%E9%AB%98%E7%BA%A7%E4%BC%98%E5%8C%96)
## Numeric Gradient Implementation
### Python Interface
```python
def get_numeric_gradient(op,
input_values,
output_name,
input_to_check,
delta=0.005,
local_scope=None):
"""
Get Numeric Gradient for an operator's input.
:param op: C++ operator instance, could be an network
:param input_values: The input variables. Should be an dictionary, key is
variable name. Value is numpy array.
:param output_name: The final output variable name.
:param input_to_check: The input variable need to get gradient.
:param delta: The perturbation value for numeric gradient method. The
smaller delta is, the more accurate result will get. But if that delta is
too small, it could occur numerical stability problem.
:param local_scope: The local scope used for get_numeric_gradient.
:return: The gradient array in numpy format.
"""
```
### Explaination:
- Why need `output_name`
- One Operator may have multiple Output, you can get independent gradient from each Output. So user should set one output to calculate.
- Why need `input_to_check`
- One operator may have multiple inputs. Gradient Op can calculate the gradient of these Inputs at the same time. But Numeric Gradient needs to calculate them one by one. So `get_numeric_gradient` is designed to calculate the gradient for one input. If you need to compute multiple inputs, you can call `get_numeric_gradient` multiple times.
### Core Algorithm Implementation
```python
# we only compute gradient of one element each time.
# we use a for loop to compute the gradient of every element.
for i in xrange(tensor_size):
# get one input element throw it's index i.
origin = tensor_to_check.get_float_element(i)
# add delta to it, run op and then get the sum of the result tensor.
x_pos = origin + delta
tensor_to_check.set_float_element(i, x_pos)
y_pos = get_output()
# plus delta to this element, run op and get the sum of the result tensor.
x_neg = origin - delta
tensor_to_check.set_float_element(i, x_neg)
y_neg = get_output()
# restore old value
tensor_to_check.set_float_element(i, origin)
# compute the gradient of this element and store it into a numpy array.
gradient_flat[i] = (y_pos - y_neg) / delta / 2
# reshape the gradient result to the shape of the source tensor.
return gradient_flat.reshape(tensor_to_check.get_dims())
```
## Auto Graident Checker Framework
Each Operator Kernel has three kinds of Gradient:
- 1. Numeric Gradient
- 2. CPU Operator Gradient
- 3. GPU Operator Gradient(if supported)
Numeric Gradient Only relies on forward Operator. So we use Numeric Gradient as the reference value.
- 1. calculate the numeric gradient.
- 2. calculate CPU kernel Gradient with the backward Operator and compare it with the numeric gradient.
- 3. calculate GPU kernel Gradient with the backward Operator and compare it with the numeric gradient.(if support GPU)
#### Python Interface
```python
def check_grad(self,
forward_op,
input_vars,
inputs_to_check,
output_name,
no_grad_set=None,
only_cpu=False,
max_relative_error=0.005):
"""
:param forward_op: used to create backward_op
:param input_vars: numpy value of input variable. The following
computation will use these variables.
:param inputs_to_check: inputs var names that should check gradient.
:param output_name: output name that used to
:param max_relative_error: The relative tolerance parameter.
:param no_grad_set: used when create backward ops
:param only_cpu: only compute and check gradient on cpu kernel.
:return:
"""
```
### How to check if two numpy array is close enough?
if `abs_numeric_grad` is nearly zero, then use abs error for numeric_grad, not relative
```python
numeric_grad = ...
operator_grad = numpy.array(scope.find_var(grad_var_name(name)).get_tensor())
abs_numeric_grad = numpy.abs(numeric_grad)
# if abs_numeric_grad is nearly zero, then use abs error for numeric_grad, not relative
# error.
abs_numeric_grad[abs_numeric_grad < 1e-3] = 1
diff_mat = numpy.abs(abs_numeric_grad - operator_grad) / abs_numeric_grad
max_diff = numpy.max(diff_mat)
```
#### Notes:
1,The Input data for auto gradient checker should be reasonable to avoid numeric problem.
#### Refs:
- [Gradient checking and advanced optimization(en)](http://deeplearning.stanford.edu/wiki/index.php/Gradient_checking_and_advanced_optimization)
- [Gradient checking and advanced optimization(cn)](http://ufldl.stanford.edu/wiki/index.php/%E6%A2%AF%E5%BA%A6%E6%A3%80%E9%AA%8C%E4%B8%8E%E9%AB%98%E7%BA%A7%E4%BC%98%E5%8C%96)
...@@ -74,13 +74,13 @@ PaddlePaddle发布新版本的时候都会发布对应版本的生产镜像以 ...@@ -74,13 +74,13 @@ PaddlePaddle发布新版本的时候都会发布对应版本的生产镜像以
.. code-block:: bash .. code-block:: bash
docker run -it --rm paddlepaddle/paddle:0.10.0-dev /bin/bash docker run -it --rm -v $(pwd):/paddle paddlepaddle/paddle:0.10.0-dev /bin/bash
或者,可以以后台进程方式运行容器: 或者,可以以后台进程方式运行容器:
.. code-block:: bash .. code-block:: bash
docker run -d -p 2202:22 -p 8888:8888 paddledev/paddle:0.10.0-dev docker run -d -p 2202:22 -p 8888:8888 -v $(pwd):/paddle paddlepaddle/paddle:0.10.0-dev /usr/sbin/sshd -D
然后用密码 :code:`root` SSH进入容器: 然后用密码 :code:`root` SSH进入容器:
......
...@@ -13,7 +13,7 @@ ...@@ -13,7 +13,7 @@
# serve to show the default. # serve to show the default.
import sys import sys
import os, subprocess import os, subprocess
sys.path.insert(0, os.path.abspath('@PROJ_ROOT@/python')) sys.path.insert(0, os.path.abspath('@PADDLE_SOURCE_DIR@/python'))
import shlex import shlex
from recommonmark import parser, transform from recommonmark import parser, transform
import paddle import paddle
...@@ -24,7 +24,7 @@ AutoStructify = transform.AutoStructify ...@@ -24,7 +24,7 @@ AutoStructify = transform.AutoStructify
# If extensions (or modules to document with autodoc) are in another directory, # If extensions (or modules to document with autodoc) are in another directory,
# add these directories to sys.path here. If the directory is relative to the # add these directories to sys.path here. If the directory is relative to the
# documentation root, use os.path.abspath to make it absolute, like shown here. # documentation root, use os.path.abspath to make it absolute, like shown here.
templates_path = ["@PROJ_ROOT@/doc_theme/templates"] templates_path = ["@PADDLE_SOURCE_DIR@/doc_theme/templates"]
# -- General configuration ------------------------------------------------ # -- General configuration ------------------------------------------------
...@@ -120,7 +120,7 @@ html_theme = 'sphinx_rtd_theme' ...@@ -120,7 +120,7 @@ html_theme = 'sphinx_rtd_theme'
# Add any paths that contain custom static files (such as style sheets) here, # Add any paths that contain custom static files (such as style sheets) here,
# relative to this directory. They are copied after the builtin static files, # relative to this directory. They are copied after the builtin static files,
# so a file named "default.css" will overwrite the builtin "default.css". # so a file named "default.css" will overwrite the builtin "default.css".
html_static_path = ['@PROJ_ROOT@/doc_theme/static'] html_static_path = ['@PADDLE_SOURCE_DIR@/doc_theme/static']
# Output file base name for HTML help builder. # Output file base name for HTML help builder.
htmlhelp_basename = project + 'doc' htmlhelp_basename = project + 'doc'
......
...@@ -13,7 +13,7 @@ ...@@ -13,7 +13,7 @@
# serve to show the default. # serve to show the default.
import sys import sys
import os, subprocess import os, subprocess
sys.path.insert(0, os.path.abspath('@PROJ_ROOT@/python')) sys.path.insert(0, os.path.abspath('@PADDLE_SOURCE_DIR@/python'))
import shlex import shlex
from recommonmark import parser, transform from recommonmark import parser, transform
import paddle import paddle
...@@ -25,7 +25,7 @@ AutoStructify = transform.AutoStructify ...@@ -25,7 +25,7 @@ AutoStructify = transform.AutoStructify
# If extensions (or modules to document with autodoc) are in another directory, # If extensions (or modules to document with autodoc) are in another directory,
# add these directories to sys.path here. If the directory is relative to the # add these directories to sys.path here. If the directory is relative to the
# documentation root, use os.path.abspath to make it absolute, like shown here. # documentation root, use os.path.abspath to make it absolute, like shown here.
templates_path = ["@PROJ_ROOT@/doc_theme/templates"] templates_path = ["@PADDLE_SOURCE_DIR@/doc_theme/templates"]
# -- General configuration ------------------------------------------------ # -- General configuration ------------------------------------------------
...@@ -120,7 +120,7 @@ html_theme = 'sphinx_rtd_theme' ...@@ -120,7 +120,7 @@ html_theme = 'sphinx_rtd_theme'
# Add any paths that contain custom static files (such as style sheets) here, # Add any paths that contain custom static files (such as style sheets) here,
# relative to this directory. They are copied after the builtin static files, # relative to this directory. They are copied after the builtin static files,
# so a file named "default.css" will overwrite the builtin "default.css". # so a file named "default.css" will overwrite the builtin "default.css".
html_static_path = ['@PROJ_ROOT@/doc_theme/static'] html_static_path = ['@PADDLE_SOURCE_DIR@/doc_theme/static']
# Output file base name for HTML help builder. # Output file base name for HTML help builder.
htmlhelp_basename = project + 'doc' htmlhelp_basename = project + 'doc'
......
...@@ -17,12 +17,10 @@ def main(): ...@@ -17,12 +17,10 @@ def main():
# network config # network config
x = paddle.layer.data(name='x', type=paddle.data_type.dense_vector(13)) x = paddle.layer.data(name='x', type=paddle.data_type.dense_vector(13))
y_predict = paddle.layer.fc(input=x, y_predict = paddle.layer.fc(input=x,
param_attr=paddle.attr.Param( param_attr=paddle.attr.Param(name='w'),
name='w', learning_rate=1e-3),
size=1, size=1,
act=paddle.activation.Linear(), act=paddle.activation.Linear(),
bias_attr=paddle.attr.Param( bias_attr=paddle.attr.Param(name='b'))
name='b', learning_rate=1e-3))
y = paddle.layer.data(name='y', type=paddle.data_type.dense_vector(1)) y = paddle.layer.data(name='y', type=paddle.data_type.dense_vector(1))
cost = paddle.layer.mse_cost(input=y_predict, label=y) cost = paddle.layer.mse_cost(input=y_predict, label=y)
......
...@@ -19,9 +19,9 @@ add_library(paddle_api STATIC ${API_SOURCES}) ...@@ -19,9 +19,9 @@ add_library(paddle_api STATIC ${API_SOURCES})
add_dependencies(paddle_api paddle_proto paddle_trainer_lib) add_dependencies(paddle_api paddle_proto paddle_trainer_lib)
INCLUDE(${SWIG_USE_FILE}) INCLUDE(${SWIG_USE_FILE})
INCLUDE_DIRECTORIES(${PROJ_ROOT}/paddle) INCLUDE_DIRECTORIES(${PADDLE_SOURCE_DIR}/paddle)
FILE(GLOB PY_PADDLE_PYTHON_FILES ${PROJ_ROOT}/paddle/py_paddle/*.py) FILE(GLOB PY_PADDLE_PYTHON_FILES ${PADDLE_SOURCE_DIR}/paddle/py_paddle/*.py)
SET_SOURCE_FILES_PROPERTIES(Paddle.i PROPERTIES CPLUSPLUS ON) SET_SOURCE_FILES_PROPERTIES(Paddle.i PROPERTIES CPLUSPLUS ON)
...@@ -79,16 +79,16 @@ SWIG_LINK_LIBRARIES(swig_paddle ...@@ -79,16 +79,16 @@ SWIG_LINK_LIBRARIES(swig_paddle
${START_END} ${START_END}
) )
add_custom_command(OUTPUT ${PROJ_ROOT}/paddle/py_paddle/_swig_paddle.so add_custom_command(OUTPUT ${PADDLE_SOURCE_DIR}/paddle/py_paddle/_swig_paddle.so
COMMAND cp ${CMAKE_CURRENT_BINARY_DIR}/swig_paddle.py ${PROJ_ROOT}/paddle/py_paddle COMMAND cp ${CMAKE_CURRENT_BINARY_DIR}/swig_paddle.py ${PADDLE_SOURCE_DIR}/paddle/py_paddle
COMMAND cp ${CMAKE_CURRENT_BINARY_DIR}/_swig_paddle.so ${PROJ_ROOT}/paddle/py_paddle COMMAND cp ${CMAKE_CURRENT_BINARY_DIR}/_swig_paddle.so ${PADDLE_SOURCE_DIR}/paddle/py_paddle
COMMAND ${CMAKE_COMMAND} -E touch .timestamp COMMAND ${CMAKE_COMMAND} -E touch .timestamp
WORKING_DIRECTORY ${PROJ_ROOT}/paddle WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/paddle
DEPENDS _swig_paddle DEPENDS _swig_paddle
) )
# TODO(yuyang18) : make wheel name calculated by cmake # TODO(yuyang18) : make wheel name calculated by cmake
add_custom_target(python_api_wheel ALL DEPENDS ${PROJ_ROOT}/paddle/py_paddle/_swig_paddle.so) add_custom_target(python_api_wheel ALL DEPENDS ${PADDLE_SOURCE_DIR}/paddle/py_paddle/_swig_paddle.so)
if(WITH_TESTING) if(WITH_TESTING)
IF(NOT PY_PIP_FOUND) IF(NOT PY_PIP_FOUND)
......
...@@ -41,7 +41,7 @@ ParameterUpdater *ParameterUpdater::createNewRemoteUpdater( ...@@ -41,7 +41,7 @@ ParameterUpdater *ParameterUpdater::createNewRemoteUpdater(
config->m->getConfig(), pserverSpec, useEtcd)); config->m->getConfig(), pserverSpec, useEtcd));
return updater; return updater;
#else #else
throw UnsupportError(); throw UnsupportError("not compiled with WITH_GOLANG");
#endif #endif
} }
......
...@@ -90,6 +90,18 @@ paddle_error paddle_arguments_set_ids(paddle_arguments args, ...@@ -90,6 +90,18 @@ paddle_error paddle_arguments_set_ids(paddle_arguments args,
return kPD_NO_ERROR; return kPD_NO_ERROR;
} }
paddle_error paddle_arguments_set_frame_shape(paddle_arguments args,
uint64_t ID,
uint64_t frameHeight,
uint64_t frameWidth) {
if (args == nullptr) return kPD_NULLPTR;
auto a = castArg(args);
if (ID >= a->args.size()) return kPD_OUT_OF_RANGE;
a->args[ID].setFrameHeight(frameHeight);
a->args[ID].setFrameWidth(frameWidth);
return kPD_NO_ERROR;
}
paddle_error paddle_arguments_set_sequence_start_pos(paddle_arguments args, paddle_error paddle_arguments_set_sequence_start_pos(paddle_arguments args,
uint64_t ID, uint64_t ID,
uint32_t nestedLevel, uint32_t nestedLevel,
......
...@@ -111,6 +111,20 @@ PD_API paddle_error paddle_arguments_set_ids(paddle_arguments args, ...@@ -111,6 +111,20 @@ PD_API paddle_error paddle_arguments_set_ids(paddle_arguments args,
uint64_t ID, uint64_t ID,
paddle_ivector ids); paddle_ivector ids);
/**
* @brief paddle_arguments_set_frame_shape Set the fram size of one argument
* in array, which index is `ID`.
* @param [in] args arguments array
* @param [in] ID array index
* @param [in] frameHeight maximum height of input images
* @param [in] frameWidth maximum width of input images
* @return paddle_error
*/
PD_API paddle_error paddle_arguments_set_frame_shape(paddle_arguments args,
uint64_t ID,
uint64_t frameHeight,
uint64_t frameWidth);
/** /**
* @brief PDArgsSetSequenceStartPos Set sequence start position vector of one * @brief PDArgsSetSequenceStartPos Set sequence start position vector of one
* argument in array, which index is `ID`. * argument in array, which index is `ID`.
......
...@@ -7,14 +7,17 @@ ...@@ -7,14 +7,17 @@
do { \ do { \
paddle_error __err__ = stmt; \ paddle_error __err__ = stmt; \
if (__err__ != kPD_NO_ERROR) { \ if (__err__ != kPD_NO_ERROR) { \
fprintf(stderr, "Invoke paddle error %d \n" #stmt, __err__); \ fprintf(stderr, "Invoke paddle error %d in " #stmt "\n", __err__); \
exit(__err__); \ exit(__err__); \
} \ } \
} while (0) } while (0)
void* read_config(const char* filename, long* size) { void* read_config(const char* filename, long* size) {
FILE* file = fopen(filename, "r"); FILE* file = fopen(filename, "r");
if (file == NULL) return NULL; if (file == NULL) {
fprintf(stderr, "Open %s error\n", filename);
return NULL;
}
fseek(file, 0L, SEEK_END); fseek(file, 0L, SEEK_END);
*size = ftell(file); *size = ftell(file);
fseek(file, 0L, SEEK_SET); fseek(file, 0L, SEEK_SET);
......
...@@ -54,6 +54,31 @@ paddle_error paddle_gradient_machine_create_for_inference( ...@@ -54,6 +54,31 @@ paddle_error paddle_gradient_machine_create_for_inference(
return kPD_NO_ERROR; return kPD_NO_ERROR;
} }
paddle_error paddle_gradient_machine_create_for_inference_with_parameters(
paddle_gradient_machine* machine, void* mergedModel, uint64_t size) {
if (mergedModel == nullptr) return kPD_NULLPTR;
std::istringstream is(std::string(static_cast<char*>(mergedModel), size));
int64_t modelConfigSize = 0;
is.read((char*)(&modelConfigSize), sizeof(modelConfigSize));
std::string modelConfigProtobuf;
modelConfigProtobuf.resize(modelConfigSize);
is.read(&modelConfigProtobuf[0], modelConfigSize);
paddle::TrainerConfig config;
if (!config.ParseFromString(modelConfigProtobuf) || !config.IsInitialized()) {
return kPD_PROTOBUF_ERROR;
}
auto ptr = new paddle::capi::CGradientMachine();
ptr->machine.reset(paddle::GradientMachine::create(
config.model_config(), CREATE_MODE_TESTING, {paddle::PARAMETER_VALUE}));
std::vector<paddle::ParameterPtr>& parameters = ptr->machine->getParameters();
for (auto& para : parameters) {
para->load(is);
}
*machine = ptr;
return kPD_NO_ERROR;
}
paddle_error paddle_gradient_machine_destroy(paddle_gradient_machine machine) { paddle_error paddle_gradient_machine_destroy(paddle_gradient_machine machine) {
delete cast(machine); delete cast(machine);
return kPD_NO_ERROR; return kPD_NO_ERROR;
......
...@@ -36,6 +36,18 @@ typedef void* paddle_gradient_machine; ...@@ -36,6 +36,18 @@ typedef void* paddle_gradient_machine;
PD_API paddle_error paddle_gradient_machine_create_for_inference( PD_API paddle_error paddle_gradient_machine_create_for_inference(
paddle_gradient_machine* machine, void* modelConfigProtobuf, int size); paddle_gradient_machine* machine, void* modelConfigProtobuf, int size);
/**
* @brief Create a gradient machine used for model inference, using config with
* parameters which is generated by `paddle merge_model`.
* @param [out] machine that used for model inference.
* @param [in] mergedModel
* @param [in] size
* @return paddle_error
*/
PD_API paddle_error
paddle_gradient_machine_create_for_inference_with_parameters(
paddle_gradient_machine* machine, void* mergedModel, uint64_t size);
/** /**
* @brief Load parameter from disk. * @brief Load parameter from disk.
* @param machine Gradient Machine. * @param machine Gradient Machine.
......
...@@ -10,5 +10,5 @@ target_include_directories(capi_test_gradientMachine PUBLIC ...@@ -10,5 +10,5 @@ target_include_directories(capi_test_gradientMachine PUBLIC
${PADDLE_CAPI_INC_PATH}) ${PADDLE_CAPI_INC_PATH})
target_link_libraries(capi_test_gradientMachine paddle_capi) target_link_libraries(capi_test_gradientMachine paddle_capi)
add_test(NAME capi_test_gradientMachine add_test(NAME capi_test_gradientMachine
COMMAND ${PROJ_ROOT}/paddle/.set_python_path.sh -d ${PROJ_ROOT}/python ${CMAKE_CURRENT_BINARY_DIR}/capi_test_gradientMachine COMMAND ${PADDLE_SOURCE_DIR}/paddle/.set_python_path.sh -d ${PADDLE_SOURCE_DIR}/python ${CMAKE_CURRENT_BINARY_DIR}/capi_test_gradientMachine
WORKING_DIRECTORY ${PROJ_ROOT}/paddle/capi/tests) WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/paddle/capi/tests)
...@@ -7,7 +7,7 @@ cc_library(tensor SRCS tensor.cc DEPS ddim place paddle_memory device_context) ...@@ -7,7 +7,7 @@ cc_library(tensor SRCS tensor.cc DEPS ddim place paddle_memory device_context)
cc_test(tensor_test SRCS tensor_test.cc DEPS tensor) cc_test(tensor_test SRCS tensor_test.cc DEPS tensor)
cc_test(eigen_test SRCS eigen_test.cc DEPS tensor) cc_test(eigen_test SRCS eigen_test.cc DEPS tensor)
cc_library(lod_tensor SRCS lod_tensor.cc details/lod_tensor.cc DEPS ddim place tensor) cc_library(lod_tensor SRCS lod_tensor.cc DEPS ddim place tensor)
cc_test(lod_tensor_test SRCS lod_tensor_test.cc DEPS lod_tensor) cc_test(lod_tensor_test SRCS lod_tensor_test.cc DEPS lod_tensor)
cc_test(variable_test SRCS variable_test.cc) cc_test(variable_test SRCS variable_test.cc)
...@@ -15,26 +15,27 @@ cc_test(variable_test SRCS variable_test.cc) ...@@ -15,26 +15,27 @@ cc_test(variable_test SRCS variable_test.cc)
cc_library(scope SRCS scope.cc) cc_library(scope SRCS scope.cc)
cc_test(scope_test SRCS scope_test.cc DEPS scope) cc_test(scope_test SRCS scope_test.cc DEPS scope)
proto_library(attribute_proto SRCS attribute.proto) proto_library(framework_proto SRCS framework.proto)
proto_library(op_proto SRCS op_proto.proto DEPS attribute_proto)
proto_library(op_desc SRCS op_desc.proto DEPS attribute_proto)
cc_test(op_proto_test SRCS op_proto_test.cc DEPS op_proto protobuf)
cc_test(op_desc_test SRCS op_desc_test.cc DEPS op_desc protobuf)
cc_library(attribute SRCS attribute.cc DEPS op_desc op_proto) cc_library(attribute SRCS attribute.cc DEPS framework_proto)
cc_library(operator SRCS operator.cc DEPS op_desc device_context tensor scope attribute) cc_library(operator SRCS operator.cc DEPS framework_proto device_context tensor scope attribute)
cc_test(operator_test SRCS operator_test.cc DEPS operator op_registry) cc_test(operator_test SRCS operator_test.cc DEPS operator op_registry)
cc_library(grad_op_builder SRCS grad_op_builder.cc DEPS op_proto operator) cc_library(grad_op_builder SRCS grad_op_builder.cc DEPS operator)
cc_library(op_registry SRCS op_registry.cc DEPS op_desc grad_op_builder) cc_library(op_registry SRCS op_registry.cc DEPS grad_op_builder)
cc_test(op_registry_test SRCS op_registry_test.cc DEPS op_registry) cc_test(op_registry_test SRCS op_registry_test.cc DEPS op_registry)
cc_test(grad_op_builder_test SRCS grad_op_builder_test.cc DEPS grad_op_builder op_registry add_op) cc_test(grad_op_builder_test SRCS grad_op_builder_test.cc DEPS grad_op_builder op_registry add_op)
py_proto_compile(framework_py_proto SRCS attribute.proto op_proto.proto op_desc.proto) py_proto_compile(framework_py_proto SRCS framework.proto)
# Generate an empty __init__.py to make framework_py_proto as a valid python module. # Generate an empty __init__.py to make framework_py_proto as a valid python module.
add_custom_target(framework_py_proto_init ALL COMMAND ${CMAKE_COMMAND} -E touch __init__.py) add_custom_target(framework_py_proto_init ALL COMMAND ${CMAKE_COMMAND} -E touch __init__.py)
add_dependencies(framework_py_proto framework_py_proto_init) add_dependencies(framework_py_proto framework_py_proto_init)
add_custom_command(TARGET framework_py_proto POST_BUILD
COMMAND ${CMAKE_COMMAND} -E make_directory ${PADDLE_SOURCE_DIR}/python/paddle/v2/framework/proto
COMMAND cp *.py ${PADDLE_SOURCE_DIR}/python/paddle/v2/framework/proto/
COMMENT "Copy generated python proto into directory paddle/v2/framework/proto."
WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR})
cc_library(backward SRCS backward.cc DEPS net_op) cc_library(backward SRCS backward.cc DEPS net_op)
cc_test(backward_test SRCS backward_test.cc DEPS backward) cc_test(backward_test SRCS backward_test.cc DEPS backward)
...@@ -43,9 +44,12 @@ if(WITH_PYTHON) ...@@ -43,9 +44,12 @@ if(WITH_PYTHON)
cc_library(paddle_pybind SHARED cc_library(paddle_pybind SHARED
SRCS pybind.cc SRCS pybind.cc
DEPS pybind python backward DEPS pybind python backward
fc_op
sgd_op sgd_op
add_op add_op
mul_op
rowwise_add_op
sigmoid_op
softmax_op
mean_op mean_op
cross_entropy_op cross_entropy_op
recurrent_op recurrent_op
......
...@@ -44,7 +44,7 @@ AttrType AttrTypeID<std::vector<std::string>>() { ...@@ -44,7 +44,7 @@ AttrType AttrTypeID<std::vector<std::string>>() {
return STRINGS; return STRINGS;
} }
Attribute GetAttrValue(const AttrDesc& attr_desc) { Attribute GetAttrValue(const OpDesc::Attr& attr_desc) {
switch (attr_desc.type()) { switch (attr_desc.type()) {
case paddle::framework::AttrType::INT: { case paddle::framework::AttrType::INT: {
return attr_desc.i(); return attr_desc.i();
......
...@@ -14,16 +14,15 @@ limitations under the License. */ ...@@ -14,16 +14,15 @@ limitations under the License. */
#pragma once #pragma once
#include <boost/variant.hpp>
#include <functional> #include <functional>
#include <string> #include <string>
#include <unordered_map> #include <unordered_map>
#include <unordered_set> #include <unordered_set>
#include <vector> #include <vector>
#include "paddle/framework/attribute.pb.h" #include "paddle/framework/framework.pb.h"
#include "paddle/framework/op_desc.pb.h"
#include "paddle/platform/enforce.h" #include "paddle/platform/enforce.h"
#include "paddle/platform/variant.h"
namespace paddle { namespace paddle {
namespace framework { namespace framework {
...@@ -37,7 +36,7 @@ typedef std::unordered_map<std::string, Attribute> AttributeMap; ...@@ -37,7 +36,7 @@ typedef std::unordered_map<std::string, Attribute> AttributeMap;
template <typename T> template <typename T>
AttrType AttrTypeID(); AttrType AttrTypeID();
Attribute GetAttrValue(const AttrDesc& attr_desc); Attribute GetAttrValue(const OpDesc::Attr& attr_desc);
// check whether a value(attribute) fit a certain limit // check whether a value(attribute) fit a certain limit
template <typename T> template <typename T>
......
...@@ -21,15 +21,24 @@ ...@@ -21,15 +21,24 @@
namespace paddle { namespace paddle {
namespace framework { namespace framework {
static bool AllInSet(const std::vector<std::string>& names, template <typename Map, typename T>
const std::string& suffix, static void ForEachVarName(Map& names, T callback) {
const std::unordered_set<std::string>& set) {
for (auto& name : names) { for (auto& name : names) {
if (set.find(name + suffix) == set.end()) { for (auto& n : name.second) {
return false; if (callback(n)) return;
} }
} }
return true; }
static bool AllInSet(
const std::map<std::string, std::vector<std::string>>& names,
const std::string& suffix, const std::unordered_set<std::string>& set) {
bool all_in_set = true;
ForEachVarName(names, [&all_in_set, &set, &suffix](const std::string& n) {
all_in_set = set.find(n + suffix) != set.end();
return !all_in_set;
});
return all_in_set;
} }
static std::shared_ptr<OperatorBase> NOP() { static std::shared_ptr<OperatorBase> NOP() {
...@@ -68,10 +77,11 @@ std::shared_ptr<OperatorBase> BackwardRecursive( ...@@ -68,10 +77,11 @@ std::shared_ptr<OperatorBase> BackwardRecursive(
// Then all input gradients cannot be computed at all, and we put them into // Then all input gradients cannot be computed at all, and we put them into
// `no_grad_names` set. Return an NOP. // `no_grad_names` set. Return an NOP.
if (AllInSet(forwardOp.outputs_, kGradVarSuffix, no_grad_names)) { if (AllInSet(forwardOp.outputs_, kGradVarSuffix, no_grad_names)) {
for (auto& name : forwardOp.inputs_) { ForEachVarName(forwardOp.inputs_,
// Mark all input is not need [&no_grad_names](const std::string& name) -> bool {
no_grad_names.insert(name + kGradVarSuffix); no_grad_names.insert(GradVarName(name));
} return false;
});
return NOP(); return NOP();
} }
...@@ -93,9 +103,11 @@ std::shared_ptr<OperatorBase> BackwardRecursive( ...@@ -93,9 +103,11 @@ std::shared_ptr<OperatorBase> BackwardRecursive(
auto fwd = *it; auto fwd = *it;
auto bwd = BackwardRecursive(*fwd, no_grad_names, uniq_id); auto bwd = BackwardRecursive(*fwd, no_grad_names, uniq_id);
net->AddOp(bwd); net->AddOp(bwd);
for (auto& out : bwd->outputs_) { ForEachVarName(bwd->outputs_,
[&dup_output_ops, local_op_id](const std::string& out) {
dup_output_ops[out].emplace_back(local_op_id); dup_output_ops[out].emplace_back(local_op_id);
} return false;
});
} }
// Get unique ID for this method. // Get unique ID for this method.
auto uid = uniq_id++; auto uid = uniq_id++;
...@@ -117,7 +129,7 @@ std::shared_ptr<OperatorBase> BackwardRecursive( ...@@ -117,7 +129,7 @@ std::shared_ptr<OperatorBase> BackwardRecursive(
insert_position.push_back( insert_position.push_back(
{dup_op.back(), {dup_op.back(),
OpRegistry::CreateOp( OpRegistry::CreateOp(
"add", {dup_outputs}, {name}, "add", {{"X", {dup_outputs}}}, {{"Out", {name}}},
{{"input_format", {{"input_format",
std::vector<int>{0, static_cast<int>(dup_outputs.size())}}})}); std::vector<int>{0, static_cast<int>(dup_outputs.size())}}})});
} }
...@@ -131,7 +143,9 @@ std::shared_ptr<OperatorBase> BackwardRecursive( ...@@ -131,7 +143,9 @@ std::shared_ptr<OperatorBase> BackwardRecursive(
} else { } else {
std::shared_ptr<OperatorBase> grad_op = OpRegistry::CreateGradOp(forwardOp); std::shared_ptr<OperatorBase> grad_op = OpRegistry::CreateGradOp(forwardOp);
for (std::string& grad_input : grad_op->inputs_) {
ForEachVarName(grad_op->inputs_, [&no_grad_names,
&net](std::string& grad_input) {
if (no_grad_names.count(grad_input)) { if (no_grad_names.count(grad_input)) {
// +1 for \0 // +1 for \0
std::string prefix = grad_input.substr( std::string prefix = grad_input.substr(
...@@ -140,16 +154,19 @@ std::shared_ptr<OperatorBase> BackwardRecursive( ...@@ -140,16 +154,19 @@ std::shared_ptr<OperatorBase> BackwardRecursive(
// If part of input gradient of that operator is not calculated, fill // If part of input gradient of that operator is not calculated, fill
// zero variables to that input gradient. // zero variables to that input gradient.
net->AddOp(OpRegistry::CreateOp("fill_zeros_like", {prefix}, net->AddOp(OpRegistry::CreateOp("fill_zeros_like", {{"Src", {prefix}}},
{grad_input}, {})); {{"Dst", {grad_input}}}, {}));
}
} }
return false;
});
for (std::string& grad_output : grad_op->outputs_) { ForEachVarName(grad_op->outputs_,
[&no_grad_names](std::string& grad_output) {
if (no_grad_names.count(grad_output)) { if (no_grad_names.count(grad_output)) {
grad_output = kEmptyVarName; grad_output = kEmptyVarName;
} }
} return false;
});
if (net->ops_.empty()) { // Current no aux op is added to network if (net->ops_.empty()) { // Current no aux op is added to network
return grad_op; return grad_op;
......
...@@ -30,6 +30,7 @@ using DeviceContext = platform::DeviceContext; ...@@ -30,6 +30,7 @@ using DeviceContext = platform::DeviceContext;
class EmptyOp : public OperatorBase { class EmptyOp : public OperatorBase {
public: public:
using OperatorBase::OperatorBase;
void InferShape(const Scope &scope) const override {} void InferShape(const Scope &scope) const override {}
void Run(const Scope &scope, const DeviceContext &dev_ctx) const override {} void Run(const Scope &scope, const DeviceContext &dev_ctx) const override {}
}; };
...@@ -38,9 +39,9 @@ class RowWiseAddOpMaker : public OpProtoAndCheckerMaker { ...@@ -38,9 +39,9 @@ class RowWiseAddOpMaker : public OpProtoAndCheckerMaker {
public: public:
RowWiseAddOpMaker(OpProto *proto, OpAttrChecker *op_checker) RowWiseAddOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) { : OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "Input X of Add").IgnoreGradient(); AddInput("X", "Input X of Add").AsNoGradient();
AddInput("b", "Bias of Add").IgnoreGradient(); AddInput("b", "Bias of Add").AsNoGradient();
AddOutput("Out", "Out of Add").IgnoreGradient(); AddOutput("Out", "Out of Add").AsNoGradient();
AddComment("Add Op"); AddComment("Add Op");
} }
}; };
...@@ -49,8 +50,8 @@ class MulOpMaker : public OpProtoAndCheckerMaker { ...@@ -49,8 +50,8 @@ class MulOpMaker : public OpProtoAndCheckerMaker {
public: public:
MulOpMaker(OpProto *proto, OpAttrChecker *op_checker) MulOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) { : OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("A", "A"); AddInput("X", "A");
AddInput("B", "B"); AddInput("Y", "B");
AddOutput("Out", "Out"); AddOutput("Out", "Out");
AddComment("Mul"); AddComment("Mul");
} }
...@@ -61,7 +62,7 @@ class SigmoidOpMaker : public OpProtoAndCheckerMaker { ...@@ -61,7 +62,7 @@ class SigmoidOpMaker : public OpProtoAndCheckerMaker {
SigmoidOpMaker(OpProto *proto, OpAttrChecker *op_checker) SigmoidOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) { : OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "X"); AddInput("X", "X");
AddOutput("Y", "Y"); AddOutput("Out", "Y");
AddComment("Sigmoid"); AddComment("Sigmoid");
} }
}; };
...@@ -71,21 +72,25 @@ class NoGradOpMaker : public OpProtoAndCheckerMaker { ...@@ -71,21 +72,25 @@ class NoGradOpMaker : public OpProtoAndCheckerMaker {
NoGradOpMaker(OpProto *proto, OpAttrChecker *op_checker) NoGradOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) { : OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "X input"); AddInput("X", "X input");
AddOutput("Y", "Y output"); AddOutput("Out", "Y output");
AddComment("NoGradOp, same input output. no Grad"); AddComment("NoGradOp, same input output. no Grad");
} }
}; };
class FcOp : public operators::NetOp { class FcOp : public operators::NetOp {
public: public:
void Init() override { FcOp(const std::string &type, const VarNameMap &inputs,
AddOp(OpRegistry::CreateOp("mul", {Input("X"), Input("W")}, const VarNameMap &outputs, const AttributeMap &attrs)
{Output("mul_result")}, {})); : NetOp(type, inputs, outputs, attrs) {
auto b_name = Input("b"); AddOp(OpRegistry::CreateOp("mul",
{{"X", {Input("X")}}, {"Y", {Input("W")}}},
{{"Out", {Output("mul_result")}}}, {}));
auto input_b = Inputs("b");
std::string before_act = "mul_result"; std::string before_act = "mul_result";
if (b_name != kEmptyVarName) { if (input_b.size() != 0) {
AddOp(OpRegistry::CreateOp("rowwise_add", {Output("mul_result"), b_name}, AddOp(OpRegistry::CreateOp(
{Output("add_result")}, {})); "rowwise_add", {{"X", {Output("mul_result")}}, {"b", {input_b[0]}}},
{{"Out", {Output("add_result")}}}, {}));
before_act = "add_result"; before_act = "add_result";
} else { } else {
auto out_varname = Output("add_result"); auto out_varname = Output("add_result");
...@@ -94,8 +99,8 @@ class FcOp : public operators::NetOp { ...@@ -94,8 +99,8 @@ class FcOp : public operators::NetOp {
} }
} }
AddOp(OpRegistry::CreateOp("sigmoid", {Output(before_act)}, {Output("Out")}, AddOp(OpRegistry::CreateOp("sigmoid", {{"X", {Output(before_act)}}},
{})); {{"Out", {Output("Out")}}}, {}));
CompleteAddOp(false); CompleteAddOp(false);
} }
}; };
...@@ -107,8 +112,8 @@ class FcOpMaker : public OpProtoAndCheckerMaker { ...@@ -107,8 +112,8 @@ class FcOpMaker : public OpProtoAndCheckerMaker {
AddInput("X", "x"); AddInput("X", "x");
AddInput("W", "w"); AddInput("W", "w");
AddInput("b", "b"); AddInput("b", "b");
AddOutput("mul_result", "").SetTemporary(); AddOutput("mul_result", "").AsIntermediate();
AddOutput("add_result", "").SetTemporary(); AddOutput("add_result", "").AsIntermediate();
AddOutput("Out", ""); AddOutput("Out", "");
AddComment(""); AddComment("");
} }
...@@ -139,7 +144,7 @@ class AddOpMaker : public OpProtoAndCheckerMaker { ...@@ -139,7 +144,7 @@ class AddOpMaker : public OpProtoAndCheckerMaker {
public: public:
AddOpMaker(OpProto *proto, OpAttrChecker *op_checker) AddOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) { : OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "x").SetMultiple(); AddInput("X", "x").AsDuplicable();
AddOutput("Y", "y"); AddOutput("Y", "y");
AddComment(""); AddComment("");
} }
...@@ -165,27 +170,24 @@ REGISTER_OP(many_output_op, f::EmptyOp, f::ManyOutputOpMaker); ...@@ -165,27 +170,24 @@ REGISTER_OP(many_output_op, f::EmptyOp, f::ManyOutputOpMaker);
REGISTER_GRADIENT_OP(many_output_op, many_output_op_grad, f::EmptyOp); REGISTER_GRADIENT_OP(many_output_op, many_output_op_grad, f::EmptyOp);
TEST(Backward, simple_op_grad) { TEST(Backward, simple_op_grad) {
auto fwd = f::OpRegistry::CreateOp("rowwise_add", {"X", "b"}, {"Out"}, {}); auto fwd = f::OpRegistry::CreateOp(
"rowwise_add", {{"X", {"x"}}, {"b", {"b"}}}, {{"Out", {"out"}}}, {});
ASSERT_NE(fwd, nullptr); ASSERT_NE(fwd, nullptr);
auto gop = f::OpRegistry::CreateGradOp(*fwd); auto gop = f::OpRegistry::CreateGradOp(*fwd);
ASSERT_EQ(4UL, gop->inputs_.size()); ASSERT_EQ(1UL, gop->inputs_.size());
ASSERT_EQ(f::kEmptyVarName, gop->inputs_[0]);
ASSERT_EQ("rowwise_add_grad", gop->type_); ASSERT_EQ("rowwise_add_grad", gop->type_);
ASSERT_EQ(f::GradVarName("X"), gop->outputs_[0]); ASSERT_EQ(f::GradVarName("x"), gop->Output(f::GradVarName("X")));
ASSERT_EQ(f::GradVarName("b"), gop->outputs_[1]); ASSERT_EQ(f::GradVarName("b"), gop->Output(f::GradVarName("b")));
ASSERT_EQ(f::GradVarName("X"), gop->Output(f::GradVarName("X")));
} }
TEST(Backward, simple_op_not_need_grad) { TEST(Backward, simple_op_not_need_grad) {
auto fwd = f::OpRegistry::CreateOp("rowwise_add", {"X", "b"}, {"Out"}, {}); auto fwd = f::OpRegistry::CreateOp(
"rowwise_add", {{"X", {"x"}}, {"b", {"b"}}}, {{"Out", {"out"}}}, {});
ASSERT_NE(fwd, nullptr); ASSERT_NE(fwd, nullptr);
auto gop = f::Backward(*fwd, {"X"}); auto gop = f::Backward(*fwd, {"x"});
ASSERT_EQ(std::find(gop->outputs_.begin(), gop->outputs_.end(), ASSERT_EQ(gop->Output(f::GradVarName("X")), f::kEmptyVarName);
f::GradVarName("X")),
gop->outputs_.end());
auto no_input_gop = f::Backward(*fwd, {"X", "b"}); auto no_input_gop = f::Backward(*fwd, {"x", "b"});
ASSERT_NE(no_input_gop, nullptr); ASSERT_NE(no_input_gop, nullptr);
ASSERT_TRUE(no_input_gop->IsNetOp()); ASSERT_TRUE(no_input_gop->IsNetOp());
ASSERT_EQ(0UL, ASSERT_EQ(0UL,
...@@ -193,8 +195,12 @@ TEST(Backward, simple_op_not_need_grad) { ...@@ -193,8 +195,12 @@ TEST(Backward, simple_op_not_need_grad) {
} }
TEST(Backward, net_fc_backward_normal) { TEST(Backward, net_fc_backward_normal) {
std::shared_ptr<f::OperatorBase> fwd = f::OpRegistry::CreateOp( std::shared_ptr<f::OperatorBase> fwd =
"fc", {"X", "w", "b"}, {"mul_result", "add_result", "out"}, {}); f::OpRegistry::CreateOp("fc", {{"X", {"x"}}, {"W", {"w"}}, {"b", {"b"}}},
{{"mul_result", {"mul_res"}},
{"add_result", {"add_re"}},
{"Out", {"out"}}},
{});
ASSERT_NE(fwd, nullptr); ASSERT_NE(fwd, nullptr);
std::shared_ptr<f::OperatorBase> gop = f::Backward(*fwd, {}); std::shared_ptr<f::OperatorBase> gop = f::Backward(*fwd, {});
ASSERT_TRUE(gop->IsNetOp()); ASSERT_TRUE(gop->IsNetOp());
...@@ -216,8 +222,11 @@ TEST(Backward, net_fc_backward_normal) { ...@@ -216,8 +222,11 @@ TEST(Backward, net_fc_backward_normal) {
TEST(Backward, net_fc_backward_not_have_b) { TEST(Backward, net_fc_backward_not_have_b) {
std::shared_ptr<f::OperatorBase> fwd = std::shared_ptr<f::OperatorBase> fwd =
f::OpRegistry::CreateOp("fc", {"X", "w", f::kEmptyVarName}, f::OpRegistry::CreateOp("fc", {{"X", {"x"}}, {"W", {"w"}}, {"b", {}}},
{"mul_result", "add_result", "tmp"}, {}); {{"mul_result", {"mul_res"}},
{"add_result", {"add_res"}},
{"Out", {"tmp"}}},
{});
ASSERT_NE(fwd, nullptr); ASSERT_NE(fwd, nullptr);
std::shared_ptr<f::OperatorBase> gop = f::Backward(*fwd, {}); std::shared_ptr<f::OperatorBase> gop = f::Backward(*fwd, {});
ASSERT_TRUE(gop->IsNetOp()); ASSERT_TRUE(gop->IsNetOp());
...@@ -236,38 +245,49 @@ TEST(Backward, net_fc_backward_not_have_b) { ...@@ -236,38 +245,49 @@ TEST(Backward, net_fc_backward_not_have_b) {
TEST(Backward, net_input_of_network_not_need_grad) { TEST(Backward, net_input_of_network_not_need_grad) {
ops::NetOp net; ops::NetOp net;
net.AddOp(f::OpRegistry::CreateOp("fc", {"X", "W1", "b1"}, net.AddOp(f::OpRegistry::CreateOp(
{"mul_tmp_0", "add_tmp_0", "hidden0"}, {})); "fc", {{"X", {"x"}}, {"W", {"W1"}}, {"b", {"b1"}}},
net.AddOp(f::OpRegistry::CreateOp("fc", {"hidden0", "W2", "b2"}, {{"mul_result", {"mul_tmp_0"}},
{"mul_tmp_1", "add_tmp_1", "hidden1"}, {})); {"add_result", {"add_tmp_0"}},
{"Out", {"hidden0"}}},
{}));
net.AddOp(f::OpRegistry::CreateOp(
"fc", {{"X", {"hidden0"}}, {"W", {"W2"}}, {"b", {"b2"}}},
{{"mul_result", {"mul_tmp_1"}},
{"add_result", {"add_tmp_1"}},
{"Out", {"hidden1"}}},
{}));
net.CompleteAddOp(); net.CompleteAddOp();
auto bwd = Backward(net, {"X"}); // X@GRAD is not need. auto bwd = Backward(net, {"x"}); // x@GRAD is not need.
ASSERT_TRUE(bwd->IsNetOp()); ASSERT_TRUE(bwd->IsNetOp());
auto bwd_net = static_cast<ops::NetOp *>(bwd.get()); auto bwd_net = static_cast<ops::NetOp *>(bwd.get());
std::unordered_set<std::string> all_output = std::unordered_set<std::string>( auto output_vars = bwd_net->OutputVars(true);
bwd_net->outputs_.begin(), bwd_net->outputs_.end()); std::unordered_set<std::string> all_outputs =
all_output.erase(f::kEmptyVarName); std::unordered_set<std::string>(output_vars.begin(), output_vars.end());
all_outputs.erase(f::kEmptyVarName);
for (auto &out : {"W1", "b1", "hidden0", "W2", "b2"}) { for (auto &out : {"W1", "b1", "hidden0", "W2", "b2"}) {
ASSERT_NE(all_output.find(f::GradVarName(out)), all_output.end()); ASSERT_NE(all_outputs.find(f::GradVarName(out)), all_outputs.end());
} }
// Not Generated X // Not Generated X
ASSERT_EQ(all_output.find(f::GradVarName("X")), all_output.end()); ASSERT_EQ(all_outputs.find(f::GradVarName("X")), all_outputs.end());
ASSERT_EQ(2UL, bwd_net->ops_.size()); ASSERT_EQ(2UL, bwd_net->ops_.size());
ASSERT_TRUE(bwd_net->ops_[1]->IsNetOp()); ASSERT_TRUE(bwd_net->ops_[1]->IsNetOp());
auto first_fc_grad = static_cast<ops::NetOp *>(bwd_net->ops_[1].get()); auto first_fc_grad = static_cast<ops::NetOp *>(bwd_net->ops_[1].get());
ASSERT_EQ(3UL, first_fc_grad->ops_.size()); ASSERT_EQ(3UL, first_fc_grad->ops_.size());
ASSERT_EQ(f::kEmptyVarName, ASSERT_EQ(f::kEmptyVarName,
first_fc_grad->ops_[2]->Output(f::GradVarName("A"))); first_fc_grad->ops_[2]->Output(f::GradVarName("X")));
} }
TEST(Backward, net_shared_weight) { TEST(Backward, net_shared_weight) {
ops::NetOp net; ops::NetOp net;
net.AddOp(f::OpRegistry::CreateOp("mul", {"X", "W"}, {"Out"}, {})); net.AddOp(f::OpRegistry::CreateOp("mul", {{"X", {"x"}}, {"Y", {"w"}}},
net.AddOp(f::OpRegistry::CreateOp("mul", {"Out", "W"}, {"FinalOut"}, {})); {{"Out", {"out"}}}, {}));
net.AddOp(f::OpRegistry::CreateOp("mul", {{"X", {"out"}}, {"Y", {"w"}}},
{{"Out", {"FinalOut"}}}, {}));
net.CompleteAddOp(); net.CompleteAddOp();
auto bwd = f::Backward(net, {}); auto bwd = f::Backward(net, {});
...@@ -278,31 +298,37 @@ TEST(Backward, net_shared_weight) { ...@@ -278,31 +298,37 @@ TEST(Backward, net_shared_weight) {
} }
TEST(Backward, op_register_grad_not_for_network) { TEST(Backward, op_register_grad_not_for_network) {
auto fwd = f::OpRegistry::CreateOp( auto fwd =
"fc", {"X", "W", "b"}, {"mul_out", "add_out", "out1"}, f::OpRegistry::CreateOp("fc", {{"X", {"x"}}, {"W", {"w"}}, {"b", {"b"}}},
{{"mul_result", {"mul_out"}},
{"add_result", {"add_out"}},
{"Out", {"out1"}}},
{{"temporary_index", std::vector<int>{0, 1}}}); {{"temporary_index", std::vector<int>{0, 1}}});
ASSERT_THROW(f::OpRegistry::CreateGradOp(*fwd), EnforceNotMet); ASSERT_THROW(f::OpRegistry::CreateGradOp(*fwd), EnforceNotMet);
} }
TEST(Backward, op_all_input_are_not_need) { TEST(Backward, op_all_input_are_not_need) {
auto fwd = f::OpRegistry::CreateOp("rowwise_add", {"X", "b"}, {"Out"}, {}); auto fwd = f::OpRegistry::CreateOp(
auto backward = f::Backward(*fwd, {"X", "b"}); "rowwise_add", {{"X", {"x"}}, {"b", {"b"}}}, {{"Out", {"out"}}}, {});
auto backward = f::Backward(*fwd, {"x", "b"});
ASSERT_TRUE(backward->IsNetOp()); ASSERT_TRUE(backward->IsNetOp());
auto net = static_cast<ops::NetOp *>(backward.get()); auto net = static_cast<ops::NetOp *>(backward.get());
ASSERT_TRUE(net->ops_.empty()); ASSERT_TRUE(net->ops_.empty());
} }
TEST(Backward, op_all_output_are_not_need) { TEST(Backward, op_all_output_are_not_need) {
auto fwd = f::OpRegistry::CreateOp("rowwise_add", {"X", "b"}, {"Out"}, {}); auto fwd = f::OpRegistry::CreateOp(
auto backward = f::Backward(*fwd, {"Out"}); "rowwise_add", {{"X", {"x"}}, {"b", {"b"}}}, {{"Out", {"out"}}}, {});
auto backward = f::Backward(*fwd, {"out"});
ASSERT_TRUE(backward->IsNetOp()); ASSERT_TRUE(backward->IsNetOp());
auto net = static_cast<ops::NetOp *>(backward.get()); auto net = static_cast<ops::NetOp *>(backward.get());
ASSERT_TRUE(net->ops_.empty()); ASSERT_TRUE(net->ops_.empty());
} }
TEST(Backward, op_part_of_output_are_not_need) { TEST(Backward, op_part_of_output_are_not_need) {
auto fwd = f::OpRegistry::CreateOp("many_output_op", {"X"}, {"Y", "Z"}, {}); auto fwd = f::OpRegistry::CreateOp("many_output_op", {{"x", {"X"}}},
{{"y", {"Y"}}, {"z", {"Z"}}}, {});
auto backward = f::Backward(*fwd, {"Z"}); auto backward = f::Backward(*fwd, {"Z"});
ASSERT_TRUE(backward->IsNetOp()); ASSERT_TRUE(backward->IsNetOp());
auto net = static_cast<ops::NetOp *>(backward.get()); auto net = static_cast<ops::NetOp *>(backward.get());
...@@ -310,10 +336,10 @@ TEST(Backward, op_part_of_output_are_not_need) { ...@@ -310,10 +336,10 @@ TEST(Backward, op_part_of_output_are_not_need) {
auto &fill_zero = *net->ops_[0]; auto &fill_zero = *net->ops_[0];
ASSERT_EQ("fill_zeros_like", fill_zero.type_); ASSERT_EQ("fill_zeros_like", fill_zero.type_);
ASSERT_EQ(1UL, fill_zero.inputs_.size()); ASSERT_EQ(1UL, fill_zero.Inputs("Src").size());
ASSERT_EQ("Z", fill_zero.inputs_[0]); ASSERT_EQ("Z", fill_zero.Input("Src"));
ASSERT_EQ(1UL, fill_zero.outputs_.size()); ASSERT_EQ(1UL, fill_zero.Outputs("Dst").size());
ASSERT_EQ(std::string("Z") + f::kZeroVarSuffix, fill_zero.outputs_[0]); ASSERT_EQ(std::string("Z") + f::kZeroVarSuffix, fill_zero.Output("Dst"));
auto &d_many_out = *net->ops_[1]; auto &d_many_out = *net->ops_[1];
ASSERT_EQ("many_output_op_grad", d_many_out.type_); ASSERT_EQ("many_output_op_grad", d_many_out.type_);
...@@ -325,44 +351,62 @@ TEST(Backward, op_part_of_output_are_not_need) { ...@@ -325,44 +351,62 @@ TEST(Backward, op_part_of_output_are_not_need) {
} }
TEST(Backward, op_part_of_input_are_not_need) { TEST(Backward, op_part_of_input_are_not_need) {
auto fwd = f::OpRegistry::CreateOp("mul", {"a", "b"}, {"out"}, {}); auto fwd = f::OpRegistry::CreateOp("mul", {{"X", {"a"}}, {"Y", {"b"}}},
{{"Out", {"out"}}}, {});
auto backward = f::Backward(*fwd, {"a"}); auto backward = f::Backward(*fwd, {"a"});
auto &grad_mul = *backward; auto &grad_mul = *backward;
ASSERT_EQ(grad_mul.type_, "mul_grad"); ASSERT_EQ(grad_mul.type_, "mul_grad");
ASSERT_EQ(grad_mul.inputs_.size(), 2UL + 1UL + 1UL); ASSERT_EQ(grad_mul.inputs_.size(), 2UL + 1UL + 1UL);
ASSERT_EQ(grad_mul.outputs_.size(), 2UL); ASSERT_EQ(grad_mul.outputs_.size(), 2UL);
ASSERT_EQ(grad_mul.Output(f::GradVarName("A")), f::kEmptyVarName); ASSERT_EQ(grad_mul.Output(f::GradVarName("X")), f::kEmptyVarName);
ASSERT_EQ(grad_mul.Output(f::GradVarName("B")), f::GradVarName("b")); ASSERT_EQ(grad_mul.Output(f::GradVarName("Y")), f::GradVarName("b"));
ASSERT_EQ(grad_mul.Input(f::GradVarName("Out")), f::GradVarName("out")); ASSERT_EQ(grad_mul.Input(f::GradVarName("Out")), f::GradVarName("out"));
ASSERT_EQ(grad_mul.Input("A"), "a"); ASSERT_EQ(grad_mul.Input("X"), "a");
ASSERT_EQ(grad_mul.Input("B"), "b"); ASSERT_EQ(grad_mul.Input("Y"), "b");
ASSERT_EQ(grad_mul.Input("Out"), "out"); ASSERT_EQ(grad_mul.Input("Out"), "out");
} }
TEST(Backward, linear_net_intermediate_variable_has_no_grad) { TEST(Backward, linear_net_intermediate_variable_has_no_grad) {
ops::NetOp net; ops::NetOp net;
net.AddOp(f::OpRegistry::CreateOp("fc", {"x1", "w1", "b1"}, net.AddOp(f::OpRegistry::CreateOp(
{"mul_out1", "add_out1", "out1"}, {})); "fc", {{"X", {"x1"}}, {"W", {"w1"}}, {"b", {"b1"}}},
net.AddOp(f::OpRegistry::CreateOp("fc", {"out1", "w2", "b2"}, {{"mul_result", {"mul_out1"}},
{"mul_out2", "tmp_out2", "out2"}, {})); {"add_result", {"add_out1"}},
net.AddOp(f::OpRegistry::CreateOp("fc", {"out2", "w3", "b3"}, {"Out", {"out1"}}},
{"mul_out3", "tmp_out3", "out3"}, {})); {}));
net.AddOp(f::OpRegistry::CreateOp(
"fc", {{"X", {"out1"}}, {"W", {"w2"}}, {"b", {"b2"}}},
{{"mul_result", {"mul_out2"}},
{"add_result", {"tmp_out2"}},
{"Out", {"out2"}}},
{}));
net.AddOp(f::OpRegistry::CreateOp(
"fc", {{"X", {"out2"}}, {"W", {"w3"}}, {"b", {"b3"}}},
{{"mul_result", {"mul_out3"}},
{"add_result", {"tmp_out3"}},
{"Out", {"out3"}}},
{}));
net.CompleteAddOp(); net.CompleteAddOp();
auto backward = f::Backward(net, {"mul_out2", "tmp_out2", "out2"}); auto backward = f::Backward(net, {"mul_out2", "tmp_out2", "out2"});
ASSERT_TRUE(backward->IsNetOp()); ASSERT_TRUE(backward->IsNetOp());
auto bwd_net = static_cast<ops::NetOp *>(backward.get()); auto bwd_net = static_cast<ops::NetOp *>(backward.get());
ASSERT_EQ(bwd_net->ops_.size(), 3UL); ASSERT_EQ(bwd_net->ops_.size(), 3UL);
auto &grad_fc = *bwd_net->ops_[0]; auto &grad_fc = *bwd_net->ops_[0];
EXPECT_EQ(grad_fc.inputs_.size(),
3UL /* external input number */ const char *all = paddle::operators::NetOp::kAll;
EXPECT_EQ(grad_fc.inputs_[all].size(),
2UL /* external input number */
+ 1UL /* external output number*/ + 1UL /* external output number*/
+ 1UL /* number of gradient of external output*/ + 1UL /* number of gradient of external output*/
+ 2U /* internal variable number*/); + 2U /* internal variable number*/);
EXPECT_EQ(grad_fc.outputs_.size(), 2UL /* input number of mul*/ EXPECT_EQ(grad_fc.outputs_[all].size(),
+ 2UL /* input number of rowwise_add */ 2UL /* input number of mul*/
+ 2UL /* input number of rowwise_add
*/
+ 1UL /* input number of sigmod */); + 1UL /* input number of sigmod */);
EXPECT_EQ(bwd_net->ops_[1]->inputs_.size(), 0UL); EXPECT_EQ(bwd_net->ops_[1]->inputs_[all].size(), 0UL);
EXPECT_EQ(bwd_net->ops_[1]->outputs_.size(), 0UL); EXPECT_EQ(bwd_net->ops_[1]->outputs_[all].size(), 0UL);
EXPECT_EQ(bwd_net->ops_[2]->inputs_.size(), 0UL); EXPECT_EQ(bwd_net->ops_[2]->inputs_[all].size(), 0UL);
EXPECT_EQ(bwd_net->ops_[2]->outputs_.size(), 0UL); EXPECT_EQ(bwd_net->ops_[2]->outputs_[all].size(), 0UL);
} }
...@@ -283,6 +283,5 @@ std::ostream& operator<<(std::ostream& os, const DDim& ddim) { ...@@ -283,6 +283,5 @@ std::ostream& operator<<(std::ostream& os, const DDim& ddim) {
DDim::DDim(std::initializer_list<int> init_list) { DDim::DDim(std::initializer_list<int> init_list) {
*this = make_ddim(init_list); *this = make_ddim(init_list);
} }
} // namespace framework } // namespace framework
} // namespace paddle } // namespace paddle
...@@ -14,13 +14,12 @@ limitations under the License. */ ...@@ -14,13 +14,12 @@ limitations under the License. */
#pragma once #pragma once
#include <boost/variant.hpp>
#include <initializer_list> #include <initializer_list>
#include <stdexcept> #include <stdexcept>
#include <vector> #include <vector>
#include "paddle/framework/dim.h" #include "paddle/framework/dim.h"
#include "paddle/platform/enforce.h" #include "paddle/platform/enforce.h"
#include "unsupported/Eigen/CXX11/Tensor" #include "paddle/platform/variant.h"
namespace paddle { namespace paddle {
namespace framework { namespace framework {
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/framework/lod_tensor.h"
#include <memory>
namespace paddle {
namespace framework {
namespace details {
using LOD = LODTensor::LOD;
std::shared_ptr<LOD> SliceLOD(const LOD &lod, size_t level_begin,
size_t level_end) {
auto new_lod = std::make_shared<LOD>();
new_lod->reserve(level_end - level_begin);
for (size_t i = level_begin; i < level_end; i++) {
new_lod->emplace_back(lod[i]);
}
return new_lod;
}
std::shared_ptr<LOD> SliceLOD(const LOD &lod, size_t level, size_t elem_begin,
size_t elem_end, bool tensor_shared) {
// slice the lod.
auto new_lod = std::make_shared<LOD>();
new_lod->reserve(lod.size() - level);
auto start = lod.at(level)[elem_begin];
auto end = lod.at(level)[elem_end];
for (auto it = lod.begin() + level; it != lod.end(); it++) {
auto it_begin = std::find(it->begin(), it->end(), start);
auto it_end = std::find(it_begin, it->end(), end);
PADDLE_ENFORCE(it_begin != it->end(), "error in parsing lod info");
PADDLE_ENFORCE(it_end != it->end(), "error in parsing lod info");
new_lod->emplace_back(it_begin, it_end + 1);
if (!tensor_shared) {
// reset offset if tensor is copyed and sliced.
std::transform(new_lod->back().begin(), new_lod->back().end(),
new_lod->back().begin(),
[start](int v) { return v - start; });
PADDLE_ENFORCE(new_lod->back().front() == 0, "error in slice LOD");
}
}
return new_lod;
}
} // namespace details
} // namespace framework
} // namespace paddle
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
syntax = "proto2";
package paddle.framework;
enum AttrType {
INT = 0;
FLOAT = 1;
STRING = 2;
INTS = 3;
FLOATS = 4;
STRINGS = 5;
}
// OpDesc describes an instance of a C++ framework::OperatorBase
// derived class type.
message OpDesc {
message Attr {
required string name = 1;
required AttrType type = 2;
optional int32 i = 3;
optional float f = 4;
optional string s = 5;
repeated int32 ints = 6;
repeated float floats = 7;
repeated string strings = 8;
};
message Var {
required string parameter = 1;
repeated string arguments = 2;
};
required string type = 3;
repeated Var inputs = 1;
repeated Var outputs = 2;
repeated Attr attrs = 4;
};
// OpProto describes a C++ framework::OperatorBase derived class.
message OpProto {
// VarProto describes the C++ type framework::Variable.
message Var {
required string name = 1;
required string comment = 2;
optional bool duplicable = 3 [ default = false ];
optional bool intermediate = 4 [ default = false ];
optional bool no_gradient = 5 [ default = false ];
}
// AttrProto describes the C++ type Attribute.
message Attr {
required string name = 1;
required AttrType type = 2;
required string comment = 3;
// If that attribute is generated, it means the Paddle third
// language binding has responsibility to fill that
// attribute. End-User should not set that attribute.
optional bool generated = 4 [ default = false ];
}
required string type = 1;
repeated Var inputs = 2;
repeated Var outputs = 3;
repeated Attr attrs = 4;
required string comment = 5;
}
...@@ -13,90 +13,52 @@ express or implied. See the License for the specific language governing ...@@ -13,90 +13,52 @@ express or implied. See the License for the specific language governing
permissions and limitations under the License. */ permissions and limitations under the License. */
#include "paddle/framework/grad_op_builder.h" #include "paddle/framework/grad_op_builder.h"
#include "paddle/framework/op_proto.pb.h" #include "paddle/framework/framework.pb.h"
#include "paddle/framework/op_registry.h" #include "paddle/framework/op_registry.h"
namespace paddle { namespace paddle {
namespace framework { namespace framework {
class OpRegistry;
using VarIndexMap = std::unordered_map<std::string, int>;
enum class OpArgType { IN, OUT }; enum class OpArgType { IN, OUT };
static std::vector<int>* GetOpFormat(OperatorBase* op, const OpArgType& type) { static void TransOpArg(const OperatorBase* src_op,
std::string key = type == OpArgType::IN ? "input_format" : "output_format"; OperatorBase::VarNameMap* vars,
return op->attrs_.count(key) const OpArgType& src_type, bool is_grad) {
? &boost::get<std::vector<int>>(op->attrs_.at(key)) const auto& src_inout =
: nullptr;
}
static const std::vector<int>* GetOpFormat(const OperatorBase* op,
const OpArgType& type) {
std::string key = type == OpArgType::IN ? "input_format" : "output_format";
return op->attrs_.count(key)
? &boost::get<std::vector<int>>(op->attrs_.at(key))
: nullptr;
}
static void TransOpArg(const OperatorBase* src_op, OperatorBase* dst_op,
const OpArgType& src_type, const OpArgType& dst_type,
int& idx, bool is_grad) {
const std::vector<std::string>& src_inout =
src_type == OpArgType::IN ? src_op->inputs_ : src_op->outputs_; src_type == OpArgType::IN ? src_op->inputs_ : src_op->outputs_;
const std::vector<int>* src_format = GetOpFormat(src_op, src_type); auto& dst_inout = *vars;
std::vector<std::string>& dst_inout = const OpProto& proto = OpProtos().at(src_op->type_);
dst_type == OpArgType::IN ? dst_op->inputs_ : dst_op->outputs_;
std::vector<int>* dst_format = GetOpFormat(dst_op, dst_type);
const OpProto& proto = OpRegistry::protos().at(src_op->type_);
const auto& src_arg_list = const auto& src_arg_list =
src_type == OpArgType::IN ? proto.inputs() : proto.outputs(); src_type == OpArgType::IN ? proto.inputs() : proto.outputs();
for (const auto& arg : src_arg_list) { for (const auto& arg : src_arg_list) {
std::string src_name = arg.name(); if (arg.no_gradient() && !is_grad) continue;
std::string dst_name = is_grad ? src_name + kGradVarSuffix : src_name; const std::string src_name = arg.name();
(*dst_op->in_out_idxs_)[dst_name] = idx++; std::string dst_name = is_grad ? GradVarName(src_name) : src_name;
int src_arg_idx = src_op->in_out_idxs_->at(src_name); dst_inout[dst_name].reserve(src_inout.at(src_name).size());
int src_begin = for (auto& var_name : src_inout.at(src_name)) {
src_format == nullptr ? src_arg_idx : src_format->at(src_arg_idx); std::string s = is_grad ? GradVarName(var_name) : var_name;
int src_end = src_format == nullptr ? src_arg_idx + 1 dst_inout[dst_name].emplace_back(s);
: src_format->at(src_arg_idx + 1);
for (int i = src_begin; i < src_end; ++i) {
std::string s =
is_grad ? src_inout[i] + kGradVarSuffix
: (arg.ignore_gradient() ? kEmptyVarName : src_inout[i]);
dst_inout.emplace_back(s);
}
if (dst_format != nullptr) {
dst_format->push_back(dst_inout.size());
} }
} }
} }
OperatorBase* BuildGradOp(const OperatorBase* op) { OperatorBase* BuildGradOp(const OperatorBase* op) {
std::string grad_op_type = OpRegistry::grad_ops().at(op->type_); auto gop_type_it = OpRegistry::grad_ops().find(op->type_);
OperatorBase* grad_op = OpRegistry::op_creators().at(grad_op_type)(); PADDLE_ENFORCE(gop_type_it != OpRegistry::grad_ops().end(),
grad_op->type_ = grad_op_type; "Operator %s do not register gradient type", op->type_);
grad_op->attrs_ = op->attrs_; auto& grad_op_type = gop_type_it->second;
grad_op->attrs_.erase("input_format"); OperatorBase::VarNameMap inputs;
grad_op->attrs_.erase("output_format"); OperatorBase::VarNameMap outputs;
if (GetOpFormat(op, OpArgType::IN) != nullptr) { TransOpArg(op, &inputs, OpArgType::IN, false); // I
grad_op->attrs_["output_format"] = std::vector<int>({0}); TransOpArg(op, &inputs, OpArgType::OUT, false); // O
} TransOpArg(op, &inputs, OpArgType::OUT, true); // OG
if (GetOpFormat(op, OpArgType::IN) != nullptr || TransOpArg(op, &outputs, OpArgType::IN, true); // IG
GetOpFormat(op, OpArgType::OUT) != nullptr) { auto gop_it = OpRegistry::op_creators().find(grad_op_type);
grad_op->attrs_["input_format"] = std::vector<int>({0}); PADDLE_ENFORCE(gop_it != OpRegistry::op_creators().end(),
} "Operator %s 's Gradient %s's creator cannot be found",
grad_op->in_out_idxs_.reset(new VarIndexMap()); op->type_, grad_op_type);
int in_idx = 0;
int out_idx = 0; return gop_it->second(grad_op_type, inputs, outputs, op->attrs_);
TransOpArg(op, grad_op, OpArgType::IN, OpArgType::IN, in_idx, false); // I
TransOpArg(op, grad_op, OpArgType::OUT, OpArgType::IN, in_idx, false); // G
TransOpArg(op, grad_op, OpArgType::OUT, OpArgType::IN, in_idx, true); // OG
TransOpArg(op, grad_op, OpArgType::IN, OpArgType::OUT, out_idx, true); // IG
return grad_op;
} }
} // namespace framework } // namespace framework
......
...@@ -10,6 +10,7 @@ namespace framework { ...@@ -10,6 +10,7 @@ namespace framework {
class NOP : public OperatorBase { class NOP : public OperatorBase {
public: public:
using OperatorBase::OperatorBase;
void InferShape(const Scope &scope) const override {} void InferShape(const Scope &scope) const override {}
void Run(const Scope &scope, void Run(const Scope &scope,
const platform::DeviceContext &dev_ctx) const override {} const platform::DeviceContext &dev_ctx) const override {}
...@@ -20,10 +21,10 @@ class MutiInOutOpMaker : public OpProtoAndCheckerMaker { ...@@ -20,10 +21,10 @@ class MutiInOutOpMaker : public OpProtoAndCheckerMaker {
MutiInOutOpMaker(OpProto *proto, OpAttrChecker *op_checker) MutiInOutOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) { : OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("In1", "a single input"); AddInput("In1", "a single input");
AddInput("In2_mult", "a multiple input").SetMultiple(); AddInput("In2_mult", "a multiple input").AsDuplicable();
AddInput("In3", "another single input"); AddInput("In3", "another single input");
AddOutput("Out1", "a single output"); AddOutput("Out1", "a single output");
AddOutput("Out2_mult", "a multiple output").SetMultiple(); AddOutput("Out2_mult", "a multiple output").AsDuplicable();
AddComment("test op with multiple inputs and outputs"); AddComment("test op with multiple inputs and outputs");
} }
}; };
...@@ -33,10 +34,10 @@ class IOIgnoredOpMaker : public OpProtoAndCheckerMaker { ...@@ -33,10 +34,10 @@ class IOIgnoredOpMaker : public OpProtoAndCheckerMaker {
IOIgnoredOpMaker(OpProto *proto, OpAttrChecker *op_checker) IOIgnoredOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) { : OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("In1", "a single input"); AddInput("In1", "a single input");
AddInput("In2_mult", "a multiple input").SetMultiple().IgnoreGradient(); AddInput("In2_mult", "a multiple input").AsDuplicable().AsNoGradient();
AddInput("In3_mult", "another multiple input").SetMultiple(); AddInput("In3_mult", "another multiple input").AsDuplicable();
AddOutput("Out1_mult", "a multiple output").SetMultiple(); AddOutput("Out1_mult", "a multiple output").AsDuplicable();
AddOutput("Out2", "a single output").IgnoreGradient(); AddOutput("Out2", "a single output").AsNoGradient();
AddComment("op with inputs and outputs ignored in gradient calculating"); AddComment("op with inputs and outputs ignored in gradient calculating");
} }
}; };
...@@ -47,18 +48,18 @@ class IOIgnoredOpMaker : public OpProtoAndCheckerMaker { ...@@ -47,18 +48,18 @@ class IOIgnoredOpMaker : public OpProtoAndCheckerMaker {
namespace f = paddle::framework; namespace f = paddle::framework;
TEST(GradOpBuilder, AddTwo) { TEST(GradOpBuilder, AddTwo) {
std::shared_ptr<f::OperatorBase> add_op( std::shared_ptr<f::OperatorBase> add_op(f::OpRegistry::CreateOp(
f::OpRegistry::CreateOp("add_two", {"x", "y"}, {"out"}, {})); "add_two", {{"X", {"x"}}, {"Y", {"y"}}}, {{"Out", {"out"}}}, {}));
std::shared_ptr<f::OperatorBase> grad_add_op = std::shared_ptr<f::OperatorBase> grad_add_op =
f::OpRegistry::CreateGradOp(*add_op); f::OpRegistry::CreateGradOp(*add_op);
EXPECT_EQ(static_cast<int>(grad_add_op->inputs_.size()), 4); EXPECT_EQ(grad_add_op->inputs_.size(), 4UL);
EXPECT_EQ(static_cast<int>(grad_add_op->outputs_.size()), 2); EXPECT_EQ(grad_add_op->outputs_.size(), 2UL);
EXPECT_EQ(grad_add_op->Input("X"), "x"); EXPECT_EQ(grad_add_op->Input("X"), "x");
EXPECT_EQ(grad_add_op->Input("Y"), "y"); EXPECT_EQ(grad_add_op->Input("Y"), "y");
EXPECT_EQ(grad_add_op->Input("Out"), "out"); EXPECT_EQ(grad_add_op->Input("Out"), "out");
EXPECT_EQ(grad_add_op->Input("Out@GRAD"), "out@GRAD"); EXPECT_EQ(grad_add_op->Input(f::GradVarName("Out")), f::GradVarName("out"));
EXPECT_EQ(grad_add_op->Output("X@GRAD"), "x@GRAD"); EXPECT_EQ(grad_add_op->Output(f::GradVarName("X")), f::GradVarName("x"));
EXPECT_EQ(grad_add_op->Output("Y@GRAD"), "y@GRAD"); EXPECT_EQ(grad_add_op->Output(f::GradVarName("Y")), f::GradVarName("y"));
} }
REGISTER_OP(mult_io, f::NOP, f::MutiInOutOpMaker); REGISTER_OP(mult_io, f::NOP, f::MutiInOutOpMaker);
...@@ -67,15 +68,15 @@ REGISTER_OP(io_ignored, f::NOP, f::IOIgnoredOpMaker); ...@@ -67,15 +68,15 @@ REGISTER_OP(io_ignored, f::NOP, f::IOIgnoredOpMaker);
REGISTER_GRADIENT_OP(io_ignored, io_ignored_grad, f::NOP); REGISTER_GRADIENT_OP(io_ignored, io_ignored_grad, f::NOP);
TEST(GradOpBuilder, MutiInOut) { TEST(GradOpBuilder, MutiInOut) {
f::AttributeMap attrs{{"input_format", std::vector<int>{0, 1, 4, 5}},
{"output_format", std::vector<int>{0, 1, 3}}};
std::shared_ptr<f::OperatorBase> test_op(f::OpRegistry::CreateOp( std::shared_ptr<f::OperatorBase> test_op(f::OpRegistry::CreateOp(
"mult_io", {"in1", "in2_1", "in2_2", "in2_3", "in3"}, "mult_io", {{"In1", {"in1"}},
{"out1", "out2_1", "out2_2"}, attrs)); {"In2_mult", {"in2_1", "in2_2", "in2_3"}},
{"In3", {"in3"}}},
{{"Out1", {"out1"}}, {"Out2_mult", {"out2_1", "out2_2"}}}, {}));
std::shared_ptr<f::OperatorBase> grad_test_op = std::shared_ptr<f::OperatorBase> grad_test_op =
f::OpRegistry::CreateGradOp(*test_op); f::OpRegistry::CreateGradOp(*test_op);
ASSERT_EQ(grad_test_op->inputs_.size(), 5UL + 3UL + 3UL); ASSERT_EQ(grad_test_op->inputs_.size(), 3UL + 2UL + 2UL);
EXPECT_EQ(grad_test_op->Input("In1"), "in1"); EXPECT_EQ(grad_test_op->Input("In1"), "in1");
EXPECT_EQ(grad_test_op->Inputs("In2_mult"), EXPECT_EQ(grad_test_op->Inputs("In2_mult"),
std::vector<std::string>({"in2_1", "in2_2", "in2_3"})); std::vector<std::string>({"in2_1", "in2_2", "in2_3"}));
...@@ -89,7 +90,7 @@ TEST(GradOpBuilder, MutiInOut) { ...@@ -89,7 +90,7 @@ TEST(GradOpBuilder, MutiInOut) {
std::vector<std::string>( std::vector<std::string>(
{f::GradVarName("out2_1"), f::GradVarName("out2_2")})); {f::GradVarName("out2_1"), f::GradVarName("out2_2")}));
ASSERT_EQ(grad_test_op->outputs_.size(), 5UL); ASSERT_EQ(grad_test_op->outputs_.size(), 3UL);
EXPECT_EQ(grad_test_op->Output(f::GradVarName("In1")), f::GradVarName("in1")); EXPECT_EQ(grad_test_op->Output(f::GradVarName("In1")), f::GradVarName("in1"));
EXPECT_EQ(grad_test_op->Outputs(f::GradVarName("In2_mult")), EXPECT_EQ(grad_test_op->Outputs(f::GradVarName("In2_mult")),
std::vector<std::string>({f::GradVarName("in2_1"), std::vector<std::string>({f::GradVarName("in2_1"),
...@@ -99,31 +100,28 @@ TEST(GradOpBuilder, MutiInOut) { ...@@ -99,31 +100,28 @@ TEST(GradOpBuilder, MutiInOut) {
} }
TEST(GradOpBuilder, IOIgnoredInGradient) { TEST(GradOpBuilder, IOIgnoredInGradient) {
f::AttributeMap attrs{{"input_format", std::vector<int>{0, 1, 3, 5}},
{"output_format", std::vector<int>{0, 2, 3}}};
std::shared_ptr<f::OperatorBase> test_op(f::OpRegistry::CreateOp( std::shared_ptr<f::OperatorBase> test_op(f::OpRegistry::CreateOp(
"io_ignored", {"in1", "in2_1", "in2_2", "in3_1", "in3_2"}, "io_ignored", {{"In1", {"in1"}},
{"out1_1", "out1_2", "out2"}, attrs)); {"In2_mult", {"in2_1", "in2_2"}},
{"In3_mult", {"in3_1", "in3_2"}}},
{{"Out1_mult", {"out1_1", "out1_2"}}, {"Out2", {"out2"}}}, {}));
std::shared_ptr<f::OperatorBase> grad_test_op = std::shared_ptr<f::OperatorBase> grad_test_op =
f::OpRegistry::CreateGradOp(*test_op); f::OpRegistry::CreateGradOp(*test_op);
// 'In2' and 'Out2' are ignored in gradient calculating // 'In2' and 'Out2' are ignored in gradient calculating
ASSERT_EQ(grad_test_op->inputs_.size(), 5UL + 3UL + 3UL); ASSERT_EQ(grad_test_op->inputs_.size(), 2UL + 1UL + 2UL);
EXPECT_EQ(grad_test_op->Input("In1"), "in1"); EXPECT_EQ(grad_test_op->Input("In1"), "in1");
EXPECT_EQ(grad_test_op->Inputs("In2_mult"),
std::vector<std::string>({f::kEmptyVarName, f::kEmptyVarName}));
EXPECT_EQ(grad_test_op->Inputs("In3_mult"), EXPECT_EQ(grad_test_op->Inputs("In3_mult"),
std::vector<std::string>({"in3_1", "in3_2"})); std::vector<std::string>({"in3_1", "in3_2"}));
EXPECT_EQ(grad_test_op->Inputs("Out1_mult"), EXPECT_EQ(grad_test_op->Inputs("Out1_mult"),
std::vector<std::string>({"out1_1", "out1_2"})); std::vector<std::string>({"out1_1", "out1_2"}));
EXPECT_EQ(grad_test_op->Input("Out2"), f::kEmptyVarName);
EXPECT_EQ(grad_test_op->Inputs(f::GradVarName("Out1_mult")), EXPECT_EQ(grad_test_op->Inputs(f::GradVarName("Out1_mult")),
std::vector<std::string>( std::vector<std::string>(
{f::GradVarName("out1_1"), f::GradVarName("out1_2")})); {f::GradVarName("out1_1"), f::GradVarName("out1_2")}));
EXPECT_EQ(grad_test_op->Input(f::GradVarName("Out2")), EXPECT_EQ(grad_test_op->Input(f::GradVarName("Out2")),
f::GradVarName("out2")); f::GradVarName("out2"));
ASSERT_EQ(grad_test_op->outputs_.size(), 5UL); ASSERT_EQ(grad_test_op->outputs_.size(), 3UL);
EXPECT_EQ(grad_test_op->Output(f::GradVarName("In1")), f::GradVarName("in1")); EXPECT_EQ(grad_test_op->Output(f::GradVarName("In1")), f::GradVarName("in1"));
EXPECT_EQ(grad_test_op->Outputs(f::GradVarName("In2_mult")), EXPECT_EQ(grad_test_op->Outputs(f::GradVarName("In2_mult")),
std::vector<std::string>( std::vector<std::string>(
......
...@@ -19,32 +19,59 @@ ...@@ -19,32 +19,59 @@
namespace paddle { namespace paddle {
namespace framework { namespace framework {
LODTensor LODTensor::SliceShared(size_t level_begin, size_t level_end) const { LODTensor::LOD LODTensor::LOD::SliceLevels(size_t level_begin,
PADDLE_ENFORCE(HasLOD(), "has no LOD info, can't be sliced."); size_t level_end) const {
auto new_lod = details::SliceLOD(*lod_start_pos_, level_begin, level_end); LOD new_lod;
// slice levels just need to update LOD info, each level will contains the new_lod.reserve(level_end - level_begin);
// whole tensor_, so no need to modify tensor_. for (size_t i = level_begin; i < level_end; i++) {
return LODTensor(tensor_, new_lod); new_lod.emplace_back(at(i));
}
return new_lod;
} }
LODTensor LODTensor::SliceShared(size_t level, size_t elem_begin, LODTensor::LOD LODTensor::LOD::SliceInLevel(size_t level, size_t elem_begin,
size_t elem_end) const { size_t elem_end) const {
PADDLE_ENFORCE(HasLOD(), "has no LOD info, can't be sliced."); // slice the lod.
PADDLE_ENFORCE(level < NumLevels(), "level [%d] out of range [%d]", level, LOD new_lod;
NumLevels()); new_lod.reserve(size() - level);
PADDLE_ENFORCE(elem_begin < NumElements(level), auto start = this->at(level)[elem_begin];
"element begin [%d] out of range [%d]", elem_begin, auto end = this->at(level)[elem_end];
NumElements(level));
PADDLE_ENFORCE(elem_end < NumElements(level) + 1, for (auto it = this->begin() + level; it != this->end(); it++) {
"element end [%d] out of range [%d]", elem_end, auto it_begin = std::find(it->begin(), it->end(), start);
NumElements(level)); auto it_end = std::find(it_begin, it->end(), end);
PADDLE_ENFORCE(it_begin != it->end(), "error in parsing lod info");
auto new_lod = details::SliceLOD(*lod_start_pos_, level, elem_begin, elem_end, PADDLE_ENFORCE(it_end != it->end(), "error in parsing lod info");
true /*tensor_shared*/); new_lod.emplace_back(it_begin, it_end + 1);
// reset offset if tensor is copyed and sliced.
// slice elements just need to update LOD info, because offsets are not std::transform(new_lod.back().begin(), new_lod.back().end(),
// changed, so the original tensor_ can be reused. new_lod.back().begin(),
return LODTensor(tensor_, new_lod); [start](int v) { return v - start; });
PADDLE_ENFORCE_EQ(new_lod.back().front(), 0, "error in slice LOD");
}
PADDLE_ENFORCE_LE(new_lod.size(), this->size());
return new_lod;
}
bool operator==(const LODTensor::LOD& a, const LODTensor::LOD& b) {
if (a.size() != b.size()) {
return false;
}
for (size_t i = 0; i < a.size(); i++) {
const auto& a_level = a[i];
const auto& b_level = b[i];
if (a_level.size() != b_level.size()) {
return false;
}
for (size_t j = 0; j < a_level.size(); j++) {
if (a_level[j] != b_level[j]) {
return false;
}
}
}
return true;
} }
} // namespace framework } // namespace framework
......
...@@ -15,7 +15,7 @@ ...@@ -15,7 +15,7 @@
#pragma once #pragma once
#include <memory> #include <memory>
#if (!PADDLE_ONLY_CPU) #if !defined(PADDLE_ONLY_CPU)
#include <thrust/device_vector.h> #include <thrust/device_vector.h>
#include <thrust/host_vector.h> #include <thrust/host_vector.h>
#endif #endif
...@@ -31,30 +31,29 @@ namespace framework { ...@@ -31,30 +31,29 @@ namespace framework {
* LODTensor (Level of details Tensor) * LODTensor (Level of details Tensor)
* see https://en.wikipedia.org/wiki/Level_of_details for reference. * see https://en.wikipedia.org/wiki/Level_of_details for reference.
*/ */
class LODTensor { class LODTensor : public Tensor {
public: public:
// Level save offsets of each unit. // Level save offsets of each unit.
#ifdef PADDLE_ONLY_CPU #ifdef PADDLE_ONLY_CPU
using Level = std::vector<size_t>; template <typename T>
using Vector = std::vector<T>;
#else #else
using Level = thrust::device_vector<size_t>; template <typename T>
using Vector = thrust::host_vector<T>;
#endif #endif
// LOD stores offsets of each level of units, the largest units level first, // LoD stores offsets of each level of units, the largest units level first,
// then the smaller units level. Each Level stores the offsets of units in // then the smaller units level. Each Level stores the offsets of units in
// Tesor. // Tesor.
typedef std::vector<Level> LOD; class LOD : public std::vector<Vector<size_t>> {
public:
LOD SliceLevels(size_t level_begin, size_t level_end) const;
LOD SliceInLevel(size_t level, size_t elem_begin, size_t elem_end) const;
};
LODTensor() {} LODTensor() {}
LODTensor(const std::shared_ptr<Tensor> &tensor, explicit LODTensor(const LOD &lod) : lod_(lod) {}
const std::shared_ptr<LOD> &lod) {
Reset(tensor, lod);
}
void Reset(const std::shared_ptr<Tensor> &tensor, virtual Tensor *Clone() const { return new LODTensor(lod_); }
const std::shared_ptr<LOD> &lod) {
tensor_ = tensor;
lod_start_pos_ = lod;
}
/* /*
* Get a element from LOD. * Get a element from LOD.
...@@ -65,16 +64,14 @@ class LODTensor { ...@@ -65,16 +64,14 @@ class LODTensor {
PADDLE_ENFORCE(elem < NumElements(level), PADDLE_ENFORCE(elem < NumElements(level),
"element begin [%d] out of range [%d]", elem, "element begin [%d] out of range [%d]", elem,
NumElements(level)); NumElements(level));
return (*lod_start_pos_)[level][elem]; return (lod_)[level][elem];
} }
/* /*
* Number of LODTensor's levels, each level has units of data, for example, * Number of LODTensor's levels, each level has units of data, for example,
* in the sentence's view, article, paragraph, sentence are 3 levels. * in the sentence's view, article, paragraph, sentence are 3 levels.
*/ */
size_t NumLevels() const { size_t NumLevels() const { return lod_.size(); }
return lod_start_pos_ ? lod_start_pos_->size() : 0UL;
}
/* /*
* Number of elements in a level. * Number of elements in a level.
*/ */
...@@ -82,64 +79,71 @@ class LODTensor { ...@@ -82,64 +79,71 @@ class LODTensor {
PADDLE_ENFORCE(level < NumLevels(), "level [%d] out of range [%d]", level, PADDLE_ENFORCE(level < NumLevels(), "level [%d] out of range [%d]", level,
NumLevels()); NumLevels());
// the last offset is the end of last element // the last offset is the end of last element
return lod_start_pos_->at(level).size() - 1; return lod_[level].size() - 1;
} }
/*
* Slice of levels[level_begin:level_end], with tensor copied.
*/
template <typename T>
LODTensor SliceCopied(size_t level_begin, size_t level_end,
const platform::Place &dst_place) const;
/* /*
* Slice of levels[level_begin:level_end], with tensor shared. * Slice of levels[level_begin:level_end], with tensor shared.
*/ */
LODTensor SliceShared(size_t level_begin, size_t level_end) const;
/*
* Slice of elements of a level, [elem_begin: elem_end], with tensor copied.
* @note: low performance in slice lod_start_pos_.
*/
template <typename T> template <typename T>
LODTensor SliceCopied(size_t level, size_t elem_begin, size_t elem_end, LODTensor SliceLevels(size_t level_begin, size_t level_end) const;
const platform::Place &dst_place) const;
/* /*
* Slice of elements of a level, [elem_begin: elem_end], with tensor shared. * Slice of elements of a level, [elem_begin: elem_end], with tensor shared.
* @note: low performance in slice lod_start_pos_. * @note: low performance in slice lod_.
*/ */
LODTensor SliceShared(size_t level, size_t elem_begin, size_t elem_end) const; template <typename T>
LODTensor SliceInLevel(size_t level, size_t elem_begin,
/* size_t elem_end) const;
* Copy other's lod_start_pos_, to share LOD info.
* @note: the LOD info should not be changed.
*/
void ShareLOD(const LODTensor &other) {
lod_start_pos_ = other.lod_start_pos_;
}
/* /*
* Copy other's lod_start_pos_'s content, free to mutate. * Copy other's lod_'s content, free to mutate.
*/ */
void CopyLOD(const LODTensor &other) { void CopyLOD(const LODTensor &other) { lod_ = other.lod_; }
lod_start_pos_ = std::make_shared<LOD>(*other.lod_start_pos_);
}
/* /*
* Determine whether LODTensor has a valid LOD info. * Determine whether LODTensor has a valid LOD info.
*/ */
bool HasLOD() const { return bool(lod_start_pos_); } const LOD &lod() const { return lod_; }
LOD *lod() const { return lod_start_pos_.get(); } LOD *mutable_lod() { return &lod_; }
std::shared_ptr<Tensor> &tensor() { return tensor_; } virtual ~LODTensor() {}
Tensor *raw_tensor() { return tensor_.get(); }
private: private:
std::shared_ptr<LOD> lod_start_pos_; LOD lod_;
std::shared_ptr<Tensor> tensor_;
}; };
bool operator==(const LODTensor::LOD &a, const LODTensor::LOD &b);
template <typename T>
LODTensor LODTensor::SliceLevels(size_t level_begin, size_t level_end) const {
auto new_lod = lod_.SliceLevels(level_begin, level_end);
// slice levels just need to update LOD info, each level will contains the
// whole tensor_, so no need to modify tensor_.
LODTensor new_tensor(new_lod);
new_tensor.ShareDataWith<T>(*this);
return new_tensor;
}
template <typename T>
LODTensor LODTensor::SliceInLevel(size_t level, size_t elem_begin,
size_t elem_end) const {
PADDLE_ENFORCE(level < NumLevels(), "level [%d] out of range [%d]", level,
NumLevels());
PADDLE_ENFORCE(elem_begin < NumElements(level),
"element begin [%d] out of range [%d]", elem_begin,
NumElements(level));
PADDLE_ENFORCE(elem_end < NumElements(level) + 1,
"element end [%d] out of range [%d]", elem_end,
NumElements(level));
auto new_lod = lod_.SliceInLevel(level, elem_begin, elem_end);
// slice elements just need to update LOD info, because offsets are not
// changed, so the original tensor_ can be reused.
LODTensor new_tensor(new_lod);
new_tensor.ShareDataWith<T>(*this);
return new_tensor;
}
} // namespace framework } // namespace framework
} // namespace paddle } // namespace paddle
#include "paddle/framework/lod_tensor_impl.h"
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/details/lod_tensor.h"
namespace paddle {
namespace framework {
template <typename T>
LODTensor LODTensor::SliceCopied(size_t level_begin, size_t level_end,
const platform::Place &dst_place) const {
PADDLE_ENFORCE(HasLOD(), "has no LOD info, can't be sliced.");
auto new_lod = details::SliceLOD(*lod_start_pos_, level_begin, level_end);
auto new_tensor = std::make_shared<Tensor>();
new_tensor->CopyFrom<T>(*tensor_, dst_place);
return LODTensor(new_tensor, new_lod);
}
template <typename T>
LODTensor LODTensor::SliceCopied(size_t level, size_t elem_begin,
size_t elem_end,
const platform::Place &dst_place) const {
PADDLE_ENFORCE(HasLOD(), "has no LOD info, can't be sliced.");
PADDLE_ENFORCE(level < NumLevels(), "level [%d] out of range [%d]", level,
NumLevels());
PADDLE_ENFORCE(elem_begin < NumElements(level),
"element begin [%d] out of range [%d]", elem_begin,
NumElements(level));
PADDLE_ENFORCE(elem_end < NumElements(level) + 1,
"element end [%d] out of range [%d]", elem_end,
NumElements(level));
auto new_lod = details::SliceLOD(*lod_start_pos_, level, elem_begin, elem_end,
false /*tensor_shared*/);
auto start_idx = new_lod->front().front();
auto end_idx = new_lod->front().back() - 1 /*the next element's start*/;
auto sliced_tensor = tensor_->Slice<T>(start_idx, end_idx);
auto new_tensor = std::make_shared<Tensor>();
new_tensor->CopyFrom<T>(sliced_tensor, dst_place);
return LODTensor(new_tensor, new_lod);
}
} // namespace framework
} // namespace paddle
...@@ -15,6 +15,7 @@ ...@@ -15,6 +15,7 @@
#include <glog/logging.h> #include <glog/logging.h>
#include <gtest/gtest.h> #include <gtest/gtest.h>
#include <algorithm>
#include <memory> #include <memory>
namespace paddle { namespace paddle {
...@@ -29,22 +30,28 @@ class LODTensorTester : public ::testing::Test { ...@@ -29,22 +30,28 @@ class LODTensorTester : public ::testing::Test {
// 0 10 20 // 0 10 20
// 0 5 10 15 20 // 0 5 10 15 20
// 0 2 5 7 10 12 15 20 // 0 2 5 7 10 12 15 20
auto lod = std::make_shared<LODTensor::LOD>(); LODTensor::LOD lod;
lod->push_back(std::vector<size_t>{0, 10, 20}); lod.push_back(std::vector<size_t>{0, 10, 20});
lod->push_back(std::vector<size_t>{0, 5, 10, 15, 20}); lod.push_back(std::vector<size_t>{0, 5, 10, 15, 20});
lod->push_back(std::vector<size_t>{0, 2, 5, 7, 10, 12, 15, 17, 20}); lod.push_back(std::vector<size_t>{0, 2, 5, 7, 10, 12, 15, 17, 20});
auto tensor = std::make_shared<Tensor>(); ASSERT_EQ(lod.size(), 3UL);
tensor->Resize({20 /*batch size*/, 128 /*dim*/});
tensor.Resize({20 /*batch size*/, 128 /*dim*/});
// malloc memory // malloc memory
tensor->mutable_data<float>(place); tensor.mutable_data<float>(place);
lod_tensor.reset(new LODTensor(lod));
lod_tensor->Resize({20 /*batch size*/, 128 /*dim*/});
lod_tensor->Reset(tensor, lod); lod_tensor->ShareDataWith<float>(tensor);
// lod_tensor->ShareDataWith<Tensor>(tensor);
} }
protected: protected:
std::unique_ptr<LODTensor> lod_tensor; std::unique_ptr<LODTensor> lod_tensor;
platform::CPUPlace place; platform::CPUPlace place;
Tensor tensor;
}; };
TEST_F(LODTensorTester, NumLevels) { ASSERT_EQ(lod_tensor->NumLevels(), 3UL); } TEST_F(LODTensorTester, NumLevels) { ASSERT_EQ(lod_tensor->NumLevels(), 3UL); }
...@@ -55,110 +62,54 @@ TEST_F(LODTensorTester, NumElements) { ...@@ -55,110 +62,54 @@ TEST_F(LODTensorTester, NumElements) {
ASSERT_EQ(lod_tensor->NumElements(2), 8UL); ASSERT_EQ(lod_tensor->NumElements(2), 8UL);
} }
TEST_F(LODTensorTester, SliceShared_Level) { TEST_F(LODTensorTester, SliceLevels) {
// slice 1 level
for (size_t level = 0; level < 3UL; ++level) {
auto new_lod_tensor = lod_tensor->SliceShared(level, level + 1);
ASSERT_EQ(new_lod_tensor.NumLevels(), 1UL);
ASSERT_EQ(new_lod_tensor.NumElements(0UL), lod_tensor->NumElements(level));
ASSERT_EQ(new_lod_tensor.tensor(), lod_tensor->tensor());
}
// slice 2 level
for (size_t level = 0; level < 2UL; ++level) {
auto new_lod_tensor = lod_tensor->SliceShared(level, level + 2);
ASSERT_EQ(new_lod_tensor.NumLevels(), 2UL);
ASSERT_EQ(new_lod_tensor.NumElements(0), lod_tensor->NumElements(level));
ASSERT_EQ(new_lod_tensor.NumElements(1),
lod_tensor->NumElements(level + 1));
ASSERT_EQ(new_lod_tensor.tensor(), lod_tensor->tensor());
}
}
TEST_F(LODTensorTester, SliceCopied_Level) {
// slice 1 level // slice 1 level
for (size_t level = 0; level < 3UL; ++level) { for (size_t level = 0; level < 3UL; ++level) {
auto new_lod_tensor = auto new_lod_tensor = lod_tensor->SliceLevels<float>(level, level + 1);
lod_tensor->SliceCopied<float>(level, level + 1, place);
ASSERT_EQ(new_lod_tensor.NumLevels(), 1UL); ASSERT_EQ(new_lod_tensor.NumLevels(), 1UL);
ASSERT_EQ(new_lod_tensor.NumElements(0UL), lod_tensor->NumElements(level)); ASSERT_EQ(new_lod_tensor.NumElements(0UL), lod_tensor->NumElements(level));
// ASSERT_EQ(new_lod_tensor.tensor(), lod_tensor->tensor()); // ASSERT_EQ(new_lod_tensor, *lod_tensor);
// TODO(superjom) add tensor comparation here.
} }
// slice 2 level // slice 2 level
for (size_t level = 0; level < 2UL; ++level) { for (size_t level = 0; level < 2UL; ++level) {
auto new_lod_tensor = auto new_lod_tensor = lod_tensor->SliceLevels<float>(level, level + 2);
lod_tensor->SliceCopied<float>(level, level + 2, place);
ASSERT_EQ(new_lod_tensor.NumLevels(), 2UL); ASSERT_EQ(new_lod_tensor.NumLevels(), 2UL);
ASSERT_EQ(new_lod_tensor.NumElements(0), lod_tensor->NumElements(level)); ASSERT_EQ(new_lod_tensor.NumElements(0), lod_tensor->NumElements(level));
ASSERT_EQ(new_lod_tensor.NumElements(1), ASSERT_EQ(new_lod_tensor.NumElements(1),
lod_tensor->NumElements(level + 1)); lod_tensor->NumElements(level + 1));
// ASSERT_EQ(new_lod_tensor.tensor(), lod_tensor->tensor()); ASSERT_EQ(new_lod_tensor.data<float>(), lod_tensor->data<float>());
// TODO(superjom) add tensor comparation here.
} }
} }
TEST_F(LODTensorTester, SliceShared_Element) { TEST_F(LODTensorTester, SliceInLevel) {
size_t level = 0;
auto new_lod_tensor = lod_tensor->SliceShared(level, 0, 2);
ASSERT_EQ(new_lod_tensor.NumLevels(), 3UL);
ASSERT_EQ(new_lod_tensor.NumElements(0), 2UL);
ASSERT_EQ(new_lod_tensor.NumElements(1), 4UL);
ASSERT_EQ(new_lod_tensor.NumElements(2), 8UL);
ASSERT_EQ(new_lod_tensor.raw_tensor(), lod_tensor->raw_tensor());
level = 1;
new_lod_tensor = lod_tensor->SliceShared(level, 0, 2);
ASSERT_EQ(new_lod_tensor.NumLevels(), 2UL);
ASSERT_EQ(new_lod_tensor.NumElements(0), 2UL);
ASSERT_EQ(new_lod_tensor.NumElements(1), 4UL);
ASSERT_EQ(new_lod_tensor.raw_tensor(), lod_tensor->raw_tensor());
}
TEST_F(LODTensorTester, SliceCopied_Element) {
size_t level = 0; size_t level = 0;
auto new_lod_tensor = lod_tensor->SliceCopied<float>(level, 0, 2, place); auto new_lod_tensor = lod_tensor->SliceInLevel<float>(level, 0, 2);
ASSERT_EQ(new_lod_tensor.NumLevels(), 3UL); EXPECT_EQ(new_lod_tensor.NumLevels(), 3UL);
ASSERT_EQ(new_lod_tensor.NumElements(0), 2UL); EXPECT_EQ(new_lod_tensor.NumElements(0), 2UL);
ASSERT_EQ(new_lod_tensor.NumElements(1), 4UL); EXPECT_EQ(new_lod_tensor.NumElements(1), 4UL);
ASSERT_EQ(new_lod_tensor.NumElements(2), 8UL); EXPECT_EQ(new_lod_tensor.NumElements(2), 8UL);
ASSERT_NE(new_lod_tensor.raw_tensor(), lod_tensor->raw_tensor()); ASSERT_EQ(new_lod_tensor.data<float>(), lod_tensor->data<float>());
level = 1; level = 1;
new_lod_tensor = lod_tensor->SliceCopied<float>(level, 0, 2, place); new_lod_tensor = lod_tensor->SliceInLevel<float>(level, 0, 2);
ASSERT_EQ(new_lod_tensor.NumLevels(), 2UL); ASSERT_EQ(new_lod_tensor.NumLevels(), 2UL);
ASSERT_EQ(new_lod_tensor.NumElements(0), 2UL); ASSERT_EQ(new_lod_tensor.NumElements(0), 2UL);
ASSERT_EQ(new_lod_tensor.NumElements(1), 4UL); ASSERT_EQ(new_lod_tensor.NumElements(1), 4UL);
ASSERT_NE(new_lod_tensor.raw_tensor(), lod_tensor->raw_tensor()); ASSERT_EQ(new_lod_tensor.data<float>(), lod_tensor->data<float>());
level = 1;
// LOD is
// 0 5 10
// 0 2 5 7 10
new_lod_tensor = lod_tensor->SliceCopied<float>(level, 1, 3, place);
ASSERT_EQ(new_lod_tensor.NumLevels(), 2UL);
ASSERT_EQ(new_lod_tensor.NumElements(0), 2UL);
ASSERT_EQ(new_lod_tensor.NumElements(1), 4UL);
ASSERT_EQ(new_lod_tensor.lod_element(0, 0), 0UL);
ASSERT_EQ(new_lod_tensor.lod_element(0, 1), 5UL);
ASSERT_EQ(new_lod_tensor.lod_element(1, 0), 0UL);
ASSERT_EQ(new_lod_tensor.lod_element(1, 1), 2UL);
ASSERT_EQ(new_lod_tensor.lod_element(1, 2), 5UL);
ASSERT_EQ(new_lod_tensor.lod_element(1, 3), 7UL);
// TODO(superjom) compare the content of these tensors
} }
TEST_F(LODTensorTester, ShareLOD) { TEST_F(LODTensorTester, ShareLOD) {
LODTensor new_lod_tensor; LODTensor new_lod_tensor;
new_lod_tensor.ShareLOD(*lod_tensor); new_lod_tensor.CopyLOD(*lod_tensor);
ASSERT_EQ(new_lod_tensor.lod(), lod_tensor->lod()); ASSERT_EQ(new_lod_tensor.lod(), lod_tensor->lod());
} }
TEST_F(LODTensorTester, CopyLOD) { TEST_F(LODTensorTester, CopyLOD) {
LODTensor new_lod_tensor; LODTensor new_lod_tensor;
new_lod_tensor.CopyLOD(*lod_tensor); new_lod_tensor.CopyLOD(*lod_tensor);
ASSERT_NE(new_lod_tensor.lod(), lod_tensor->lod()); bool equals = std::equal(lod_tensor->lod().begin(), lod_tensor->lod().end(),
new_lod_tensor.lod().begin());
ASSERT_TRUE(equals);
} }
} // namespace framework } // namespace framework
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
// Protocol Message for 3rd-party language binding.
//
// Paddle Python package will use `OpProto` to generate op creation methods.
// The op creation methods take user's input and generate `OpDesc` proto
// message,
// then pass `OpDesc` to C++ side and create Op pointer.
//
syntax = "proto2";
package paddle.framework;
import "attribute.proto";
// Attribute protocol message for 3rd-party language binding.
// It will store the Op support what attribute and what type.
message AttrProto {
// Supported attribute name. e.g. `scale` for cosine op.
required string name = 1;
// Supported attribute type.
required AttrType type = 2;
// Supported attribute comments. It helps 3rd-party language generate
// doc-string.
required string comment = 3;
// If that attribute is generated, it means the Paddle third language
// binding has responsibility to fill that attribute. End-User should
// not set that attribute.
optional bool generated = 4 [ default = false ];
}
// Input or output message for 3rd-party language binding.
// It contains parameter name and its comments.
message VarProto {
// Input or output name in that op creation function.
// e.g. `cos(a, b, output, ...)`, "a", "b", "output" are names.
required string name = 1;
// The comment for that input. It helps 3rd-party language generate
// doc-string.
required string comment = 2;
// Is that input/output could be a list or not.
// If so, that Op should write a attributed named `input_format` or
// `output_format`.
//
// e.g.
// If the op is a fc op, the inputs are `X`, `W`, `b`. The `X` and `W`
// could be multiple, so the multiple of `X` and `W` is True, and OpDesc
// will hold a attribute of them.
//
// The Op desc of same fc could be
// {
// "type": "fc",
// "input": ["X1", "X2", "W1", "W2", "b"],
// "output": "fc.out",
// "attrs" : {
// "input_format": [0, 2, 4, 5]
// }
// }
//
optional bool multiple = 3 [ default = false ];
// It marks that output is a temporary output. That output is not used by
// user, but used by other op internally as input. If other op is not use
// that output, it could be optimized early.
//
// Attribute temporary_index will be set in OpDesc if there is some
// outputs are temporary.
//
// output = [ "xxx.out1", "xxx.tmp", "xxx.out2"],
// attrs = {
// "temporary_index": [1]
// }
optional bool temporary = 4 [ default = false ];
// The gradient of operator can be ignored immediately
// e.g. operator AddOp, y = x1 + x2, the gradient of dy/dx1, dy/dx2
// can be ignored for the future optimized on graph.
optional bool ignore_gradient = 6;
}
// Op protocol message for 3rd-party language binding.
// It contains all information for generating op creation method.
message OpProto {
// The input information to generate op creation method.
repeated VarProto inputs = 1;
// The output information to generate op creation method.
repeated VarProto outputs = 2;
// The attribute information to generate op creation method.
repeated AttrProto attrs = 3;
// The comments for that Op. It helps 3rd-party language generate
// doc-string. The whole documentation of that Op is generated by comment,
// inputs, outputs, attrs together.
required string comment = 4;
// The type of that Op.
required string type = 5;
}
#include <gtest/gtest.h>
#include <paddle/framework/op_proto.pb.h>
TEST(TestOpProto, ALL) {
paddle::framework::OpProto proto;
{
auto ipt = proto.mutable_inputs()->Add();
*ipt->mutable_name() = "a";
*ipt->mutable_comment() = "the one input of cosine op";
}
{
auto ipt = proto.mutable_inputs()->Add();
*ipt->mutable_name() = "b";
*ipt->mutable_comment() = "the other input of cosine op";
}
{
auto opt = proto.mutable_outputs()->Add();
*opt->mutable_name() = "output";
*opt->mutable_comment() = "the output of cosine op";
}
{
auto attr = proto.mutable_attrs()->Add();
*attr->mutable_name() = "scale";
attr->set_type(paddle::framework::AttrType::FLOAT);
*attr->mutable_comment() = "the scale attribute of cosine op";
}
proto.set_type("cos");
*proto.mutable_comment() = "cosine op, output = scale * cos(a, b)";
ASSERT_TRUE(proto.IsInitialized());
}
\ No newline at end of file
...@@ -20,8 +20,9 @@ limitations under the License. */ ...@@ -20,8 +20,9 @@ limitations under the License. */
#include <unordered_map> #include <unordered_map>
#include <unordered_set> #include <unordered_set>
#include "paddle/framework/attribute.h" #include "paddle/framework/attribute.h"
#include "paddle/framework/framework.pb.h"
#include "paddle/framework/grad_op_builder.h" #include "paddle/framework/grad_op_builder.h"
#include "paddle/framework/op_desc.pb.h" #include "paddle/framework/operator.h"
#include "paddle/framework/scope.h" #include "paddle/framework/scope.h"
namespace paddle { namespace paddle {
...@@ -44,111 +45,58 @@ class OpProtoAndCheckerMaker { ...@@ -44,111 +45,58 @@ class OpProtoAndCheckerMaker {
protected: protected:
struct VariableBuilder { struct VariableBuilder {
VarProto* var_; OpProto::Var* var_;
std::function<void()> on_multiple_;
std::function<void()> on_temporary_;
VariableBuilder& SetMultiple() { VariableBuilder& AsDuplicable() {
var_->set_multiple(true); var_->set_duplicable(true);
on_multiple_();
return *this; return *this;
} }
VariableBuilder& SetTemporary() { VariableBuilder& AsIntermediate() {
PADDLE_ENFORCE(bool(on_temporary_), "Cannot set temporary"); var_->set_intermediate(true);
var_->set_temporary(true);
on_temporary_();
return *this; return *this;
} }
VariableBuilder& IgnoreGradient() { // TODO(FengJiayi, yuyang18): `AsNoGradient` is a very bad name, because it
var_->set_ignore_gradient(true); // means that input/output is not needed when calculate gradient. It does
// not mean no gradient when backward. It should be changed soon.
VariableBuilder& AsNoGradient() {
var_->set_no_gradient(true);
return *this; return *this;
} }
}; };
VariableBuilder AddInput(const std::string& name, VariableBuilder AddInput(const std::string& name,
const std::string& comment) { const std::string& comment) {
auto input = proto_->mutable_inputs()->Add(); auto* input = proto_->add_inputs();
*input->mutable_name() = name; input->set_name(name);
*input->mutable_comment() = comment; input->set_comment(comment);
return VariableBuilder{input, [=] { this->SetHasMultipleInput(); }, return VariableBuilder{input};
nullptr};
} }
VariableBuilder AddOutput(const std::string& name, VariableBuilder AddOutput(const std::string& name,
const std::string& comment) { const std::string& comment) {
auto output = proto_->mutable_outputs()->Add(); auto* output = proto_->add_outputs();
*output->mutable_name() = name; output->set_name(name);
*output->mutable_comment() = comment; output->set_comment(comment);
return VariableBuilder{output, [=] { this->SetHasMultipleOutput(); }, return VariableBuilder{output};
[=] { this->SetHasTemporaryOutput(); }};
} }
template <typename T> template <typename T>
TypedAttrChecker<T>& AddAttr(const std::string& name, TypedAttrChecker<T>& AddAttr(const std::string& name,
const std::string& comment, const std::string& comment,
bool generated = false) { bool generated = false) {
auto attr = proto_->mutable_attrs()->Add(); auto* attr = proto_->add_attrs();
*attr->mutable_name() = name; attr->set_name(name);
*attr->mutable_comment() = comment; attr->set_comment(comment);
attr->set_generated(generated); attr->set_generated(generated);
attr->set_type(AttrTypeID<T>()); attr->set_type(AttrTypeID<T>());
return op_checker_->AddAttrChecker<T>(name); return op_checker_->AddAttrChecker<T>(name);
} }
void AddComment(const std::string& comment) { void AddComment(const std::string& comment) { proto_->set_comment(comment); }
*(proto_->mutable_comment()) = comment;
}
private: private:
void SetHasMultiple(const std::string& in_out, bool* flag) {
if (!*flag) {
AddAttr<std::vector<int>>(in_out + "_format",
"The multiple index of " + in_out +
"\n"
R"DOC(
This attribute is used by Paddle core framework. Paddle's Op support each input
or output could be a list of variable. This attribute is used to show how that
list organized.
e.g.
input = ["a", "b", "c", "d", "e", "f"]
input_format = [0, 4, 5, 6]
means
The number of all input variables this op is six, and they are segmented into
three inputs.
The first input is input[0:4], second is input[4:5], third is input[5:6].
)DOC",
/*generated*/ true);
*flag = true;
}
}
void SetHasMultipleInput() { SetHasMultiple("input", &has_multiple_input_); }
void SetHasMultipleOutput() {
SetHasMultiple("output", &has_multiple_output_);
}
void SetHasTemporaryOutput() {
if (!has_temporary_output_) {
AddAttr<std::vector<int>>("temporary_index",
R"DOC(The temporary index of output.
Not all output of Paddle Op is used by user. For faster computation, each op
could output some its internal state to other op, other op could take that
output to make compute faster.
Add a mark to which output is temporary is helpful for future optimization.
)DOC",
/*generated*/ true)
.SetDefault(std::vector<int>());
has_temporary_output_ = true;
}
}
void CheckNoDuplicatedInOutAttrs() { void CheckNoDuplicatedInOutAttrs() {
std::unordered_set<std::string> names; std::unordered_set<std::string> names;
auto checker = [&](const std::string& name) { auto checker = [&](const std::string& name) {
...@@ -169,89 +117,74 @@ Add a mark to which output is temporary is helpful for future optimization. ...@@ -169,89 +117,74 @@ Add a mark to which output is temporary is helpful for future optimization.
OpProto* proto_; OpProto* proto_;
OpAttrChecker* op_checker_; OpAttrChecker* op_checker_;
bool validated_{false}; bool validated_{false};
bool has_multiple_input_{false};
bool has_multiple_output_{false};
bool has_temporary_output_{false};
}; };
class OpRegistry { class OpRegistry {
using OpCreator = std::function<OperatorBase*()>; using VarNameMap = OperatorBase::VarNameMap;
using VarIndexMap = std::unordered_map<std::string, int>; using OpCreator = std::function<OperatorBase*(
using VarNameList = std::vector<std::string>; const std::string& /*type*/, const VarNameMap& /*inputs*/,
const VarNameMap& /*outputs*/, const AttributeMap& /*attrs*/)>;
public: public:
template <typename OpType, typename ProtoMakerType> template <typename OpType, typename ProtoMakerType>
static void RegisterOp(const std::string& op_type) { static void RegisterOp(const std::string& op_type) {
op_creators()[op_type] = [] { return new OpType; }; op_creators()[op_type] = [](
const std::string& type, const VarNameMap& inputs,
const VarNameMap& outputs, const AttributeMap& attrs) {
return new OpType(type, inputs, outputs, attrs);
};
OpAttrChecker& op_checker = op_checkers()[op_type]; OpAttrChecker& op_checker = op_checkers()[op_type];
OpProto& op_proto = protos()[op_type]; OpProto& op_proto = OpProtos()[op_type];
auto maker = ProtoMakerType(&op_proto, &op_checker); auto maker = ProtoMakerType(&op_proto, &op_checker);
maker.Validate(); maker.Validate();
*op_proto.mutable_type() = op_type; op_proto.set_type(op_type);
PADDLE_ENFORCE( PADDLE_ENFORCE(
op_proto.IsInitialized(), op_proto.IsInitialized(),
"Fail to initialize %s's OpProto, because %s is not initialized", "Fail to initialize %s's OpProto, because %s is not initialized",
op_type, op_proto.InitializationErrorString()); op_type, op_proto.InitializationErrorString());
VarIndexMaps()[op_type].reset(new VarIndexMap());
auto& varmap = *VarIndexMaps()[op_type];
int idx = 0;
for (auto& var : op_proto.inputs()) {
varmap[var.name()] = idx++;
}
idx = 0;
for (auto& var : op_proto.outputs()) {
varmap[var.name()] = idx++;
}
} }
template <typename GradOpType> template <typename GradOpType>
static void RegisterGradOp(const std::string& op_type, static void RegisterGradOp(const std::string& op_type,
const std::string& grad_op_type) { const std::string& grad_op_type) {
op_creators()[grad_op_type] = [] { return new GradOpType; }; op_creators()[grad_op_type] = [](
const std::string& type, const VarNameMap& inputs,
const VarNameMap& outputs, const AttributeMap& attrs) {
return new GradOpType(type, inputs, outputs, attrs);
};
grad_ops()[op_type] = grad_op_type; grad_ops()[op_type] = grad_op_type;
} }
static std::shared_ptr<OperatorBase> CreateOp(const std::string& type, static std::shared_ptr<OperatorBase> CreateOp(const std::string& type,
const VarNameList& inputs, const VarNameMap& inputs,
const VarNameList& outputs, const VarNameMap& outputs,
const AttributeMap& attrs) { AttributeMap attrs) {
auto op_create_it = op_creators().find(type); auto op_create_it = op_creators().find(type);
PADDLE_ENFORCE(op_create_it != op_creators().end(), PADDLE_ENFORCE(op_create_it != op_creators().end(),
"Operator %s cannot be found.", type); "Operator %s cannot be found.", type);
op_checkers().at(type).Check(attrs);
auto op = op_create_it->second(); auto op = op_create_it->second(type, inputs, outputs, attrs);
op->type_ = type;
op->inputs_ = inputs;
op->outputs_ = outputs;
op->attrs_ = attrs;
op_checkers().at(type).Check(op->attrs_);
GenerateTempVariableName(op);
{ return std::shared_ptr<OperatorBase>(op);
auto var_index_it = VarIndexMaps().find(type);
if (var_index_it != VarIndexMaps().end()) {
op->in_out_idxs_ = var_index_it->second;
}
} }
op->Init(); static VarNameMap ConvertOpDescVarsToVarNameMap(
return std::shared_ptr<OperatorBase>(op); const google::protobuf::RepeatedPtrField<OpDesc::Var>& op_desc_vars) {
VarNameMap ret_val;
for (auto& var : op_desc_vars) {
auto& var_names = ret_val[var.parameter()];
auto& var_names_in_proto = var.arguments();
var_names.reserve(static_cast<size_t>(var_names_in_proto.size()));
std::copy(var_names_in_proto.begin(), var_names_in_proto.end(),
std::back_inserter(var_names));
}
return ret_val;
} }
static std::shared_ptr<OperatorBase> CreateOp(const OpDesc& op_desc) { static std::shared_ptr<OperatorBase> CreateOp(const OpDesc& op_desc) {
std::vector<std::string> inputs; VarNameMap inputs = ConvertOpDescVarsToVarNameMap(op_desc.inputs());
inputs.reserve((size_t)op_desc.inputs_size()); VarNameMap outputs = ConvertOpDescVarsToVarNameMap(op_desc.outputs());
std::copy(op_desc.inputs().begin(), op_desc.inputs().end(),
std::back_inserter(inputs));
std::vector<std::string> outputs;
outputs.reserve((size_t)op_desc.outputs_size());
std::copy(op_desc.outputs().begin(), op_desc.outputs().end(),
std::back_inserter(outputs));
AttributeMap attrs; AttributeMap attrs;
for (auto& attr : op_desc.attrs()) { for (auto& attr : op_desc.attrs()) {
attrs[attr.name()] = GetAttrValue(attr); attrs[attr.name()] = GetAttrValue(attr);
...@@ -264,26 +197,14 @@ class OpRegistry { ...@@ -264,26 +197,14 @@ class OpRegistry {
PADDLE_ENFORCE(!op.IsNetOp(), PADDLE_ENFORCE(!op.IsNetOp(),
"Use framework::Backward to get backward ops"); "Use framework::Backward to get backward ops");
std::shared_ptr<OperatorBase> grad_op(BuildGradOp(&op)); std::shared_ptr<OperatorBase> grad_op(BuildGradOp(&op));
grad_op->Init();
return grad_op; return grad_op;
} }
static std::unordered_map<std::string, OpProto>& protos() {
static std::unordered_map<std::string, OpProto> protos_;
return protos_;
}
static std::unordered_map<std::string, std::string>& grad_ops() { static std::unordered_map<std::string, std::string>& grad_ops() {
static std::unordered_map<std::string, std::string> grad_ops_; static std::unordered_map<std::string, std::string> grad_ops_;
return grad_ops_; return grad_ops_;
} }
static std::unordered_map<std::string, std::shared_ptr<VarIndexMap>>&
VarIndexMaps() {
static std::unordered_map<std::string, std::shared_ptr<VarIndexMap>> maps_;
return maps_;
}
static std::unordered_map<std::string, OpCreator>& op_creators() { static std::unordered_map<std::string, OpCreator>& op_creators() {
static std::unordered_map<std::string, OpCreator> op_creators_; static std::unordered_map<std::string, OpCreator> op_creators_;
return op_creators_; return op_creators_;
...@@ -294,35 +215,47 @@ class OpRegistry { ...@@ -294,35 +215,47 @@ class OpRegistry {
static std::unordered_map<std::string, OpAttrChecker> op_checkers_; static std::unordered_map<std::string, OpAttrChecker> op_checkers_;
return op_checkers_; return op_checkers_;
} }
};
static void GenerateTempVariableName(OperatorBase* op) { class Registrar {
static std::atomic<size_t> gUniqId(0UL); public:
for (auto& outname : op->outputs_) { // In our design, various kinds of classes, e.g., operators and kernels, have
if (outname == kTempVarName) { // their corresponding registry and registrar. The action of registration is
outname += op->type_; // in the constructor of a global registrar variable, which, however, are not
outname += "@"; // used in the code that calls package framework, and would be removed from
outname += std::to_string(gUniqId.fetch_add(1)); // the generated binary file by the linker. To avoid such removal, we add
} // Touch to all registrar classes and make USE_OP macros to call this
} // method. So, as long as the callee code calls USE_OP, the global
} // registrar variable won't be removed by the linker.
void Touch() {}
}; };
template <typename OpType, typename ProtoMakerType> template <typename OpType, typename ProtoMakerType>
class OpRegisterHelper { class OpRegistrar : public Registrar {
public: public:
explicit OpRegisterHelper(const char* op_type) { explicit OpRegistrar(const char* op_type) {
OpRegistry::RegisterOp<OpType, ProtoMakerType>(op_type); OpRegistry::RegisterOp<OpType, ProtoMakerType>(op_type);
} }
}; };
template <typename GradOpType> template <typename GradOpType>
class GradOpRegisterHelper { class GradOpRegistrar : public Registrar {
public: public:
GradOpRegisterHelper(const char* op_type, const char* grad_op_type) { GradOpRegistrar(const char* op_type, const char* grad_op_type) {
OpRegistry::RegisterGradOp<GradOpType>(op_type, grad_op_type); OpRegistry::RegisterGradOp<GradOpType>(op_type, grad_op_type);
} }
}; };
template <typename PlaceType, typename KernelType>
class OpKernelRegistrar : public Registrar {
public:
explicit OpKernelRegistrar(const char* op_type) {
OperatorWithKernel::OpKernelKey key;
key.place_ = PlaceType();
OperatorWithKernel::AllOpKernels()[op_type][key].reset(new KernelType);
}
};
/** /**
* check if MACRO is used in GLOBAL NAMESPACE. * check if MACRO is used in GLOBAL NAMESPACE.
*/ */
...@@ -333,97 +266,121 @@ class GradOpRegisterHelper { ...@@ -333,97 +266,121 @@ class GradOpRegisterHelper {
msg) msg)
/** /**
* Macro to Register Operator. * Macro to register Operator.
*/ */
#define REGISTER_OP(__op_type, __op_class, __op_maker_class) \ #define REGISTER_OP(op_type, op_class, op_maker_class) \
STATIC_ASSERT_GLOBAL_NAMESPACE(__reg_op__##__op_type, \ STATIC_ASSERT_GLOBAL_NAMESPACE( \
"REGISTER_OP must be in global namespace"); \ __reg_op__##op_type, "REGISTER_OP must be called in global namespace"); \
static ::paddle::framework::OpRegisterHelper<__op_class, __op_maker_class> \ static ::paddle::framework::OpRegistrar<op_class, op_maker_class> \
__op_register_##__op_type##__(#__op_type); \ __op_registrar_##op_type##__(#op_type); \
int __op_register_##__op_type##_handle__() { return 0; } int TouchOpRegistrar_##op_type() { \
__op_registrar_##op_type##__.Touch(); \
return 0; \
}
/** /**
* Macro to Register Gradient Operator. * Macro to register Gradient Operator.
*/ */
#define REGISTER_GRADIENT_OP(__op_type, __grad_op_type, __grad_op_class) \ #define REGISTER_GRADIENT_OP(op_type, grad_op_type, grad_op_class) \
STATIC_ASSERT_GLOBAL_NAMESPACE( \ STATIC_ASSERT_GLOBAL_NAMESPACE( \
__reg_gradient_op__##__op_type##__grad_op_type, \ __reg_gradient_op__##op_type##_##grad_op_type, \
"REGISTER_GRADIENT_OP must be in global namespace"); \ "REGISTER_GRADIENT_OP must be called in global namespace"); \
static ::paddle::framework::GradOpRegisterHelper<__grad_op_class> \ static ::paddle::framework::GradOpRegistrar<grad_op_class> \
__op_gradient_register_##__op_type##__grad_op_type##__(#__op_type, \ __op_gradient_registrar_##op_type##_##grad_op_type##__(#op_type, \
#__grad_op_type); \ #grad_op_type); \
int __op_gradient_register_##__op_type##__grad_op_type##_handle__() { \ int TouchOpGradientRegistrar_##op_type() { \
__op_gradient_registrar_##op_type##_##grad_op_type##__.Touch(); \
return 0; \ return 0; \
} }
/** /**
* Macro to Forbid user register Gradient Operator. * Macro to register OperatorKernel.
*/ */
#define NO_GRADIENT(__op_type) \ #define REGISTER_OP_KERNEL(op_type, DEVICE_TYPE, place_class, ...) \
STATIC_ASSERT_GLOBAL_NAMESPACE( \ STATIC_ASSERT_GLOBAL_NAMESPACE( \
__reg_gradient_op__##__op_type##__op_type##_grad, \ __reg_op_kernel_##op_type##_##DEVICE_TYPE##__, \
"NO_GRADIENT must be in global namespace") "REGISTER_OP_KERNEL must be called in global namespace"); \
static ::paddle::framework::OpKernelRegistrar<place_class, __VA_ARGS__> \
__op_kernel_registrar_##op_type##_##DEVICE_TYPE##__(#op_type); \
int TouchOpKernelRegistrar_##op_type##_##DEVICE_TYPE() { \
__op_kernel_registrar_##op_type##_##DEVICE_TYPE##__.Touch(); \
return 0; \
}
/** /**
* Macro to Register OperatorKernel. * Macro to Forbid user register Gradient Operator.
*/ */
#define REGISTER_OP_KERNEL(type, DEVICE_TYPE, PlaceType, ...) \ #define NO_GRADIENT(op_type) \
STATIC_ASSERT_GLOBAL_NAMESPACE( \ STATIC_ASSERT_GLOBAL_NAMESPACE( \
__reg_op_kernel_##type##_##DEVICE_TYPE##__, \ __reg_gradient_op__##op_type##_##op_type##_grad, \
"REGISTER_OP_KERNEL must be in global namespace"); \ "NO_GRADIENT must be called in global namespace")
struct __op_kernel_register__##type##__##DEVICE_TYPE##__ { \
__op_kernel_register__##type##__##DEVICE_TYPE##__() { \ #define REGISTER_OP_GPU_KERNEL(op_type, ...) \
::paddle::framework::OperatorWithKernel::OpKernelKey key; \ REGISTER_OP_KERNEL(op_type, GPU, ::paddle::platform::GPUPlace, __VA_ARGS__)
key.place_ = PlaceType(); \
::paddle::framework::OperatorWithKernel::AllOpKernels()[#type][key] \ #define REGISTER_OP_CPU_KERNEL(op_type, ...) \
.reset(new __VA_ARGS__()); \ REGISTER_OP_KERNEL(op_type, CPU, ::paddle::platform::CPUPlace, __VA_ARGS__)
} \
}; \
static __op_kernel_register__##type##__##DEVICE_TYPE##__ \
__reg_kernel_##type##__##DEVICE_TYPE##__; \
int __op_kernel_register_##type##_handle_##DEVICE_TYPE##__() { return 0; }
// (type, KernelType)
#define REGISTER_OP_GPU_KERNEL(type, ...) \
REGISTER_OP_KERNEL(type, GPU, ::paddle::platform::GPUPlace, __VA_ARGS__)
// (type, KernelType)
#define REGISTER_OP_CPU_KERNEL(type, ...) \
REGISTER_OP_KERNEL(type, CPU, ::paddle::platform::CPUPlace, __VA_ARGS__)
/** /**
* Macro to mark what Operator and Kernel we will use and tell the compiler to * Macro to mark what Operator and Kernel we will use and tell the compiler to
* link them into target. * link them into target.
*/ */
#define USE_OP_WITHOUT_KERNEL(op_type) \ #define USE_OP_ITSELF(op_type) \
STATIC_ASSERT_GLOBAL_NAMESPACE( \
__use_op_itself_##op_type, \
"USE_OP_ITSELF must be called in global namespace"); \
extern int TouchOpRegistrar_##op_type(); \
static int use_op_itself_##op_type##_ __attribute__((unused)) = \
TouchOpRegistrar_##op_type()
// TODO(fengjiayi): Most ops' gradient op have not been compeleted. So we use
// `NO_GRAD` to disable micro USE_OP_GRADIENT(op_type). Otherwise the code can't
// be compiled. `NO_GRAD` should be removed after all gradient ops are
// compeleted.
#define NO_GRAD
#ifndef NO_GRAD
#define USE_OP_GRADIENT(op_type) \
STATIC_ASSERT_GLOBAL_NAMESPACE( \ STATIC_ASSERT_GLOBAL_NAMESPACE( \
__use_op_without_kernel_##op_type, \ __use_op_gradient_##op_type, \
"USE_OP_WITHOUT_KERNEL must be in global namespace"); \ "USE_OP_GRADIENT must be called in global namespace"); \
extern int __op_register_##op_type##_handle__(); \ extern int TouchOpGradientRegistrar_##op_type(); \
static int __use_op_ptr_##op_type##_without_kernel__ \ static int use_op_gradient_##op_type##_ __attribute__((unused)) = \
__attribute__((unused)) = __op_register_##op_type##_handle__() TouchOpGradientRegistrar_##op_type()
#else
#define USE_OP_GRADIENT(op_type)
#endif
#define USE_OP_KERNEL(op_type, DEVICE_TYPE) \ #define USE_OP_DEVICE_KERNEL(op_type, DEVICE_TYPE) \
STATIC_ASSERT_GLOBAL_NAMESPACE( \ STATIC_ASSERT_GLOBAL_NAMESPACE( \
__use_op_kernel_##op_type##_##DEVICE_TYPE##__, \ __use_op_kernel_##op_type##_##DEVICE_TYPE##__, \
"USE_OP_KERNEL must be in global namespace"); \ "USE_OP_DEVICE_KERNEL must be in global namespace"); \
extern int __op_kernel_register_##op_type##_handle_##DEVICE_TYPE##__(); \ extern int TouchOpKernelRegistrar_##op_type##_##DEVICE_TYPE(); \
static int __use_op_ptr_##op_type##_##DEVICE_TYPE##_kernel__ \ static int use_op_kernel_##op_type##_##DEVICE_TYPE##_ \
__attribute__((unused)) = \ __attribute__((unused)) = \
__op_kernel_register_##op_type##_handle_##DEVICE_TYPE##__() TouchOpKernelRegistrar_##op_type##_##DEVICE_TYPE()
// use Operator with only cpu kernel. // TODO(fengjiayi): The following macros seems ugly, do we have better method?
#define USE_OP_CPU(op_type) \
USE_OP_WITHOUT_KERNEL(op_type); \
USE_OP_KERNEL(op_type, CPU)
#ifdef PADDLE_ONLY_CPU #ifdef PADDLE_ONLY_CPU
#define USE_OP(op_type) USE_OP_CPU(op_type) #define USE_OP_KERNEL(op_type) USE_OP_DEVICE_KERNEL(op_type, CPU)
#else #else
#define USE_OP(op_type) \ #define USE_OP_KERNEL(op_type) \
USE_OP_CPU(op_type); \ USE_OP_DEVICE_KERNEL(op_type, CPU); \
USE_OP_KERNEL(op_type, GPU) USE_OP_DEVICE_KERNEL(op_type, GPU)
#endif #endif
#define USE_NO_GRAD_OP(op_type) \
USE_OP_ITSELF(op_type); \
USE_OP_KERNEL(op_type)
#define USE_CPU_OP(op_type) \
USE_OP_ITSELF(op_type); \
USE_OP_DEVICE_KERNEL(op_type, CPU); \
USE_OP_GRADIENT(op_type)
#define USE_OP(op_type) \
USE_NO_GRAD_OP(op_type); \
USE_OP_GRADIENT(op_type)
} // namespace framework } // namespace framework
} // namespace paddle } // namespace paddle
...@@ -7,6 +7,7 @@ namespace paddle { ...@@ -7,6 +7,7 @@ namespace paddle {
namespace framework { namespace framework {
class CosineOp : public OperatorBase { class CosineOp : public OperatorBase {
public: public:
using OperatorBase::OperatorBase;
void Run(const Scope& scope, void Run(const Scope& scope,
const platform::DeviceContext& dev_ctx) const override {} const platform::DeviceContext& dev_ctx) const override {}
void InferShape(const Scope& scope) const override {} void InferShape(const Scope& scope) const override {}
...@@ -27,6 +28,7 @@ class CosineOpProtoAndCheckerMaker : public OpProtoAndCheckerMaker { ...@@ -27,6 +28,7 @@ class CosineOpProtoAndCheckerMaker : public OpProtoAndCheckerMaker {
class MyTestOp : public OperatorBase { class MyTestOp : public OperatorBase {
public: public:
using OperatorBase::OperatorBase;
void InferShape(const Scope& scope) const override {} void InferShape(const Scope& scope) const override {}
void Run(const Scope& scope, void Run(const Scope& scope,
const platform::DeviceContext& dev_ctx) const override {} const platform::DeviceContext& dev_ctx) const override {}
...@@ -36,8 +38,8 @@ class MyTestOpProtoAndCheckerMaker : public OpProtoAndCheckerMaker { ...@@ -36,8 +38,8 @@ class MyTestOpProtoAndCheckerMaker : public OpProtoAndCheckerMaker {
public: public:
MyTestOpProtoAndCheckerMaker(OpProto* proto, OpAttrChecker* op_checker) MyTestOpProtoAndCheckerMaker(OpProto* proto, OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) { : OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("input", "input of cosine op").SetMultiple(); AddInput("input", "input of cosine op").AsDuplicable();
AddOutput("output", "output of cosine op").SetTemporary(); AddOutput("output", "output of cosine op").AsIntermediate();
auto my_checker = [](int i) { auto my_checker = [](int i) {
PADDLE_ENFORCE(i % 2 == 0, "'test_attr' must be even!"); PADDLE_ENFORCE(i % 2 == 0, "'test_attr' must be even!");
}; };
...@@ -49,6 +51,15 @@ class MyTestOpProtoAndCheckerMaker : public OpProtoAndCheckerMaker { ...@@ -49,6 +51,15 @@ class MyTestOpProtoAndCheckerMaker : public OpProtoAndCheckerMaker {
} // namespace framework } // namespace framework
} // namespace paddle } // namespace paddle
static void BuildVar(const std::string& param_name,
std::initializer_list<const char*> arguments,
paddle::framework::OpDesc::Var* var) {
var->set_parameter(param_name);
for (auto& arg_name : arguments) {
var->add_arguments(arg_name);
}
}
REGISTER_OP(cos_sim, paddle::framework::CosineOp, REGISTER_OP(cos_sim, paddle::framework::CosineOp,
paddle::framework::CosineOpProtoAndCheckerMaker); paddle::framework::CosineOpProtoAndCheckerMaker);
REGISTER_OP(my_test_op, paddle::framework::MyTestOp, REGISTER_OP(my_test_op, paddle::framework::MyTestOp,
...@@ -57,8 +68,8 @@ REGISTER_OP(my_test_op, paddle::framework::MyTestOp, ...@@ -57,8 +68,8 @@ REGISTER_OP(my_test_op, paddle::framework::MyTestOp,
TEST(OpRegistry, CreateOp) { TEST(OpRegistry, CreateOp) {
paddle::framework::OpDesc op_desc; paddle::framework::OpDesc op_desc;
op_desc.set_type("cos_sim"); op_desc.set_type("cos_sim");
op_desc.add_inputs("aa"); BuildVar("input", {"aa"}, op_desc.add_inputs());
op_desc.add_outputs("bb"); BuildVar("output", {"bb"}, op_desc.add_outputs());
float scale = 3.3; float scale = 3.3;
auto attr = op_desc.mutable_attrs()->Add(); auto attr = op_desc.mutable_attrs()->Add();
...@@ -78,8 +89,8 @@ TEST(OpRegistry, CreateOp) { ...@@ -78,8 +89,8 @@ TEST(OpRegistry, CreateOp) {
TEST(OpRegistry, IllegalAttr) { TEST(OpRegistry, IllegalAttr) {
paddle::framework::OpDesc op_desc; paddle::framework::OpDesc op_desc;
op_desc.set_type("cos_sim"); op_desc.set_type("cos_sim");
op_desc.add_inputs("aa"); BuildVar("input", {"aa"}, op_desc.add_inputs());
op_desc.add_outputs("bb"); BuildVar("output", {"bb"}, op_desc.add_outputs());
auto attr = op_desc.mutable_attrs()->Add(); auto attr = op_desc.mutable_attrs()->Add();
attr->set_name("scale"); attr->set_name("scale");
...@@ -103,8 +114,8 @@ TEST(OpRegistry, IllegalAttr) { ...@@ -103,8 +114,8 @@ TEST(OpRegistry, IllegalAttr) {
TEST(OpRegistry, DefaultValue) { TEST(OpRegistry, DefaultValue) {
paddle::framework::OpDesc op_desc; paddle::framework::OpDesc op_desc;
op_desc.set_type("cos_sim"); op_desc.set_type("cos_sim");
op_desc.add_inputs("aa"); BuildVar("input", {"aa"}, op_desc.add_inputs());
op_desc.add_outputs("bb"); BuildVar("output", {"bb"}, op_desc.add_outputs());
ASSERT_TRUE(op_desc.IsInitialized()); ASSERT_TRUE(op_desc.IsInitialized());
...@@ -116,20 +127,11 @@ TEST(OpRegistry, DefaultValue) { ...@@ -116,20 +127,11 @@ TEST(OpRegistry, DefaultValue) {
ASSERT_EQ(op->GetAttr<float>("scale"), 1.0); ASSERT_EQ(op->GetAttr<float>("scale"), 1.0);
} }
static void SetInputFormat(paddle::framework::OpDesc* desc) {
auto attr = desc->add_attrs();
attr->set_name("input_format");
attr->set_type(paddle::framework::INTS);
attr->mutable_ints()->Add(0);
attr->mutable_ints()->Add(1);
}
TEST(OpRegistry, CustomChecker) { TEST(OpRegistry, CustomChecker) {
paddle::framework::OpDesc op_desc; paddle::framework::OpDesc op_desc;
op_desc.set_type("my_test_op"); op_desc.set_type("my_test_op");
op_desc.add_inputs("ii"); BuildVar("input", {"ii"}, op_desc.add_inputs());
op_desc.add_outputs("oo"); BuildVar("output", {"oo"}, op_desc.add_outputs());
SetInputFormat(&op_desc);
// attr 'test_attr' is not set // attr 'test_attr' is not set
bool caught = false; bool caught = false;
...@@ -169,7 +171,6 @@ TEST(OpRegistry, CustomChecker) { ...@@ -169,7 +171,6 @@ TEST(OpRegistry, CustomChecker) {
attr->set_name("test_attr"); attr->set_name("test_attr");
attr->set_type(paddle::framework::AttrType::INT); attr->set_type(paddle::framework::AttrType::INT);
attr->set_i(4); attr->set_i(4);
SetInputFormat(&op_desc);
auto op = paddle::framework::OpRegistry::CreateOp(op_desc); auto op = paddle::framework::OpRegistry::CreateOp(op_desc);
paddle::platform::CPUDeviceContext dev_ctx; paddle::platform::CPUDeviceContext dev_ctx;
paddle::framework::Scope scope; paddle::framework::Scope scope;
......
...@@ -12,9 +12,9 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ...@@ -12,9 +12,9 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include <algorithm>
#include "paddle/framework/operator.h" #include "paddle/framework/operator.h"
#include <algorithm>
#include "paddle/framework/op_registry.h"
namespace paddle { namespace paddle {
namespace framework { namespace framework {
...@@ -33,84 +33,139 @@ ExecutionContext::GetEigenDevice<platform::GPUPlace, Eigen::GpuDevice>() const { ...@@ -33,84 +33,139 @@ ExecutionContext::GetEigenDevice<platform::GPUPlace, Eigen::GpuDevice>() const {
} }
#endif #endif
static std::unordered_map<std::string, OpProto>* g_op_protos = nullptr;
std::unordered_map<std::string, OpProto>& OpProtos() {
if (g_op_protos == nullptr) {
g_op_protos = new std::unordered_map<std::string, OpProto>();
}
return *g_op_protos;
}
const std::string& OperatorBase::Input(const std::string& name) const { const std::string& OperatorBase::Input(const std::string& name) const {
PADDLE_ENFORCE_NOT_NULL(in_out_idxs_, auto& ins = Inputs(name);
"Input Output Indices could not be nullptr"); PADDLE_ENFORCE_EQ(ins.size(), 1UL,
auto it = in_out_idxs_->find(name); "Op %s input %s should contain only one variable", type_,
PADDLE_ENFORCE(it != in_out_idxs_->end(), "no key [%s] in in_out_idxs_",
name); name);
if (attrs_.count("input_format") == 0) { return ins[0];
return inputs_.at((size_t)it->second);
} else {
const auto& input_format = GetAttr<std::vector<int>>("input_format");
int idx = input_format[it->second];
return inputs_.at((size_t)idx);
}
} }
std::vector<std::string> OperatorBase::Inputs(const std::string& name) const { const std::vector<std::string>& OperatorBase::Inputs(
PADDLE_ENFORCE_NOT_NULL(in_out_idxs_, "IO Idx could not be nullptr"); const std::string& name) const {
auto input_format = GetAttr<std::vector<int>>("input_format"); auto it = inputs_.find(name);
auto offset = in_out_idxs_->at(name); PADDLE_ENFORCE(it != inputs_.end(), "Op %s do not have input %s", type_,
PADDLE_ENFORCE(input_format.at(static_cast<size_t>(offset) + 1) <= name);
static_cast<int>(inputs_.size()), return it->second;
"Input Out Of Range");
return std::vector<std::string>{
inputs_.begin() + input_format.at(offset),
inputs_.begin() + input_format.at(offset + 1)};
} }
const std::string& OperatorBase::Output(const std::string& name) const { const std::string& OperatorBase::Output(const std::string& name) const {
PADDLE_ENFORCE_NOT_NULL(in_out_idxs_, "InOut Indice could not be nullptr"); auto& outs = Outputs(name);
auto it = in_out_idxs_->find(name); PADDLE_ENFORCE_EQ(outs.size(), 1UL,
PADDLE_ENFORCE(it != in_out_idxs_->end(), "no key [%s] in in_out_idxs_", "Op %s output %s should contain only one variable", type_,
name); name);
if (attrs_.count("output_format") == 0) { return outs[0];
return outputs_.at((size_t)it->second);
} else {
const auto& output_format = GetAttr<std::vector<int>>("output_format");
int idx = output_format[it->second];
return outputs_.at((size_t)idx);
}
} }
std::vector<std::string> OperatorBase::Outputs(const std::string& name) const { const std::vector<std::string>& OperatorBase::Outputs(
PADDLE_ENFORCE_NOT_NULL(in_out_idxs_, "InOut Indice could not be nullptr"); const std::string& name) const {
auto output_format = GetAttr<std::vector<int>>("output_format"); auto it = outputs_.find(name);
auto offset = in_out_idxs_->at(name); PADDLE_ENFORCE(it != outputs_.end(), "Op %s does not have output %s", type_,
PADDLE_ENFORCE(output_format.at(static_cast<size_t>(offset) + 1) <= name);
static_cast<int>(outputs_.size()), return it->second;
"Output Out of Range");
return std::vector<std::string>{
outputs_.begin() + output_format.at(offset),
outputs_.begin() + output_format.at(offset + 1)};
} }
std::string OperatorBase::DebugString() const { std::string OperatorBase::DebugString() const {
std::stringstream ss; std::stringstream ss;
ss << "Op(" << type_ << "), inputs:("; ss << "Op(" << type_ << "), inputs:{";
for (size_t i = 0; i < inputs_.size(); ++i) { for (auto it = inputs_.begin(); it != inputs_.end();) {
ss << inputs_[i]; auto& input = *it;
if (i != inputs_.size() - 1) { ss << input.first << "[";
for (size_t i = 0; i < input.second.size(); ++i) {
ss << input.second[i];
if (i != input.second.size() - 1) {
ss << ", "; ss << ", ";
} }
} }
ss << "), outputs:("; ss << "]";
for (size_t i = 0; i < outputs_.size(); ++i) { ++it;
ss << outputs_[i]; if (it != inputs_.end()) {
if (i != outputs_.size() - 1) {
ss << ", "; ss << ", ";
} }
} }
ss << ")."; ss << "}, outputs:{";
for (auto it = outputs_.begin(); it != outputs_.end();) {
auto& output = *it;
ss << output.first << "[";
for (size_t i = 0; i < output.second.size(); ++i) {
ss << output.second[i];
if (i != output.second.size() - 1) {
ss << ", ";
}
}
ss << "]";
++it;
if (it != outputs_.end()) {
ss << ", ";
}
}
ss << "}.";
return ss.str(); return ss.str();
} }
void OperatorBase::Rename(const std::string& old_name, void OperatorBase::Rename(const std::string& old_name,
const std::string& new_name) { const std::string& new_name) {
std::replace(inputs_.begin(), inputs_.end(), old_name, new_name); for (auto& input : inputs_) {
std::replace(outputs_.begin(), outputs_.end(), old_name, new_name); std::replace(input.second.begin(), input.second.end(), old_name, new_name);
}
for (auto& output : outputs_) {
std::replace(output.second.begin(), output.second.end(), old_name,
new_name);
}
}
OperatorBase::OperatorBase(const std::string& type,
const OperatorBase::VarNameMap& inputs,
const OperatorBase::VarNameMap& outputs,
const AttributeMap& attrs)
: type_(type), inputs_(inputs), outputs_(outputs), attrs_(attrs) {
static std::atomic<size_t> gUniqId(0UL);
for (auto& output : outputs_) {
for (auto& output_name : output.second) {
if (output_name == kTempVarName) {
output_name += type_;
output_name += "@";
output_name += std::to_string(gUniqId.fetch_add(1));
}
}
}
}
std::vector<std::string> OperatorBase::OutputVars(bool has_intermediate) const {
std::vector<std::string> ret_val;
if (has_intermediate) {
// push all outputs into ret_val
for (auto& o : outputs_) {
ret_val.reserve(ret_val.size() + o.second.size());
ret_val.insert(ret_val.end(), o.second.begin(), o.second.end());
}
return ret_val;
}
auto it = OpProtos().find(type_);
PADDLE_ENFORCE(
it != OpProtos().end(),
"Operator %s not registered, cannot figure out intermediate outputs",
type_);
// get all OpProto::Var for outputs
for (auto& o : it->second.outputs()) {
// ignore all intermediate output
if (o.intermediate()) continue;
auto out = outputs_.find(o.name());
if (out != outputs_.end()) {
ret_val.reserve(ret_val.size() + out->second.size());
ret_val.insert(ret_val.end(), out->second.begin(), out->second.end());
}
}
return ret_val;
} }
} // namespace framework } // namespace framework
......
...@@ -15,18 +15,17 @@ limitations under the License. */ ...@@ -15,18 +15,17 @@ limitations under the License. */
#pragma once #pragma once
#include <algorithm> #include <algorithm>
#include <boost/variant.hpp>
#include <string> #include <string>
#include <unordered_map> #include <unordered_map>
#include <vector> #include <vector>
#include "paddle/framework/attribute.h" #include "paddle/framework/attribute.h"
#include "paddle/framework/op_desc.pb.h" #include "paddle/framework/framework.pb.h"
#include "paddle/framework/op_proto.pb.h"
#include "paddle/framework/scope.h" #include "paddle/framework/scope.h"
#include "paddle/framework/tensor.h" #include "paddle/framework/tensor.h"
#include "paddle/platform/device_context.h" #include "paddle/platform/device_context.h"
#include "paddle/platform/place.h" #include "paddle/platform/place.h"
#include "paddle/platform/variant.h"
#include "paddle/utils/Error.h" #include "paddle/utils/Error.h"
namespace paddle { namespace paddle {
...@@ -51,6 +50,8 @@ inline std::string GradVarName(const std::string& var_name) { ...@@ -51,6 +50,8 @@ inline std::string GradVarName(const std::string& var_name) {
return var_name + kGradVarSuffix; return var_name + kGradVarSuffix;
} }
extern std::unordered_map<std::string, OpProto>& OpProtos();
class OperatorBase; class OperatorBase;
class InferShapeContext; class InferShapeContext;
class ExecutionContext; class ExecutionContext;
...@@ -63,6 +64,15 @@ class ExecutionContext; ...@@ -63,6 +64,15 @@ class ExecutionContext;
*/ */
class OperatorBase { class OperatorBase {
public: public:
using VarNameMap = std::map<std::string, std::vector<std::string>>;
OperatorBase(const std::string& type, const VarNameMap& inputs,
const VarNameMap& outputs, const AttributeMap& attrs);
OperatorBase(const OperatorBase& o) = delete;
OperatorBase& operator=(const OperatorBase& o) = delete;
OperatorBase(OperatorBase&& o) = delete;
virtual ~OperatorBase() {} virtual ~OperatorBase() {}
template <typename T> template <typename T>
...@@ -74,10 +84,6 @@ class OperatorBase { ...@@ -74,10 +84,6 @@ class OperatorBase {
virtual std::string DebugString() const; virtual std::string DebugString() const;
/// Init will be called after CreateOperator, you can put some initialization
/// logic here.
virtual void Init() {}
/// InferShape infer the size of Variables used by this Operator with /// InferShape infer the size of Variables used by this Operator with
/// information inside scope /// information inside scope
virtual void InferShape(const Scope& scope) const = 0; virtual void InferShape(const Scope& scope) const = 0;
...@@ -95,15 +101,19 @@ class OperatorBase { ...@@ -95,15 +101,19 @@ class OperatorBase {
//! Get a input with argument's name described in `op_proto` //! Get a input with argument's name described in `op_proto`
const std::string& Input(const std::string& name) const; const std::string& Input(const std::string& name) const;
//! Get a input which has multiple variables. //! Get a input which has multiple variables.
//! TODO add a vector_view to prevent memory copy. const std::vector<std::string>& Inputs(const std::string& name) const;
std::vector<std::string> Inputs(const std::string& name) const;
//! Get a output with argument's name described in `op_proto` //! Get a output with argument's name described in `op_proto`
const std::string& Output(const std::string& name) const; const std::string& Output(const std::string& name) const;
//! Get an output which has multiple variables. //! Get an output which has multiple variables.
//! TODO add a vector_view to prevent memory copy. //! TODO add a vector_view to prevent memory copy.
std::vector<std::string> Outputs(const std::string& name) const; const std::vector<std::string>& Outputs(const std::string& name) const;
virtual std::vector<std::string> OutputVars(bool has_intermediate) const;
std::string Type() const { return type_; }
const AttributeMap& Attrs() const { return attrs_; }
public: public:
std::string type_; std::string type_;
...@@ -111,13 +121,12 @@ class OperatorBase { ...@@ -111,13 +121,12 @@ class OperatorBase {
// I (Inputs) // I (Inputs)
// O (Outputs) // O (Outputs)
// OG (Output Gradients) // OG (Output Gradients)
std::vector<std::string> inputs_; VarNameMap inputs_;
// NOTE: in case of OpGrad, outputs_ contains // NOTE: in case of OpGrad, outputs_ contains
// IG (Inputs Gradients) // IG (Inputs Gradients)
std::vector<std::string> outputs_; VarNameMap outputs_;
AttributeMap attrs_; AttributeMap attrs_;
// store the arguments' offset described in op_desc.
std::shared_ptr<std::unordered_map<std::string, int>> in_out_idxs_;
}; };
class InferShapeContext { class InferShapeContext {
...@@ -125,16 +134,12 @@ class InferShapeContext { ...@@ -125,16 +134,12 @@ class InferShapeContext {
InferShapeContext(const OperatorBase& op, const Scope& scope) InferShapeContext(const OperatorBase& op, const Scope& scope)
: op_(op), scope_(scope) {} : op_(op), scope_(scope) {}
size_t InputSize() const { return op_.inputs_.size(); } size_t InputSize(const std::string& name) const {
return op_.Inputs(name).size();
size_t OutputSize() const { return op_.outputs_.size(); }
const Variable* InputVar(const size_t index) const {
return scope_.FindVar(op_.inputs_.at(index));
} }
Variable* OutputVar(const size_t index) const { size_t OutputSize(const std::string& name) const {
return scope_.FindVar(op_.outputs_.at(index)); return op_.Outputs(name).size();
} }
const Variable* InputVar(const std::string& name) const { const Variable* InputVar(const std::string& name) const {
...@@ -166,27 +171,9 @@ class InferShapeContext { ...@@ -166,27 +171,9 @@ class InferShapeContext {
return res; return res;
} }
template <typename T>
const T* Input(const size_t index) const {
auto var = InputVar(index);
PADDLE_ENFORCE_NOT_NULL(var, "Input(%d) should not be nullptr", index);
return &var->Get<T>();
}
template <typename T>
T* Output(const size_t index) const {
auto var = OutputVar(index);
PADDLE_ENFORCE_NOT_NULL(
var,
"Output(%d) not be nullptr, which means variable [%s] does not "
"exist in scope",
index, op_.outputs_[index]);
return var->GetMutable<T>();
}
template <typename T> template <typename T>
const T* Input(const std::string& name) const { const T* Input(const std::string& name) const {
auto var = InputVar(name); auto* var = InputVar(name);
PADDLE_ENFORCE_NOT_NULL(var, "Input(%s) should not be nullptr", name); PADDLE_ENFORCE_NOT_NULL(var, "Input(%s) should not be nullptr", name);
return &var->Get<T>(); return &var->Get<T>();
} }
...@@ -262,6 +249,10 @@ class ExecutionContext : public InferShapeContext { ...@@ -262,6 +249,10 @@ class ExecutionContext : public InferShapeContext {
platform::Place GetPlace() const { return device_context_->GetPlace(); } platform::Place GetPlace() const { return device_context_->GetPlace(); }
const platform::DeviceContext* device_context() const {
return device_context_;
}
const platform::DeviceContext* device_context_; const platform::DeviceContext* device_context_;
}; };
...@@ -304,6 +295,10 @@ class OperatorWithKernel : public OperatorBase { ...@@ -304,6 +295,10 @@ class OperatorWithKernel : public OperatorBase {
using OpKernelMap = using OpKernelMap =
std::unordered_map<OpKernelKey, std::unique_ptr<OpKernel>, OpKernelHash>; std::unordered_map<OpKernelKey, std::unique_ptr<OpKernel>, OpKernelHash>;
OperatorWithKernel(const std::string& type, const VarNameMap& inputs,
const VarNameMap& outputs, const AttributeMap& attrs)
: OperatorBase(type, inputs, outputs, attrs) {}
void InferShape(const Scope& scope) const override { void InferShape(const Scope& scope) const override {
InferShape(InferShapeContext(*this, scope)); InferShape(InferShapeContext(*this, scope));
} }
......
...@@ -23,20 +23,22 @@ static int op_run_num = 0; ...@@ -23,20 +23,22 @@ static int op_run_num = 0;
class OpWithoutKernelTest : public OperatorBase { class OpWithoutKernelTest : public OperatorBase {
public: public:
void Init() override { x = 1; } OpWithoutKernelTest(const std::string& type, const VarNameMap& inputs,
const VarNameMap& outputs, const AttributeMap& attrs)
: OperatorBase(type, inputs, outputs, attrs), x(1) {}
void InferShape(const Scope& scope) const override {} void InferShape(const Scope& scope) const override {}
void Run(const Scope& scope, void Run(const Scope& scope,
const platform::DeviceContext& dev_ctx) const override { const platform::DeviceContext& dev_ctx) const override {
op_run_num++; ++op_run_num;
ASSERT_EQ((int)inputs_.size(), 1); ASSERT_EQ(static_cast<int>(inputs_.size()), 1);
ASSERT_EQ((int)outputs_.size(), 1); ASSERT_EQ(static_cast<int>(outputs_.size()), 1);
ASSERT_EQ(scope.FindVar(inputs_[0]), nullptr); ASSERT_EQ(scope.FindVar(inputs_.at("input")[0]), nullptr);
ASSERT_EQ(x, 1); ASSERT_EQ(x, 1);
ASSERT_NE(scope.FindVar(outputs_[0]), nullptr); ASSERT_NE(scope.FindVar(outputs_.at("output")[0]), nullptr);
} }
public: public:
float x = 0; int x{0};
}; };
class OpeWithoutKernelTestProtoAndCheckerMaker : public OpProtoAndCheckerMaker { class OpeWithoutKernelTestProtoAndCheckerMaker : public OpProtoAndCheckerMaker {
...@@ -54,14 +56,24 @@ class OpeWithoutKernelTestProtoAndCheckerMaker : public OpProtoAndCheckerMaker { ...@@ -54,14 +56,24 @@ class OpeWithoutKernelTestProtoAndCheckerMaker : public OpProtoAndCheckerMaker {
} // namespace framework } // namespace framework
} // namespace paddle } // namespace paddle
static void BuildVar(const std::string& param_name,
std::initializer_list<const char*> arguments,
paddle::framework::OpDesc::Var* var) {
var->set_parameter(param_name);
for (auto& arg_name : arguments) {
*var->mutable_arguments()->Add() = arg_name;
}
}
REGISTER_OP(test_operator, paddle::framework::OpWithoutKernelTest, REGISTER_OP(test_operator, paddle::framework::OpWithoutKernelTest,
paddle::framework::OpeWithoutKernelTestProtoAndCheckerMaker); paddle::framework::OpeWithoutKernelTestProtoAndCheckerMaker);
TEST(OperatorBase, all) { TEST(OperatorBase, all) {
paddle::framework::OpDesc op_desc; paddle::framework::OpDesc op_desc;
op_desc.set_type("test_operator"); op_desc.set_type("test_operator");
*op_desc.mutable_inputs()->Add() = "IN1"; BuildVar("input", {"IN1"}, op_desc.add_inputs());
*op_desc.mutable_outputs()->Add() = "OUT1"; BuildVar("output", {"OUT1"}, op_desc.add_outputs());
auto attr = op_desc.mutable_attrs()->Add(); auto attr = op_desc.mutable_attrs()->Add();
attr->set_name("scale"); attr->set_name("scale");
attr->set_type(paddle::framework::AttrType::FLOAT); attr->set_type(paddle::framework::AttrType::FLOAT);
...@@ -97,6 +109,9 @@ class OpKernelTestProtoAndCheckerMaker : public OpProtoAndCheckerMaker { ...@@ -97,6 +109,9 @@ class OpKernelTestProtoAndCheckerMaker : public OpProtoAndCheckerMaker {
static int cpu_kernel_run_num = 0; static int cpu_kernel_run_num = 0;
class OpWithKernelTest : public OperatorWithKernel { class OpWithKernelTest : public OperatorWithKernel {
public:
using OperatorWithKernel::OperatorWithKernel;
protected: protected:
void InferShape(const framework::InferShapeContext& ctx) const override {} void InferShape(const framework::InferShapeContext& ctx) const override {}
}; };
...@@ -113,33 +128,15 @@ class CPUKernelTest : public OpKernel { ...@@ -113,33 +128,15 @@ class CPUKernelTest : public OpKernel {
} }
}; };
// multiple inputs test
class OperatorMultiInputsTest : public OperatorBase {
public:
void Init() override { x = 1; }
void InferShape(const Scope& scope) const override {}
void Run(const Scope& scope,
const platform::DeviceContext& dev_ctx) const override {
ASSERT_EQ(scope.FindVar(inputs_[0]), nullptr);
ASSERT_EQ(x, 1);
ASSERT_NE(scope.FindVar(outputs_[0]), nullptr);
ASSERT_EQ(Input("x"), "IN1");
ASSERT_EQ(Input("y"), "OUT1");
}
public:
float x = 0;
};
class OpKernelTestMultiInputsProtoAndCheckerMaker class OpKernelTestMultiInputsProtoAndCheckerMaker
: public OpProtoAndCheckerMaker { : public OpProtoAndCheckerMaker {
public: public:
OpKernelTestMultiInputsProtoAndCheckerMaker(OpProto* proto, OpKernelTestMultiInputsProtoAndCheckerMaker(OpProto* proto,
OpAttrChecker* op_checker) OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) { : OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("xs", "inputs of test op").SetMultiple(); AddInput("xs", "inputs of test op").AsDuplicable();
AddInput("k", "input of test op"); AddInput("k", "input of test op");
AddOutput("ys", "outputs of test op").SetMultiple(); AddOutput("ys", "outputs of test op").AsDuplicable();
AddAttr<float>("scale", "scale of cosine op") AddAttr<float>("scale", "scale of cosine op")
.SetDefault(1.0) .SetDefault(1.0)
.LargerThan(0.0); .LargerThan(0.0);
...@@ -196,8 +193,9 @@ REGISTER_OP_CPU_KERNEL(op_with_kernel, ...@@ -196,8 +193,9 @@ REGISTER_OP_CPU_KERNEL(op_with_kernel,
TEST(OpKernel, all) { TEST(OpKernel, all) {
paddle::framework::OpDesc op_desc; paddle::framework::OpDesc op_desc;
op_desc.set_type("op_with_kernel"); op_desc.set_type("op_with_kernel");
*op_desc.mutable_inputs()->Add() = "IN1"; BuildVar("x", {"IN1"}, op_desc.add_inputs());
*op_desc.mutable_outputs()->Add() = "OUT1"; BuildVar("y", {"OUT1"}, op_desc.add_outputs());
auto attr = op_desc.mutable_attrs()->Add(); auto attr = op_desc.mutable_attrs()->Add();
attr->set_name("scale"); attr->set_name("scale");
attr->set_type(paddle::framework::AttrType::FLOAT); attr->set_type(paddle::framework::AttrType::FLOAT);
...@@ -223,32 +221,15 @@ TEST(OpKernel, multi_inputs) { ...@@ -223,32 +221,15 @@ TEST(OpKernel, multi_inputs) {
OpDesc op_desc; OpDesc op_desc;
op_desc.set_type("op_multi_inputs_with_kernel"); op_desc.set_type("op_multi_inputs_with_kernel");
*op_desc.mutable_inputs()->Add() = "x0"; BuildVar("xs", {"x0", "x1", "x2"}, op_desc.add_inputs());
*op_desc.mutable_inputs()->Add() = "x1"; BuildVar("k", {"k0"}, op_desc.add_inputs());
*op_desc.mutable_inputs()->Add() = "x2"; BuildVar("ys", {"y0", "y1"}, op_desc.add_outputs());
*op_desc.mutable_inputs()->Add() = "k0";
*op_desc.mutable_outputs()->Add() = "y0";
*op_desc.mutable_outputs()->Add() = "y1";
auto attr = op_desc.mutable_attrs()->Add(); auto attr = op_desc.mutable_attrs()->Add();
attr->set_name("scale"); attr->set_name("scale");
attr->set_type(paddle::framework::AttrType::FLOAT); attr->set_type(paddle::framework::AttrType::FLOAT);
attr->set_f(3.14); attr->set_f(3.14);
auto attr0 = op_desc.mutable_attrs()->Add();
attr0->set_name("input_format");
attr0->set_type(paddle::framework::AttrType::INTS);
auto input_format = attr0->mutable_ints();
input_format->Add(0); // x0
input_format->Add(3); // k
input_format->Add(4); // end
auto attr1 = op_desc.mutable_attrs()->Add();
attr1->set_name("output_format");
attr1->set_type(paddle::framework::AttrType::INTS);
auto output_format = attr1->mutable_ints();
output_format->Add(0); // y0
output_format->Add(2); // y1
paddle::platform::CPUDeviceContext cpu_device_context; paddle::platform::CPUDeviceContext cpu_device_context;
paddle::framework::Scope scope; paddle::framework::Scope scope;
scope.NewVar("x0")->GetMutable<Tensor>(); scope.NewVar("x0")->GetMutable<Tensor>();
......
...@@ -30,16 +30,15 @@ limitations under the License. */ ...@@ -30,16 +30,15 @@ limitations under the License. */
namespace py = pybind11; namespace py = pybind11;
USE_OP(add_two); USE_OP(add_two);
USE_OP_CPU(onehot_cross_entropy); USE_CPU_OP(onehot_cross_entropy);
USE_OP_WITHOUT_KERNEL(fc); USE_NO_GRAD_OP(sgd);
USE_OP(sgd);
USE_OP(mul); USE_OP(mul);
USE_OP(mean); USE_OP(mean);
USE_OP(sigmoid); USE_OP(sigmoid);
USE_OP(softmax); USE_OP(softmax);
USE_OP(rowwise_add); USE_OP(rowwise_add);
USE_OP(fill_zeros_like); USE_OP(fill_zeros_like);
USE_OP_WITHOUT_KERNEL(recurrent_op); USE_OP_ITSELF(recurrent_op);
USE_OP(gaussian_random); USE_OP(gaussian_random);
USE_OP(uniform_random); USE_OP(uniform_random);
...@@ -57,30 +56,18 @@ void ExposeOperator(ClassType &m) { ...@@ -57,30 +56,18 @@ void ExposeOperator(ClassType &m) {
return op.type_; return op.type_;
}) })
.def("outputs", .def("outputs",
[](const typename ClassType::type &op) -> std::vector<std::string> { [](const typename ClassType::type &op)
-> std::map<std::string, std::vector<std::string>> {
return op.outputs_; return op.outputs_;
}) })
.def("inputs", .def("inputs",
[](const typename ClassType::type &op) -> std::vector<std::string> { [](const typename ClassType::type &op) { return op.inputs_; })
return op.inputs_; .def("__str__", &ClassType::type::DebugString)
.def("no_intermediate_outputs",
[](const typename ClassType::type &op) {
return op.OutputVars(false);
}) })
.def("support_gpu", &ClassType::type::SupportGPU) .def("support_gpu", &ClassType::type::SupportGPU);
.def("temp_outputs",
[](const typename ClassType::type &op) -> std::vector<std::string> {
auto iter = op.attrs_.find("temporary_index");
std::vector<std::string> ret;
if (iter == op.attrs_.end()) {
return ret;
} else {
auto tmp_idx = boost::get<std::vector<int>>(iter->second);
ret.reserve(tmp_idx.size());
for (auto &index : tmp_idx) {
ret.push_back(op.outputs_.at(index));
}
return ret;
}
})
.def("__str__", &ClassType::type::DebugString);
} }
static size_t UniqueIntegerGenerator() { static size_t UniqueIntegerGenerator() {
...@@ -173,7 +160,7 @@ All parameter, weight, gradient are variables in Paddle. ...@@ -173,7 +160,7 @@ All parameter, weight, gradient are variables in Paddle.
//! @note: Be careful! PyBind will return std::string as an unicode, not //! @note: Be careful! PyBind will return std::string as an unicode, not
//! Python str. If you want a str object, you should cast them in Python. //! Python str. If you want a str object, you should cast them in Python.
m.def("get_all_op_protos", []() -> std::vector<py::bytes> { m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
auto &protos = OpRegistry::protos(); auto &protos = OpProtos();
std::vector<py::bytes> ret_values; std::vector<py::bytes> ret_values;
for (auto it = protos.begin(); it != protos.end(); ++it) { for (auto it = protos.begin(); it != protos.end(); ++it) {
PADDLE_ENFORCE(it->second.IsInitialized(), PADDLE_ENFORCE(it->second.IsInitialized(),
......
...@@ -79,11 +79,11 @@ class Tensor { ...@@ -79,11 +79,11 @@ class Tensor {
inline const DDim& dims() const; inline const DDim& dims() const;
/*! Resize the dimensions of the memory block. */ /*! Resize the dimensions of the memory block. */
inline void Resize(const DDim& dims); inline Tensor& Resize(const DDim& dims);
/*! The internal of two tensors share the same memory block. */ /*! The internal of two tensors share the same memory block. */
template <typename T> template <typename T>
inline void ShareDataWith(const Tensor& src); inline Tensor& ShareDataWith(const Tensor& src);
/** /**
* @brief Copy the content of external tensor to a new place. * @brief Copy the content of external tensor to a new place.
...@@ -105,6 +105,8 @@ class Tensor { ...@@ -105,6 +105,8 @@ class Tensor {
template <typename T> template <typename T>
inline Tensor Slice(const int& begin_idx, const int& end_idx) const; inline Tensor Slice(const int& begin_idx, const int& end_idx) const;
platform::Place place() const { return holder_->place(); }
private: private:
template <typename T> template <typename T>
inline void check_memory_size() const; inline void check_memory_size() const;
......
...@@ -23,9 +23,11 @@ template <typename T> ...@@ -23,9 +23,11 @@ template <typename T>
inline void Tensor::check_memory_size() const { inline void Tensor::check_memory_size() const {
PADDLE_ENFORCE_NOT_NULL( PADDLE_ENFORCE_NOT_NULL(
holder_, "Tenosr holds no memory. Call Tensor::mutable_data first."); holder_, "Tenosr holds no memory. Call Tensor::mutable_data first.");
PADDLE_ENFORCE_GE(holder_->size(), product(dims_) * sizeof(T) + offset_, PADDLE_ENFORCE_GE(
holder_->size(), product(dims_) * sizeof(T) + offset_,
"Tensor's dims_ is out of bound. Call Tensor::mutable_data " "Tensor's dims_ is out of bound. Call Tensor::mutable_data "
"first to re-allocate memory."); "first to re-allocate memory.\n"
"or maybe the required data-type mismatches the data already stored.");
} }
template <typename T> template <typename T>
...@@ -78,9 +80,10 @@ inline T* Tensor::mutable_data(platform::Place place) { ...@@ -78,9 +80,10 @@ inline T* Tensor::mutable_data(platform::Place place) {
} }
template <typename T> template <typename T>
inline void Tensor::ShareDataWith(const Tensor& src) { inline Tensor& Tensor::ShareDataWith(const Tensor& src) {
src.check_memory_size<T>(); src.check_memory_size<T>();
*this = src; *this = src;
return *this;
} }
template <typename T> template <typename T>
...@@ -136,7 +139,10 @@ inline Tensor Tensor::Slice(const int& begin_idx, const int& end_idx) const { ...@@ -136,7 +139,10 @@ inline Tensor Tensor::Slice(const int& begin_idx, const int& end_idx) const {
return dst; return dst;
} }
inline void Tensor::Resize(const DDim& dims) { dims_ = dims; } inline Tensor& Tensor::Resize(const DDim& dims) {
dims_ = dims;
return *this;
}
inline const DDim& Tensor::dims() const { return dims_; } inline const DDim& Tensor::dims() const { return dims_; }
......
...@@ -38,10 +38,11 @@ if(WITH_GPU) ...@@ -38,10 +38,11 @@ if(WITH_GPU)
add_simple_unittest(RowConvOpTest) add_simple_unittest(RowConvOpTest)
add_simple_unittest(BlockExpandOpTest) add_simple_unittest(BlockExpandOpTest)
add_simple_unittest(CropOpTest) add_simple_unittest(CropOpTest)
add_simple_unittest(DepthwiseConvOpTest)
endif() endif()
add_simple_unittest(ConvOpTest)
add_simple_unittest(Im2ColTest) add_simple_unittest(Im2ColTest)
add_simple_unittest(GemmConvOpTest)
endif() endif()
add_style_check_target(paddle_function ${h_files}) add_style_check_target(paddle_function ${h_files})
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <gtest/gtest.h>
#include <memory>
#include "Function.h"
#include "FunctionTest.h"
namespace paddle {
enum TestType {
kForwardTest = 0,
kBackwardInputTest = 1,
kBackwardFilterTest = 2,
};
template <DeviceType DType1, DeviceType DType2>
class ConvolutionTest {
public:
ConvolutionTest(const std::string& conv1,
const std::string& conv2,
TestType type,
bool useGroups = true,
std::string algo = "auto") {
for (size_t batchSize : {1, 32}) {
for (size_t inputSize : {7, 14, 54}) {
for (size_t filterSize : {1, 3, 5}) {
for (size_t inputChannels : {3, 64}) {
for (size_t outputChannels : {3, 64}) {
if (inputChannels > outputChannels) break;
size_t groups;
if (!useGroups) {
groups = 1;
} else {
if (outputChannels % inputChannels != 0) continue;
groups = inputChannels;
}
for (size_t stride : {1, 2}) {
for (size_t padding : {0, 1}) {
if (padding >= filterSize) break;
size_t outputSize =
(inputSize - filterSize + 2 * padding + stride) / stride;
VLOG(3) << " batchSize=" << batchSize
<< " inputChannels=" << inputChannels
<< " inputHeight=" << inputSize
<< " inputWidth=" << inputSize
<< " outputChannels=" << outputChannels
<< " filterHeight=" << filterSize
<< " filterWidth=" << filterSize
<< " outputHeight=" << outputSize
<< " outputWidth=" << outputSize
<< " stride=" << stride << " padding=" << padding;
std::vector<size_t> paddings = {padding, padding};
std::vector<size_t> strides = {stride, stride};
Compare2Function<DType1, DType2> test(
conv1,
conv2,
FuncConfig()
.set("paddings", paddings)
.set("strides", strides)
.set("groups", groups)
.set("algo", algo));
TensorShape input{
batchSize, inputChannels, inputSize, inputSize};
TensorShape filter;
if (groups > 1)
filter = TensorShape({groups,
outputChannels / groups,
inputChannels / groups,
filterSize,
filterSize});
else
filter = TensorShape({outputChannels,
inputChannels,
filterSize,
filterSize});
TensorShape output{
batchSize, outputChannels, outputSize, outputSize};
if (type == kForwardTest) {
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, input));
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, filter));
test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, output));
test.run();
} else if (type == kBackwardInputTest) {
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, output));
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, filter));
test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, input), ADD_TO);
test.run();
} else if (type == kBackwardFilterTest) {
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, output));
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, input));
test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, filter),
ADD_TO);
test.run();
}
}
}
}
}
}
}
}
}
};
// Mainly used to test cases where the height and width (input, filter)
// are not equal.
template <DeviceType DType1, DeviceType DType2>
class ConvolutionTest2 {
public:
ConvolutionTest2(const std::string& conv1,
const std::string& conv2,
TestType type,
bool useGroups = true,
std::string algo = "auto") {
for (size_t batchSize : {16}) {
for (size_t inputHeight : {7, 31}) {
for (size_t inputWidth : {10, 54}) {
for (size_t filterHeight : {1, 5}) {
for (size_t filterWidth : {3, 7}) {
for (size_t inputChannels : {7}) {
for (size_t outputChannels : {7}) {
size_t groups;
if (!useGroups) {
groups = 1;
} else {
if (outputChannels % inputChannels != 0) continue;
groups = inputChannels;
}
size_t stride = 1;
size_t padding = 0;
size_t outputHeight =
(inputHeight - filterHeight + 2 * padding + stride) /
stride;
size_t outputWidth =
(inputWidth - filterWidth + 2 * padding + stride) /
stride;
VLOG(3) << " batchSize=" << batchSize
<< " inputChannels=" << inputChannels
<< " inputHeight=" << inputHeight
<< " inputWidth=" << inputWidth
<< " outputChannels=" << outputChannels
<< " filterHeight=" << filterHeight
<< " filterWidth=" << filterWidth
<< " outputHeight=" << outputHeight
<< " outputWidth=" << outputWidth
<< " stride=" << stride << " padding=" << padding;
std::vector<size_t> paddings = {padding, padding};
std::vector<size_t> strides = {stride, stride};
Compare2Function<DType1, DType2> test(
conv1,
conv2,
FuncConfig()
.set("paddings", paddings)
.set("strides", strides)
.set("groups", groups)
.set("algo", algo));
TensorShape input{
batchSize, inputChannels, inputHeight, inputWidth};
TensorShape filter;
if (groups > 1)
filter = TensorShape({groups,
outputChannels / groups,
inputChannels / groups,
filterHeight,
filterWidth});
else
filter = TensorShape({outputChannels,
inputChannels,
filterHeight,
filterWidth});
TensorShape output{
batchSize, outputChannels, outputHeight, outputWidth};
if (type == kForwardTest) {
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, input));
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, filter));
test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, output));
test.run();
} else if (type == kBackwardInputTest) {
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, output));
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, filter));
test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, input), ADD_TO);
test.run();
} else if (type == kBackwardFilterTest) {
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, output));
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, input));
test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, filter),
ADD_TO);
test.run();
}
}
}
}
}
}
}
}
}
};
// ======Start Convolution TEST======
TEST(Forward, GEMM) {
ConvolutionTest<DEVICE_TYPE_CPU, DEVICE_TYPE_CPU> test(
"NaiveConv-CPU", "GemmConv-CPU", kForwardTest, false);
ConvolutionTest2<DEVICE_TYPE_CPU, DEVICE_TYPE_CPU> test2(
"NaiveConv-CPU", "GemmConv-CPU", kForwardTest, false);
}
#ifndef PADDLE_ONLY_CPU
TEST(Forward, GEMM2) {
ConvolutionTest<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU> test(
"GemmConv-CPU", "GemmConv-GPU", kForwardTest, false);
ConvolutionTest2<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU> test2(
"GemmConv-CPU", "GemmConv-GPU", kForwardTest, false);
}
TEST(BackwardInput, GEMM) {
ConvolutionTest<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU> test(
"GemmConvGradInput-CPU",
"GemmConvGradInput-GPU",
kBackwardInputTest,
false);
ConvolutionTest2<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU> test2(
"GemmConvGradInput-CPU",
"GemmConvGradInput-GPU",
kBackwardInputTest,
false);
}
TEST(BackwardFilter, GEMM) {
ConvolutionTest<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU> test(
"GemmConvGradFilter-CPU",
"GemmConvGradFilter-GPU",
kBackwardFilterTest,
false);
ConvolutionTest2<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU> test2(
"GemmConvGradFilter-CPU",
"GemmConvGradFilter-GPU",
kBackwardFilterTest,
false);
}
#endif
// ======End Convolution TEST======
// ======Start DepthwiseConvolution TEST======
// TODO(zhaolong) The depthwise convolution cpu test will be added when the cpu
// version of depthwiseConv is implemented.
#ifndef PADDLE_ONLY_CPU
TEST(DepthwiseConvForward, GEMM2) {
ConvolutionTest<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU> test(
"GemmConv-CPU", "DepthwiseConv-GPU", kForwardTest);
ConvolutionTest2<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU> test2(
"GemmConv-CPU", "DepthwiseConv-GPU", kForwardTest);
}
TEST(DepthwiseConvBackwardInput, GEMM) {
ConvolutionTest<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU> test(
"GemmConvGradInput-CPU",
"DepthwiseConvGradInput-GPU",
kBackwardInputTest);
ConvolutionTest2<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU> test2(
"GemmConvGradInput-CPU",
"DepthwiseConvGradInput-GPU",
kBackwardInputTest);
}
TEST(DepthwiseConvBackwardFilter, GEMM) {
ConvolutionTest<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU> test(
"GemmConvGradFilter-CPU",
"DepthwiseConvGradFilter-GPU",
kBackwardFilterTest);
ConvolutionTest2<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU> test2(
"GemmConvGradFilter-CPU",
"DepthwiseConvGradFilter-GPU",
kBackwardFilterTest);
}
#endif
// ======End DepthwiseConvolution TEST======
} // namespace paddle
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "FunctionTest.h"
namespace paddle {
template <DeviceType DType1, DeviceType DType2>
void forward(Compare2Function<DType1, DType2>& test,
const TensorShape& input,
const TensorShape& filter,
const TensorShape& output) {
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, input));
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, filter));
test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, output));
test.run();
}
template <DeviceType DType1, DeviceType DType2>
void backward_input(Compare2Function<DType1, DType2>& test,
const TensorShape& input,
const TensorShape& filter,
const TensorShape& output) {
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, output));
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, filter));
test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, input), ADD_TO);
test.run();
}
template <DeviceType DType1, DeviceType DType2>
void backward_filter(Compare2Function<DType1, DType2>& test,
const TensorShape& input,
const TensorShape& filter,
const TensorShape& output) {
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, output));
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, input));
test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, filter), ADD_TO);
test.run();
}
template <DeviceType DType1, DeviceType DType2>
using Function = void (*)(Compare2Function<DType1, DType2>& test,
const TensorShape& input,
const TensorShape& filter,
const TensorShape& output);
/**
* \brief A basic convolution function test interface.
*
* \param conv1 type name of convolution function 1.
* \param conv2 type name of convolution function 2.
* \param function test function, can be one of the forward, backward_input
* backward_filter function.
* Example:
* 1. Compare GemmConv's CPU and GPU implementation:
* Convolution<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU>(
* "GemmConv-CPU", "GemmConv-GPU", forward);
*/
template <DeviceType DType1, DeviceType DType2>
void Convolution(const std::string& conv1,
const std::string& conv2,
Function<DType1, DType2> function) {
for (size_t batchSize : {1, 5}) {
for (size_t inputSize : {7, 14, 31}) {
for (size_t filterSize : {1, 3, 5}) {
for (size_t inputChannels : {3, 16}) {
for (size_t outputChannels : {3, 16}) {
if (outputChannels < inputChannels) continue;
for (size_t stride : {1, 2}) {
for (size_t padding : {0, 1}) {
if (padding >= filterSize) break;
// NNPACK only supports stride = 1 if batchSize > 1
if ((conv1 == "NNPACKConv-CPU" || conv2 == "NNPACKConv-CPU") &&
batchSize > 1 && stride > 1)
break;
size_t outputSize =
(inputSize - filterSize + 2 * padding + stride) / stride;
VLOG(3) << " batchSize=" << batchSize
<< " inputChannels=" << inputChannels
<< " inputHeight=" << inputSize
<< " inputWidth=" << inputSize
<< " outputChannels=" << outputChannels
<< " filterHeight=" << filterSize
<< " filterWidth=" << filterSize
<< " outputHeight=" << outputSize
<< " outputWidth=" << outputSize << " stride=" << stride
<< " padding=" << padding;
std::vector<size_t> paddings = {padding, padding};
std::vector<size_t> strides = {stride, stride};
Compare2Function<DType1, DType2> test(
conv1,
conv2,
FuncConfig()
.set("paddings", paddings)
.set("strides", strides)
.set("groups", (size_t)1)
.set("algo", (std::string) "auto"));
TensorShape input{
batchSize, inputChannels, inputSize, inputSize};
TensorShape filter{
outputChannels, inputChannels, filterSize, filterSize};
TensorShape output{
batchSize, outputChannels, outputSize, outputSize};
function(test, input, filter, output);
}
}
}
}
}
}
}
}
/**
* \brief A convolution function test interface for
* image height is not equal image width.
*/
template <DeviceType DType1, DeviceType DType2>
void Convolution2(const std::string& conv1,
const std::string& conv2,
Function<DType1, DType2> function) {
for (size_t batchSize : {4}) {
for (size_t inputHeight : {7, 31}) {
for (size_t inputWidth : {10, 54}) {
for (size_t filterHeight : {1, 5}) {
for (size_t filterWidth : {3, 7}) {
for (size_t inputChannels : {7}) {
for (size_t outputChannels : {7}) {
size_t stride = 1;
size_t padding = 0;
size_t outputHeight =
(inputHeight - filterHeight + 2 * padding + stride) /
stride;
size_t outputWidth =
(inputWidth - filterWidth + 2 * padding + stride) / stride;
VLOG(3) << " batchSize=" << batchSize
<< " inputChannels=" << inputChannels
<< " inputHeight=" << inputHeight
<< " inputWidth=" << inputWidth
<< " outputChannels=" << outputChannels
<< " filterHeight=" << filterHeight
<< " filterWidth=" << filterWidth
<< " outputHeight=" << outputHeight
<< " outputWidth=" << outputWidth
<< " stride=" << stride << " padding=" << padding;
std::vector<size_t> paddings = {padding, padding};
std::vector<size_t> strides = {stride, stride};
Compare2Function<DType1, DType2> test(
conv1,
conv2,
FuncConfig()
.set("paddings", paddings)
.set("strides", strides)
.set("groups", (size_t)1)
.set("algo", (std::string) "auto"));
TensorShape input{
batchSize, inputChannels, inputHeight, inputWidth};
TensorShape filter{
outputChannels, inputChannels, filterHeight, filterWidth};
TensorShape output{
batchSize, outputChannels, outputHeight, outputWidth};
function(test, input, filter, output);
}
}
}
}
}
}
}
}
/**
* \brief A convolution function test interface for depthwise convolution.
*/
template <DeviceType DType1, DeviceType DType2>
void DepthwiseConvolution(const std::string& conv1,
const std::string& conv2,
Function<DType1, DType2> function) {
for (size_t batchSize : {1, 32}) {
for (size_t inputSize : {7, 14, 54}) {
for (size_t filterSize : {3, 4}) {
for (size_t inputChannels : {32}) {
for (size_t outputChannels : {32, 64}) {
for (size_t stride : {1, 2}) {
for (size_t padding : {0, 1}) {
// NNPACK only supports stride = 1 if batchSize > 1,
// and there has some bug when batchSize > 1 and groups != 1
if ((conv1 == "NNPACKConv-CPU" || conv2 == "NNPACKConv-CPU") &&
batchSize > 1)
break;
size_t outputSize =
(inputSize - filterSize + 2 * padding + stride) / stride;
VLOG(3) << " batchSize=" << batchSize
<< " inputChannels=" << inputChannels
<< " inputHeight=" << inputSize
<< " inputWidth=" << inputSize
<< " outputChannels=" << outputChannels
<< " filterHeight=" << filterSize
<< " filterWidth=" << filterSize
<< " outputHeight=" << outputSize
<< " outputWidth=" << outputSize << " stride=" << stride
<< " padding=" << padding;
std::vector<size_t> paddings = {padding, padding};
std::vector<size_t> strides = {stride, stride};
size_t groups = inputChannels;
Compare2Function<DType1, DType2> test(
conv1,
conv2,
FuncConfig()
.set("paddings", paddings)
.set("strides", strides)
.set("groups", groups)
.set("algo", (std::string) "auto"));
TensorShape input{
batchSize, inputChannels, inputSize, inputSize};
TensorShape filter{groups,
outputChannels / groups,
inputChannels / groups,
filterSize,
filterSize};
TensorShape output{
batchSize, outputChannels, outputSize, outputSize};
function(test, input, filter, output);
}
}
}
}
}
}
}
}
} // namespace paddle
...@@ -13,23 +13,25 @@ See the License for the specific language governing permissions and ...@@ -13,23 +13,25 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include <gtest/gtest.h> #include <gtest/gtest.h>
#include <paddle/framework/op_desc.pb.h> #include "ConvOpTest.h"
TEST(OpDesc, Create) { namespace paddle {
paddle::framework::OpDesc op_desc;
op_desc.set_type("add");
op_desc.add_inputs("X");
op_desc.add_inputs("Y");
op_desc.add_outputs("Z");
auto attr = op_desc.mutable_attrs()->Add(); #ifndef PADDLE_ONLY_CPU
attr->set_type(paddle::framework::AttrType::FLOAT); TEST(DepthwiseConv, Forward) {
attr->set_f(3.14); DepthwiseConvolution<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU>(
"GemmConv-CPU", "DepthwiseConv-GPU", forward);
}
// required field name is not set, so IsInitialized should be false. TEST(DepthwiseConv, BackwardInput) {
ASSERT_FALSE(op_desc.IsInitialized()); DepthwiseConvolution<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU>(
"GemmConvGradInput-CPU", "DepthwiseConvGradInput-GPU", backward_input);
}
attr->set_name("add"); TEST(DepthwiseConv, BackwardFilter) {
// after all required fields are set, IsInitialized should be true now. DepthwiseConvolution<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU>(
ASSERT_TRUE(op_desc.IsInitialized()); "GemmConvGradFilter-CPU", "DepthwiseConvGradFilter-GPU", backward_filter);
} }
#endif
} // namespace paddle
...@@ -12,45 +12,39 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ...@@ -12,45 +12,39 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
syntax = "proto2"; #include <gtest/gtest.h>
package paddle.framework; #include "ConvOpTest.h"
import "attribute.proto"; namespace paddle {
// AttrDesc is used to describe Attributes of an Operator. It contain's TEST(GemmConv, NaiveConv) {
// name, type, and value of Attribute. Convolution<DEVICE_TYPE_CPU, DEVICE_TYPE_CPU>(
// "NaiveConv-CPU", "GemmConv-CPU", forward);
// e.g, for scale=3.0: name=scala, type=AttrType.FLOAT, value=3.0 Convolution2<DEVICE_TYPE_CPU, DEVICE_TYPE_CPU>(
message AttrDesc { "NaiveConv-CPU", "GemmConv-CPU", forward);
required string name = 1; }
required AttrType type = 2;
optional int32 i = 3; #ifndef PADDLE_ONLY_CPU
optional float f = 4; TEST(GemmConv, Forward) {
optional string s = 5; Convolution<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU>(
repeated int32 ints = 6; "GemmConv-CPU", "GemmConv-GPU", forward);
repeated float floats = 7; Convolution2<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU>(
repeated string strings = 8; "GemmConv-CPU", "GemmConv-GPU", forward);
}; }
// Protocol Message to describe an Operator. TEST(GemmConv, BackwardInput) {
// Convolution<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU>(
// In PaddlePaddle, Operator is used to do a certain computation such "GemmConvGradInput-CPU", "GemmConvGradInput-GPU", backward_input);
// as "add", "sub", "cosine", etc. Convolution2<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU>(
// (1) Operator needs to know the input and output variable names. "GemmConvGradInput-CPU", "GemmConvGradInput-GPU", backward_input);
// (2) Some ops may have special attributes such as "scale" in "CosineOp". }
//
// 3rd-party language can build this proto message and call TEST(GemmConv, BackwardFilter) {
// AddOp(const OpDesc& op_desc) of Paddle core to create an Operator. Convolution<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU>(
message OpDesc { "GemmConvGradFilter-CPU", "GemmConvGradFilter-GPU", backward_filter);
// input names of this Operator. Convolution2<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU>(
repeated string inputs = 1; "GemmConvGradFilter-CPU", "GemmConvGradFilter-GPU", backward_filter);
}
// output names of this Operator. #endif
repeated string outputs = 2;
} // namespace paddle
// type of this Operator, such as "add", "sub", "fc".
required string type = 3;
// Attributes of this Operator. e.g., scale=3.0 in cosine op.
repeated AttrDesc attrs = 4;
};
\ No newline at end of file
...@@ -196,22 +196,23 @@ public: ...@@ -196,22 +196,23 @@ public:
CHECK_EQ(status, nnp_status_success); CHECK_EQ(status, nnp_status_success);
} }
} else { } else {
for (size_t g = 0; g < groups_; g++) {
// only supports stride = 1 // only supports stride = 1
CHECK_EQ(strideH(), 1); CHECK_EQ(strideH(), 1);
CHECK_EQ(strideW(), 1); CHECK_EQ(strideW(), 1);
nnp_status status =
nnp_convolution_output(algorithm_, // TODO(hedaoyuan): There has some bug when batchSize > 1 and groups_ > 1.
CHECK_EQ(groups_, static_cast<size_t>(1));
nnp_status status = nnp_convolution_output(algorithm_,
batchSize, batchSize,
inputChannels / groups_, inputChannels,
outputChannels / groups_, outputChannels,
inputSize, inputSize,
padding, padding,
kernelSize, kernelSize,
inputData + inputOffset * g, inputData,
filterData + filterOffset * g, filterData,
nullptr, /* bias */ nullptr, /* bias */
outputData + outputOffset * g, outputData,
bufferPtr, bufferPtr,
sizePtr, sizePtr,
nnp_activation_identity, nnp_activation_identity,
...@@ -221,7 +222,6 @@ public: ...@@ -221,7 +222,6 @@ public:
CHECK_EQ(status, nnp_status_success); CHECK_EQ(status, nnp_status_success);
} }
} }
}
static void create_nnpack_threadpool() { static void create_nnpack_threadpool() {
if (FLAGS_nnpack_num_threads && threadpool_ == nullptr) { if (FLAGS_nnpack_num_threads && threadpool_ == nullptr) {
......
...@@ -13,87 +13,18 @@ See the License for the specific language governing permissions and ...@@ -13,87 +13,18 @@ See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include <gtest/gtest.h> #include <gtest/gtest.h>
#include "paddle/function/Function.h" #include "paddle/function/ConvOpTest.h"
#include "paddle/function/FunctionTest.h"
DEFINE_string(algo,
"auto",
"The algorithm (auto, ft8x8, ft16x16, wt8x8, "
"implicit-gemm, or direct) for computing convolution of NNPACK.");
namespace paddle { namespace paddle {
#define IS_NNPACK_SUPPORT(algo, filterSize, stride) \ TEST(NNPACK, Forward) {
if (algo == "direct" && filterSize != 1) continue; \ Convolution<DEVICE_TYPE_CPU, DEVICE_TYPE_CPU>(
if (algo == "direct" && batchSize != 1) continue; \ "GemmConv-CPU", "NNPACKConv-CPU", forward);
if (algo == "wt8x8" && filterSize != 3) continue; \ }
if (algo == "implicit-gemm" && batchSize != 1) continue; \
if (algo != "auto" && algo != "implicit-gemm" && stride > 1) continue;
class ConvolutionTest {
public:
ConvolutionTest(const std::string& conv1,
const std::string& conv2,
std::string algo = "auto") {
for (size_t batchSize : {1, 32}) {
for (size_t inputSize : {7, 14, 54}) {
for (size_t filterSize : {1, 3, 5}) {
for (size_t inputChannels : {3, 64}) {
for (size_t outputChannels : {3, 64, 128}) {
if (inputChannels < outputChannels) break;
for (size_t stride : {1, 2}) {
// if batchSize > 1 NNPACKConv only supports stride = 1
if (batchSize > 1 && stride > 1) break;
for (size_t padding : {0, 1}) {
if (padding >= filterSize) break;
size_t outputSize =
(inputSize - filterSize + 2 * padding + stride) / stride;
IS_NNPACK_SUPPORT(algo, filterSize, stride);
LOG(INFO) << " batchSize=" << batchSize
<< " inputChannels=" << inputChannels
<< " inputHeight=" << inputSize
<< " inputWidth=" << inputSize
<< " outputChannels=" << outputChannels
<< " filterHeight=" << filterSize
<< " filterWidth=" << filterSize
<< " outputHeight=" << outputSize
<< " outputWidth=" << outputSize
<< " stride=" << stride << " padding=" << padding;
std::vector<size_t> paddings = {padding, padding};
std::vector<size_t> strides = {stride, stride};
Compare2Function<DEVICE_TYPE_CPU, DEVICE_TYPE_CPU> test(
conv1,
conv2,
FuncConfig()
.set("paddings", paddings)
.set("strides", strides)
.set("groups", (size_t)1)
.set("algo", algo));
TensorShape shape0{
batchSize, inputChannels, inputSize, inputSize};
TensorShape shape1{
outputChannels, inputChannels, filterSize, filterSize};
TensorShape shape2{
batchSize, outputChannels, outputSize, outputSize};
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, shape0));
test.addInputs(BufferArg(VALUE_TYPE_FLOAT, shape1));
test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, shape2));
test.run();
}
}
}
}
}
}
}
}
};
TEST(Convolution, NNPACK) { TEST(NNPACK, Depthwise) {
// NNPACK only supports stride = 1 DepthwiseConvolution<DEVICE_TYPE_CPU, DEVICE_TYPE_CPU>(
ConvolutionTest test("GemmConv-CPU", "NNPACKConv-CPU", FLAGS_algo); "GemmConv-CPU", "NNPACKConv-CPU", forward);
} }
} // namespace paddle } // namespace paddle
...@@ -23,6 +23,17 @@ endmacro() ...@@ -23,6 +23,17 @@ endmacro()
filter_test(GSERVER_HEADER) filter_test(GSERVER_HEADER)
filter_test(GSERVER_SOURCES) filter_test(GSERVER_SOURCES)
if(NOT WITH_MKLDNN)
file(GLOB_RECURSE DNN_HEADER RELATIVE "${CMAKE_CURRENT_SOURCE_DIR}" "MKLDNN*.h")
file(GLOB_RECURSE DNN_SOURCES RELATIVE "${CMAKE_CURRENT_SOURCE_DIR}" "MKLDNN*.cpp")
list(REMOVE_ITEM GSERVER_HEADER ${DNN_HEADER})
list(REMOVE_ITEM GSERVER_SOURCES ${DNN_SOURCES})
message(STATUS "Skip compiling with MKLDNNLayers and MKLDNNActivations")
else()
message(STATUS "Compile with MKLDNNLayers and MKLDNNActivations")
endif()
if(NOT WITH_GPU) if(NOT WITH_GPU)
list(REMOVE_ITEM GSERVER_HEADER list(REMOVE_ITEM GSERVER_HEADER
layers/CudnnConvBaseLayer.h layers/CudnnConvBaseLayer.h
......
...@@ -112,7 +112,6 @@ BEGIN_DEFINE_ACTIVATION(softmax) ...@@ -112,7 +112,6 @@ BEGIN_DEFINE_ACTIVATION(softmax)
private: private:
MatrixPtr sftMaxSum_; MatrixPtr sftMaxSum_;
MatrixPtr sftMaxDot_; MatrixPtr sftMaxDot_;
MatrixPtr one_;
public: public:
Error __must_check forward(Argument& act) { Error __must_check forward(Argument& act) {
...@@ -138,14 +137,6 @@ Error __must_check backward(Argument& act) { ...@@ -138,14 +137,6 @@ Error __must_check backward(Argument& act) {
1, 1,
/* trans */ false, /* trans */ false,
useGpu(act.deviceId)); useGpu(act.deviceId));
if (!one_ || one_->getWidth() != outputG->getWidth()) {
Matrix::resizeOrCreate(one_,
1,
outputG->getWidth(),
/* trans */ false,
useGpu(act.deviceId));
one_->one();
}
sftMaxDot_->dotMul(*outputG, *outputV); sftMaxDot_->dotMul(*outputG, *outputV);
sftMaxSum_->colMerge(*sftMaxDot_); sftMaxSum_->colMerge(*sftMaxDot_);
......
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "mkldnn.hpp"
namespace paddle {
typedef enum {
MKLDNN_BASE = 1, // basical info of MKLDNN
MKLDNN_TESTS = 1, // gtest info of MKLDNN
MKLDNN_SIZES = 2, // size info of MKLDNN
MKLDNN_FMTS = 3, // format info of MKLDNN
MKLDNN_ALL = 4, // show all info of MKLDNN
} MKLDNN_LOG_LEVEL;
/**
* @brief MKLDNN CPU engine.
*
*/
class CPUEngine {
public:
static CPUEngine& Instance() {
// Thread-safe in C++11.
static CPUEngine myInstance;
return myInstance;
}
// Disallow copy or move
CPUEngine(const CPUEngine&) = delete; // Copy constructor
CPUEngine(CPUEngine&&) = delete; // Move constructor
CPUEngine& operator=(const CPUEngine&) = delete; // Copy assignment
CPUEngine& operator=(CPUEngine&&) = delete; // Move assignment
mkldnn::engine& getEngine() { return cpuEngine_; }
protected:
CPUEngine() : cpuEngine_(mkldnn::engine::cpu, 0) {}
// CPUEngine() : cpuEngine_(mkldnn::engine::cpu_lazy, 0) {}
~CPUEngine() {}
private:
mkldnn::engine cpuEngine_;
};
/**
* @brief MKLDNN Stream.
*
*/
class MKLDNNStream {
public:
MKLDNNStream() : ready_(false) { resetState(); }
virtual ~MKLDNNStream() {}
/**
* @brief Submit stream
* @param prims The primitives vector
* @param block Waiting for the stream to complete
*/
void submit(std::vector<mkldnn::primitive>& prims, bool block = true) {
resetState();
stream_->submit(prims).wait(block);
ready_ = false;
}
/**
* @brief Reset the mkldnn stream
*/
void resetState() {
if (ready_) {
return;
}
// TODO(TJ): change me when mkldnn have method to reset this state
// stream_.reset(new mkldnn::stream(mkldnn::stream::kind::lazy));
stream_.reset(new mkldnn::stream(mkldnn::stream::kind::eager));
ready_ = true;
}
private:
bool ready_;
std::shared_ptr<mkldnn::stream> stream_;
};
} // namespace paddle
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "MKLDNNFcLayer.h"
#include "paddle/utils/Logging.h"
#include "paddle/utils/Stat.h"
using namespace mkldnn; // NOLINT
typedef memory::format format;
typedef inner_product_forward fc_fwd;
typedef inner_product_backward_weights fc_bwdWgt;
typedef inner_product_backward_data fc_bwdData;
namespace paddle {
REGISTER_LAYER(mkldnn_fc, MKLDNNFcLayer);
bool MKLDNNFcLayer::init(const LayerMap& layerMap,
const ParameterMap& parameterMap) {
if (!MKLDNNLayer::init(layerMap, parameterMap)) {
return false;
}
CHECK_EQ(inputLayers_.size(), 1) << "Only support one input layer yet";
CHECK_EQ(inputLayers_.size(), parameters_.size());
CHECK(!parameters_[0]->isSparse()) << "Do not support sparse yet";
// output size, cat not be changed
oc_ = getSize();
oh_ = 1;
ow_ = 1;
// input size can not change in FC
iLayerSize_ = inputLayers_[0]->getSize();
CHECK_EQ(parameters_[0]->getSize(), iLayerSize_ * oc_);
// create weight
weight_ =
std::unique_ptr<Weight>(new Weight(oc_, iLayerSize_, parameters_[0], 0));
// create biases
if (biasParameter_.get() != NULL) {
biases_ = std::unique_ptr<Weight>(new Weight(1, oc_, biasParameter_));
}
return true;
}
void MKLDNNFcLayer::convertWeightsFromPaddle() {
if (FLAGS_use_mkldnn_wgt) {
return;
}
if (hasInitedWgt_) {
return;
}
// The weight_ is transposed from initial paddle weight
MatrixPtr paddleWgt = Matrix::create(
weight_->getW()->getData(), iLayerSize_, oc_, false, false);
// TODO(TJ): remove this print when do not need differ weights
std::ostringstream ostr;
paddleWgt->print(ostr);
VLOG(MKLDNN_ALL) << "Initial Weight from paddle: " << std::endl << ostr.str();
// The mkldnn weight is transposed from initial paddle matrix
MatrixPtr paddleWgtT;
paddleWgt->transpose(paddleWgtT, true);
weight_->getW()->copyFrom(*paddleWgtT);
hasInitedWgt_ = true;
}
void MKLDNNFcLayer::convertWeightsToPaddle() {
MatrixPtr dnnWgt = weight_->getW();
MatrixPtr paddleWgt;
dnnWgt->transpose(paddleWgt, true);
// copy paddle weight and override on weight_
MatrixPtr dnnWgtT = Matrix::create(
dnnWgt->getData(), dnnWgt->getWidth(), dnnWgt->getHeight(), false, false);
dnnWgtT->copyFrom(*paddleWgt);
}
void MKLDNNFcLayer::reshape() {
const Argument& input = getInput(0);
int batchSize = input.getBatchSize();
if (bs_ == batchSize) {
return;
}
bs_ = batchSize;
ih_ = input.getFrameHeight();
iw_ = input.getFrameWidth();
if (ih_ == 0) {
ih_ = 1;
}
if (iw_ == 0) {
iw_ = 1;
}
hasSpatial_ = true;
if (ih_ == 1 && iw_ == 1) {
hasSpatial_ = false;
}
CHECK_EQ(iLayerSize_, inputLayers_[0]->getSize());
ic_ = iLayerSize_ / (ih_ * iw_);
CHECK_EQ(size_t(ic_ * ih_ * iw_), iLayerSize_) << "not divisible";
CHECK_EQ(size_t(oc_), getSize());
printSizeInfo();
// reset output
output_.setFrameHeight(oh_);
output_.setFrameWidth(ow_);
resetOutput(bs_, oc_);
// reset mkldnn forward
resetFwd();
needResetBwd_ = true;
convertWeightsFromPaddle();
}
void MKLDNNFcLayer::resetFwd() {
bool hasBias = biases_ && biases_->getW();
real* iData = getInputValue(0)->getData();
real* oData = getOutputValue()->getData();
real* wData = weight_->getW()->getData();
real* bData = hasBias ? biases_->getW()->getData() : NULL;
// TODO(TJ): below create should be covered in MkldnnMatrix
// create memory desc
memory::desc iMD = hasSpatial_ ? createMD({bs_, ic_, ih_, iw_}, format::nchw)
: createMD({bs_, ic_}, format::nc);
memory::desc wMD = hasSpatial_ ? createMD({oc_, ic_, ih_, iw_}, format::oihw)
: createMD({oc_, ic_}, format::oi);
memory::desc bMD = bData != NULL ? createMD({oc_}, format::x)
: createMD({}, format::format_undef);
memory::desc oMD = createMD({bs_, oc_}, format::nc);
// create memory primitive desc and memory self
inVal_.reset(new memory(memory::primitive_desc(iMD, engine_), iData));
wgtVal_.reset(new memory(memory::primitive_desc(wMD, engine_), wData));
outVal_.reset(new memory(memory::primitive_desc(oMD, engine_), oData));
prop_kind pk = prop_kind::forward;
fc_fwd::desc fwdDesc = bData != NULL ? fc_fwd::desc(pk, iMD, wMD, bMD, oMD)
: fc_fwd::desc(pk, iMD, wMD, oMD);
fc_fwd::primitive_desc fwdPD = fc_fwd::primitive_desc(fwdDesc, engine_);
if (bData != NULL) {
biasVal_.reset(new memory(memory::primitive_desc(bMD, engine_), bData));
fwd_.reset(new fc_fwd(fwdPD, *inVal_, *wgtVal_, *biasVal_, *outVal_));
} else {
fwd_.reset(new fc_fwd(fwdPD, *inVal_, *wgtVal_, *outVal_));
}
pipelineFwd_.clear();
pipelineFwd_.push_back(*fwd_);
}
void MKLDNNFcLayer::resetBwd() {
if (!needResetBwd_) {
return;
}
needResetBwd_ = false;
bool hasBias = biases_ && biases_->getWGrad();
real* iData = getInputValue(0)->getData();
real* iDiff = getInputGrad(0) != nullptr ? getInputGrad(0)->getData() : NULL;
real* oDiff = getOutputGrad()->getData();
real* wDiff = weight_->getWGrad()->getData();
real* bDiff = hasBias ? biases_->getWGrad()->getData() : NULL;
/// backward weight
// create memory desc for backward memory
memory::desc iMD = hasSpatial_ ? createMD({bs_, ic_, ih_, iw_}, format::nchw)
: createMD({bs_, ic_}, format::nc);
memory::desc wMD = hasSpatial_ ? createMD({oc_, ic_, ih_, iw_}, format::oihw)
: createMD({oc_, ic_}, format::oi);
memory::desc oMD = createMD({bs_, oc_}, format::nc);
memory::desc bMD = bDiff != NULL ? createMD({oc_}, format::x)
: createMD({}, format::format_undef);
if (inVal_) {
// update data
inVal_->set_data_handle(iData);
} else {
inVal_.reset(new memory(memory::primitive_desc(iMD, engine_), iData));
}
// create memory primitive desc and memory self
wgtGrad_.reset(new memory(memory::primitive_desc(wMD, engine_), wDiff));
outGrad_.reset(new memory(memory::primitive_desc(oMD, engine_), oDiff));
fc_fwd::desc fwdDesc = fc_fwd::desc(prop_kind::forward, iMD, wMD, oMD);
fc_fwd::primitive_desc fwdPD = fc_fwd::primitive_desc(fwdDesc, engine_);
fc_bwdWgt::desc bwdWgtDesc = bDiff != NULL
? fc_bwdWgt::desc(iMD, wMD, bMD, oMD)
: fc_bwdWgt::desc(iMD, wMD, oMD);
fc_bwdWgt::primitive_desc bwdWgtPD =
fc_bwdWgt::primitive_desc(bwdWgtDesc, engine_, fwdPD);
if (bDiff != NULL) {
biasGrad_.reset(new memory(memory::primitive_desc(bMD, engine_), bDiff));
bwdWgt_.reset(
new fc_bwdWgt(bwdWgtPD, *inVal_, *outGrad_, *wgtGrad_, *biasGrad_));
} else {
bwdWgt_.reset(new fc_bwdWgt(bwdWgtPD, *inVal_, *outGrad_, *wgtGrad_));
}
pipelineBwd_.clear();
pipelineBwd_.push_back(*bwdWgt_);
/// backward data
if (iDiff == NULL) {
return;
}
fc_bwdData::desc bwdDataDesc = fc_bwdData::desc(iMD, wMD, oMD);
fc_bwdData::primitive_desc bwdDataPD =
fc_bwdData::primitive_desc(bwdDataDesc, engine_, fwdPD);
inGrad_.reset(new memory(memory::primitive_desc(iMD, engine_), iDiff));
CHECK(wgtVal_) << "Should have weight memory";
bwdData_.reset(new fc_bwdData(bwdDataPD, *outGrad_, *wgtVal_, *inGrad_));
pipelineBwd_.push_back(*bwdData_);
}
void MKLDNNFcLayer::forward(PassType passType) {
Layer::forward(passType);
reshape();
{
REGISTER_TIMER_INFO("mkldnn_FwdTimer", getName().c_str());
// update input data
// since it might be changed if this is after data layer
real* iData = getInputValue(0)->getData();
inVal_->set_data_handle(iData);
// just submit forward pipeline
stream_->submit(pipelineFwd_);
}
/* activation */ {
REGISTER_TIMER_INFO("FwActTimer", getName().c_str());
forwardActivation();
}
}
void MKLDNNFcLayer::backward(const UpdateCallback& callback) {
/* Do derivation */ {
REGISTER_TIMER_INFO("BpActTimer", getName().c_str());
backwardActivation();
}
{
REGISTER_TIMER_INFO("mkldnn_bwdTimer", getName().c_str());
resetBwd();
// update diff
real* oDiff = getOutputGrad()->getData();
outGrad_->set_data_handle(oDiff);
// just sumbmit backward pipeline
stream_->submit(pipelineBwd_);
}
{
REGISTER_TIMER_INFO("WeightUpdate", getName().c_str());
weight_->getParameterPtr()->incUpdate(callback);
if (biases_ && biases_->getWGrad()) {
biases_->getParameterPtr()->incUpdate(callback);
}
}
}
} // namespace paddle
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "MKLDNNLayer.h"
#include "mkldnn.hpp"
namespace paddle {
/**
* @brief A subclass of MKLDNNLayer fc layer.
*
* The config file api is mkldnn_fc
*/
class MKLDNNFcLayer : public MKLDNNLayer {
protected:
// input layer size, can not be change after init
size_t iLayerSize_; // == ic * ih * iw
// if has already init the weight
bool hasInitedWgt_;
// if input layer has image size info (ih>1 && iw>1)
bool hasSpatial_;
// fc weight and bias
std::unique_ptr<Weight> weight_;
std::unique_ptr<Weight> biases_;
public:
explicit MKLDNNFcLayer(const LayerConfig& config)
: MKLDNNLayer(config), hasInitedWgt_(false), hasSpatial_(true) {}
~MKLDNNFcLayer() {}
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
void convertWeightsFromPaddle() override;
void convertWeightsToPaddle() override;
void forward(PassType passType) override;
void backward(const UpdateCallback& callback) override;
protected:
/**
* reshape the input image sizes
* and reset output buffer size
* and reset mkldnn forward
*/
void reshape();
/**
* reset the forward primitve and memory
* only would be called when input size changes
*/
void resetFwd();
/**
* reset the backward primitve and memory for mkldnn fc
* only would be called when needed
*/
void resetBwd();
};
} // namespace paddle
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <vector>
#include "Layer.h"
#include "MKLDNNBase.h"
#include "mkldnn.hpp"
DECLARE_bool(use_mkldnn);
DECLARE_bool(use_mkldnn_wgt);
namespace paddle {
class MKLDNNLayer;
typedef std::shared_ptr<MKLDNNLayer> MKLDNNLayerPtr;
/**
* @brief Base class of MKLDNNlayer.
*
*/
class MKLDNNLayer : public Layer {
protected:
// batch size
int bs_;
// input image channel, height and width
int ic_, ih_, iw_;
// output image channel, height and width
int oc_, oh_, ow_;
// backward also need reset after reset forward handle
bool needResetBwd_;
// mkldnn engine, stream and primivtives
mkldnn::engine engine_;
std::shared_ptr<MKLDNNStream> stream_;
std::shared_ptr<mkldnn::primitive> fwd_;
std::shared_ptr<mkldnn::primitive> bwdWgt_;
std::shared_ptr<mkldnn::primitive> bwdData_;
std::vector<mkldnn::primitive> pipelineFwd_;
std::vector<mkldnn::primitive> pipelineBwd_;
// TODO(TJ): change below memory as MKLDNNMatrixPtr type
std::shared_ptr<mkldnn::memory> inVal_;
std::shared_ptr<mkldnn::memory> inGrad_;
std::shared_ptr<mkldnn::memory> outVal_;
std::shared_ptr<mkldnn::memory> outGrad_;
std::shared_ptr<mkldnn::memory> wgtVal_;
std::shared_ptr<mkldnn::memory> wgtGrad_;
std::shared_ptr<mkldnn::memory> biasVal_;
std::shared_ptr<mkldnn::memory> biasGrad_;
public:
explicit MKLDNNLayer(const LayerConfig& config)
: Layer(config),
bs_(0),
ic_(0),
ih_(0),
iw_(0),
oc_(0),
oh_(0),
ow_(0),
needResetBwd_(true),
engine_(mkldnn::engine::cpu, 0),
stream_(nullptr),
fwd_(nullptr),
bwdWgt_(nullptr),
bwdData_(nullptr) {}
~MKLDNNLayer() {}
virtual bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) {
if (!Layer::init(layerMap, parameterMap)) {
return false;
}
CHECK(FLAGS_use_mkldnn) << "MkldnnLayers only support use_mkldnn."
<< "Please set WITH_MKLDNN=ON "
<< "and set use_mkldnn=True";
stream_.reset(new MKLDNNStream());
engine_ = CPUEngine::Instance().getEngine();
// TODO(TJ): deivecId
return true;
}
/**
* convert weight from paddle format to mkldnn format
* weight_ will be override
*/
virtual void convertWeightsFromPaddle() {}
/**
* convert mkldnn weight to paddle format
* weight_ will be override
*/
virtual void convertWeightsToPaddle() {}
/**
* print info about sizes
*/
virtual void printSizeInfo() {
VLOG(MKLDNN_SIZES) << getName() << ": bs: " << bs_ << ", ic: " << ic_
<< ", ih: " << ih_ << ", iw: " << iw_ << ", oc: " << oc_
<< ", oh: " << oh_ << ", ow: " << ow_;
}
// TODO(TJ): move to MkldnnMatrix
// create memory desc
inline mkldnn::memory::desc createMD(
mkldnn::memory::dims dims,
mkldnn::memory::format fmt,
mkldnn::memory::data_type type = mkldnn::memory::data_type::f32) {
// TODO(TJ): isFmtSuppoted(fmt)
return mkldnn::memory::desc(dims, type, fmt);
}
};
} // namespace paddle
...@@ -9,7 +9,7 @@ add_unittest_without_exec(test_ProtoDataProvider ...@@ -9,7 +9,7 @@ add_unittest_without_exec(test_ProtoDataProvider
# mkdir will get error. # mkdir will get error.
add_test(NAME test_ProtoDataProvider add_test(NAME test_ProtoDataProvider
COMMAND ${CMAKE_CURRENT_BINARY_DIR}/test_ProtoDataProvider COMMAND ${CMAKE_CURRENT_BINARY_DIR}/test_ProtoDataProvider
WORKING_DIRECTORY ${PROJ_ROOT}/paddle) WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/paddle)
################# test_LayerGrad ####################### ################# test_LayerGrad #######################
add_unittest_without_exec(test_LayerGrad add_unittest_without_exec(test_LayerGrad
...@@ -18,6 +18,15 @@ add_unittest_without_exec(test_LayerGrad ...@@ -18,6 +18,15 @@ add_unittest_without_exec(test_LayerGrad
add_test(NAME test_LayerGrad add_test(NAME test_LayerGrad
COMMAND test_LayerGrad) COMMAND test_LayerGrad)
########## test_Mkldnn layers and activations ##########
if(WITH_MKLDNN)
add_unittest_without_exec(test_MKLDNN
test_MKLDNN.cpp
MKLDNNTester.cpp
LayerGradUtil.cpp)
add_test(NAME test_MKLDNN COMMAND test_MKLDNN)
endif()
################ test_CRFLayerGrad #################### ################ test_CRFLayerGrad ####################
add_unittest_without_exec(test_CRFLayerGrad add_unittest_without_exec(test_CRFLayerGrad
test_CRFLayerGrad.cpp test_CRFLayerGrad.cpp
...@@ -92,8 +101,8 @@ if(WITH_PYTHON) ...@@ -92,8 +101,8 @@ if(WITH_PYTHON)
test_PyDataProvider.cpp) test_PyDataProvider.cpp)
add_test(NAME test_PyDataProvider add_test(NAME test_PyDataProvider
COMMAND .set_python_path.sh -d ./gserver/tests:${PROJ_ROOT}/python/ ${CMAKE_CURRENT_BINARY_DIR}/test_PyDataProvider COMMAND .set_python_path.sh -d ./gserver/tests:${PADDLE_SOURCE_DIR}/python/ ${CMAKE_CURRENT_BINARY_DIR}/test_PyDataProvider
WORKING_DIRECTORY ${PROJ_ROOT}/paddle) WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/paddle)
endif() endif()
############### test_RecurrentLayer ####################### ############### test_RecurrentLayer #######################
...@@ -106,7 +115,7 @@ if(NOT WITH_DOUBLE) ...@@ -106,7 +115,7 @@ if(NOT WITH_DOUBLE)
add_test(NAME test_WarpCTCLayer add_test(NAME test_WarpCTCLayer
COMMAND ${CMAKE_CURRENT_BINARY_DIR}/test_WarpCTCLayer --warpctc_dir=${WARPCTC_LIB_DIR} COMMAND ${CMAKE_CURRENT_BINARY_DIR}/test_WarpCTCLayer --warpctc_dir=${WARPCTC_LIB_DIR}
WORKING_DIRECTORY ${PROJ_ROOT}/paddle) WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/paddle)
endif() endif()
############### test_RecurrentGradientMachine ############### ############### test_RecurrentGradientMachine ###############
...@@ -116,20 +125,20 @@ add_unittest_without_exec(test_RecurrentGradientMachine ...@@ -116,20 +125,20 @@ add_unittest_without_exec(test_RecurrentGradientMachine
test_RecurrentGradientMachine.cpp) test_RecurrentGradientMachine.cpp)
add_test(NAME test_RecurrentGradientMachine add_test(NAME test_RecurrentGradientMachine
COMMAND .set_python_path.sh -d COMMAND .set_python_path.sh -d
${PROJ_ROOT}/python:${PROJ_ROOT}/paddle/gserver/tests ${PADDLE_SOURCE_DIR}/python:${PADDLE_SOURCE_DIR}/paddle/gserver/tests
${CMAKE_CURRENT_BINARY_DIR}/test_RecurrentGradientMachine ${CMAKE_CURRENT_BINARY_DIR}/test_RecurrentGradientMachine
WORKING_DIRECTORY ${PROJ_ROOT}/paddle) WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/paddle)
add_unittest_without_exec(test_NetworkCompare add_unittest_without_exec(test_NetworkCompare
test_NetworkCompare.cpp) test_NetworkCompare.cpp)
if(WITH_GPU) if(WITH_GPU)
add_test(NAME test_NetworkCompare add_test(NAME test_NetworkCompare
COMMAND .set_python_path.sh -d ${PROJ_ROOT}/python ${CMAKE_CURRENT_BINARY_DIR}/test_NetworkCompare --use_gpu=true COMMAND .set_python_path.sh -d ${PADDLE_SOURCE_DIR}/python ${CMAKE_CURRENT_BINARY_DIR}/test_NetworkCompare --use_gpu=true
WORKING_DIRECTORY ${PROJ_ROOT}/paddle) WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/paddle)
else() else()
add_test(NAME test_NetworkCompare add_test(NAME test_NetworkCompare
COMMAND .set_python_path.sh -d ${PROJ_ROOT}/python ${CMAKE_CURRENT_BINARY_DIR}/test_NetworkCompare --use_gpu=false COMMAND .set_python_path.sh -d ${PADDLE_SOURCE_DIR}/python ${CMAKE_CURRENT_BINARY_DIR}/test_NetworkCompare --use_gpu=false
WORKING_DIRECTORY ${PROJ_ROOT}/paddle) WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/paddle)
endif() endif()
...@@ -137,6 +146,6 @@ add_unittest_without_exec(test_PyDataProvider2 ...@@ -137,6 +146,6 @@ add_unittest_without_exec(test_PyDataProvider2
test_PyDataProvider2.cpp) test_PyDataProvider2.cpp)
add_test(NAME test_PyDataProvider2 add_test(NAME test_PyDataProvider2
COMMAND .set_python_path.sh -d ${PROJ_ROOT}/paddle/gserver/tests:${PROJ_ROOT}/python ${CMAKE_CURRENT_BINARY_DIR}/test_PyDataProvider2 COMMAND .set_python_path.sh -d ${PADDLE_SOURCE_DIR}/paddle/gserver/tests:${PADDLE_SOURCE_DIR}/python ${CMAKE_CURRENT_BINARY_DIR}/test_PyDataProvider2
WORKING_DIRECTORY ${PROJ_ROOT}/paddle WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/paddle
) )
...@@ -388,6 +388,11 @@ void initDataLayer(TestConfig testConf, ...@@ -388,6 +388,11 @@ void initDataLayer(TestConfig testConf,
data.grad->zeroMem(); data.grad->zeroMem();
break; break;
case INPUT_SELF_DEFINE_DATA: { case INPUT_SELF_DEFINE_DATA: {
if (testConf.inputDefs[i].ids.size()) {
data.ids = IVector::create(testConf.inputDefs[i].ids.size(), useGpu);
data.ids->copyFrom(testConf.inputDefs[i].ids.data(),
testConf.inputDefs[i].ids.size());
} else if (testConf.inputDefs[i].selfDefinedData) {
size_t height = testConf.inputDefs[i].selfDefinedData->getHeight(); size_t height = testConf.inputDefs[i].selfDefinedData->getHeight();
size_t width = testConf.inputDefs[i].selfDefinedData->getWidth(); size_t width = testConf.inputDefs[i].selfDefinedData->getWidth();
CHECK_GT(static_cast<int>(height), 0); CHECK_GT(static_cast<int>(height), 0);
...@@ -396,6 +401,10 @@ void initDataLayer(TestConfig testConf, ...@@ -396,6 +401,10 @@ void initDataLayer(TestConfig testConf,
data.grad = Matrix::create(height, width, false, useGpu); data.grad = Matrix::create(height, width, false, useGpu);
data.value->copyFrom(*testConf.inputDefs[i].selfDefinedData); data.value->copyFrom(*testConf.inputDefs[i].selfDefinedData);
data.grad->zeroMem(); data.grad->zeroMem();
} else {
LOG(FATAL) << "No self-defined data are given.";
return;
}
const std::vector<int>& labelSeqStartPositions = const std::vector<int>& labelSeqStartPositions =
testConf.inputDefs[i].labelSeqStartPositions; testConf.inputDefs[i].labelSeqStartPositions;
......
...@@ -68,6 +68,7 @@ struct InputDef { ...@@ -68,6 +68,7 @@ struct InputDef {
std::vector<int> labelInitValue; std::vector<int> labelInitValue;
std::vector<int> labelSeqStartPositions; std::vector<int> labelSeqStartPositions;
std::vector<int> labelSubSeqStartPositions; std::vector<int> labelSubSeqStartPositions;
std::vector<int> ids;
MatrixPtr selfDefinedData; MatrixPtr selfDefinedData;
InputDef(InputType type, string nameIn, size_t dimIn, size_t sizeIn) { InputDef(InputType type, string nameIn, size_t dimIn, size_t sizeIn) {
...@@ -95,6 +96,23 @@ struct InputDef { ...@@ -95,6 +96,23 @@ struct InputDef {
isStatic = false; isStatic = false;
} }
InputDef(InputType type,
string nameIn,
const std::vector<int>& ids,
const std::vector<int>& selfDefinedSeqStartPos = {},
const std::vector<int>& selfDefinedSubSeqStartPos = {})
: labelSeqStartPositions(selfDefinedSeqStartPos),
labelSubSeqStartPositions(selfDefinedSubSeqStartPos),
ids(ids) {
selfDefinedData = nullptr;
inputType = type;
name = nameIn;
dim = 0;
sparse = {""};
paraSize = 0;
isStatic = false;
}
InputDef(InputType type, InputDef(InputType type,
string nameIn, string nameIn,
size_t dimIn, size_t dimIn,
......
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "MKLDNNTester.h"
#include "paddle/gserver/layers/MKLDNNBase.h"
#include "paddle/gserver/layers/MKLDNNLayer.h"
namespace paddle {
// init data layer and test layer of both dnn and reference
void MKLDNNTester::reset(const TestConfig& dnn,
const TestConfig& ref,
size_t batchSize) {
const bool trans = false;
const bool useGpu = false;
// clear
configs_.clear();
layerNames_.clear();
dataLayers_.clear();
datas_.clear();
layerMaps_.clear();
parameters_.clear();
testLayers_.clear();
// resize
configs_.resize(NUM);
layerNames_.resize(NUM);
dataLayers_.resize(NUM);
datas_.resize(NUM);
layerMaps_.resize(NUM);
parameters_.resize(NUM);
testLayers_.resize(NUM);
// reset configs and layer names
configs_[DNN] = dnn;
configs_[REF] = ref;
layerNames_[DNN] = "mkldnn"; // the first is mkldnn layer
layerNames_[REF] = "reference"; // second is reference layer
// reset others
for (size_t i = 0; i < NUM; ++i) {
configs_[i].layerConfig.set_name(layerNames_[i]);
initDataLayer(configs_[i],
&(dataLayers_[i]),
&(datas_[i]),
&(layerMaps_[i]),
layerNames_[i],
batchSize,
trans,
useGpu);
initTestLayer(
configs_[i], &(layerMaps_[i]), &(parameters_[i]), &(testLayers_[i]));
}
dnnLayer_ = testLayers_[DNN];
refLayer_ = testLayers_[REF];
EXPECT_EQ(dataLayers_[DNN].size(), dataLayers_[REF].size());
EXPECT_EQ(parameters_[DNN].size(), parameters_[REF].size());
setInputImgSize();
}
void MKLDNNTester::setInputImgSize() {
for (size_t n = 0; n < dataLayers_.size(); ++n) {
for (size_t i = 0; i < dataLayers_[n].size(); ++i) {
// TODO(TJ): fix me when concat and elewise ready
dataLayers_[n][i]->getOutput().setFrameHeight(ih_);
dataLayers_[n][i]->getOutput().setFrameWidth(iw_);
}
}
}
// init randome parameters of ref, and copy to mkldnn
void MKLDNNTester::randomWgtDatas() {
EXPECT_EQ(parameters_[DNN].size(), parameters_[REF].size());
for (size_t i = 0; i < parameters_[REF].size(); ++i) {
const VectorPtr& dnnValue = parameters_[DNN][i]->getBuf(PARAMETER_VALUE);
const VectorPtr& refValue = parameters_[REF][i]->getBuf(PARAMETER_VALUE);
parameters_[REF][i]->randomize();
dnnValue->copyFrom(*refValue);
VLOG(lvl_) << "Random weight data " << parameters_[DNN][i]->getName();
printVector(dnnValue);
}
}
// random botdata of ref layer and copy same to mkldnn
void MKLDNNTester::randomBotDatas() {
CHECK_EQ(dataLayers_.size(), NUM);
for (size_t i = 0; i < dataLayers_[DNN].size(); ++i) {
dataLayers_[REF][i]->getOutputValue()->randomizeUniform();
dataLayers_[DNN][i]->getOutputValue()->copyFrom(
*(dataLayers_[REF][i]->getOutputValue()));
VLOG(lvl_) << "Input " << i << " data:";
printMatrix(dataLayers_[REF][i]->getOutputValue());
}
}
void MKLDNNTester::randomTopDiffs() {
refLayer_->getOutputGrad()->randomizeUniform();
dnnLayer_->getOutputGrad()->copyFrom(*(refLayer_->getOutputGrad()));
VLOG(lvl_) << "Random dom Backward Input, TopDiff: ";
printMatrix(refLayer_->getOutputGrad());
}
void MKLDNNTester::checkForward() {
printTopDatas();
double delta = compareMatrix(testLayers_[DNN]->getOutputValue(),
testLayers_[REF]->getOutputValue());
VLOG(MKLDNN_ALL) << "Check Forward";
EXPECT_LE(fabs(delta), eps_);
}
void MKLDNNTester::checkBackwardData() {
// TODO(TJ): uncomment me when batch norm ready
// const bool isBN = dnnLayer_->getType() == "mkldnn_batch_norm";
for (size_t i = 0; i < dataLayers_[DNN].size(); ++i) {
const MatrixPtr& dnnDiff = dataLayers_[DNN][i]->getOutputGrad();
const MatrixPtr& refDiff = dataLayers_[REF][i]->getOutputGrad();
VLOG(lvl_) << "Mkldnn Backward Output BotDiff " << i;
printMatrix(dnnDiff);
VLOG(lvl_) << "Reference Backward Output BotDiff " << i;
printMatrix(refDiff);
double delta = compareMatrix(dnnDiff, refDiff);
EXPECT_LE(fabs(delta), eps_);
// TODO(TJ): uncomment me when batch norm ready
// if (isBN) {
// // the other two inputs in batch norm are for moving mean and var
// break;
// }
}
}
void MKLDNNTester::checkBackwardWgts() {
CHECK_EQ(parameters_[DNN].size(), parameters_[REF].size());
vector<VectorPtr> dnnWgts; // used to temply save mkldnn weights
saveWgt(parameters_[DNN], dnnWgts);
const MKLDNNLayerPtr dnnlayer =
std::dynamic_pointer_cast<MKLDNNLayer>(dnnLayer_);
CHECK(dnnlayer);
dnnlayer->convertWeightsToPaddle();
for (size_t i = 0; i < parameters_[DNN].size(); ++i) {
const VectorPtr& dnn = parameters_[DNN][i]->getBuf(PARAMETER_VALUE);
const VectorPtr& ref = parameters_[REF][i]->getBuf(PARAMETER_VALUE);
VLOG(lvl_) << "Mkldnn Output weight " << parameters_[DNN][i]->getName();
printVector(dnn);
VLOG(lvl_) << "Reference Output weight " << parameters_[REF][i]->getName();
printVector(ref);
double delta = compareVector(dnn, ref);
EXPECT_LE(fabs(delta), eps_);
}
VLOG(MKLDNN_ALL) << "Restore dnn weights before comapre";
restoreWgt(dnnWgts, parameters_[DNN]);
}
void MKLDNNTester::saveWgt(const vector<ParameterPtr>& from,
vector<VectorPtr>& to) {
const bool useGpu = false;
to.resize(from.size());
for (size_t i = 0; i < to.size(); ++i) {
const VectorPtr& wgt = from[i]->getBuf(PARAMETER_VALUE);
to[i] = Vector::create(wgt->getSize(), useGpu);
to[i]->copyFrom(*wgt);
}
}
void MKLDNNTester::restoreWgt(const vector<VectorPtr>& from,
vector<ParameterPtr>& to) {
CHECK_EQ(from.size(), to.size());
for (size_t i = 0; i < from.size(); ++i) {
const VectorPtr& wgt = to[i]->getBuf(PARAMETER_VALUE);
wgt->copyFrom(*from[i]);
}
}
// clear parameters grad
void MKLDNNTester::clearWgtDiffs() {
for (size_t n = 0; n < parameters_.size(); ++n) {
for (size_t i = 0; i < parameters_[n].size(); ++i) {
const VectorPtr& grad = parameters_[n][i]->getBuf(PARAMETER_GRADIENT);
if (grad) {
grad->zeroMem();
}
}
}
}
void MKLDNNTester::clearBotDiffs() {
// dnn and ref
for (size_t n = 0; n < dataLayers_.size(); ++n) {
// all inputs layers
for (size_t i = 0; i < dataLayers_[n].size(); ++i) {
dataLayers_[n][i]->getOutputGrad()->zeroMem();
}
}
}
void MKLDNNTester::clearBotDiffs(int n) {
CHECK_LT(n, NUM);
// all inputs layers
for (size_t i = 0; i < dataLayers_[n].size(); ++i) {
dataLayers_[n][i]->getOutputGrad()->zeroMem();
}
}
void MKLDNNTester::clearTopDatas() {
for (size_t i = 0; i < testLayers_.size(); ++i) {
testLayers_[i]->getOutputValue()->zeroMem();
}
}
void MKLDNNTester::printTopDatas() {
if (!log_) {
return;
}
for (int n = 0; n < NUM; ++n) {
VLOG(lvl_) << testLayers_[n]->getType() << " forward output TopData: ";
printMatrix(testLayers_[n]->getOutputValue());
}
}
void MKLDNNTester::printMatrix(const MatrixPtr& m) {
if (!log_) {
return;
}
std::ostringstream ostr;
m->print(ostr);
VLOG(lvl_) << std::endl << ostr.str();
}
void MKLDNNTester::printVector(const VectorPtr& v) {
if (!log_) {
return;
}
std::ostringstream ostr;
v->print(ostr, v->getSize());
VLOG(lvl_) << std::endl << ostr.str();
}
double MKLDNNTester::getDelta(const real* d1,
const real* d2,
size_t len,
const float failRate,
const float thres) {
double delta = 0, sum = 0;
int failCnt = 0;
const double eps = 1e-5;
double maxOut = 0;
for (size_t i = 0; i < len; ++i) {
double ref = fabs(d2[i]);
double diff = fabs(d1[i] - d2[i]);
delta += diff;
sum += ref;
if (ref > eps && fabs(d1[i]) > eps && diff / ref > thres) {
maxOut = std::max(maxOut, diff / ref);
failCnt++;
}
}
EXPECT_TRUE(std::isnormal(sum));
EXPECT_FALSE(std::isinf(sum));
EXPECT_FALSE(std::isnan(delta));
VLOG(MKLDNN_ALL) << "reference avg data: " << sum / len
<< ", delta: " << delta / sum << ", failCnt:" << failCnt;
return (failCnt / (float)len) > failRate ? maxOut : delta / sum;
}
double MKLDNNTester::compareMatrix(const MatrixPtr& m1, const MatrixPtr& m2) {
CHECK_EQ(m1->getElementCnt(), m2->getElementCnt());
return getDelta(m1->getData(), m2->getData(), m1->getElementCnt());
}
double MKLDNNTester::compareVector(const VectorPtr& v1, const VectorPtr& v2) {
CHECK_EQ(v1->getSize(), v2->getSize());
return getDelta(v1->getData(), v2->getData(), v1->getSize());
}
void MKLDNNTester::runOnce() {
// test forward
randomBotDatas();
dnnLayer_->forward(PASS_TRAIN);
refLayer_->forward(PASS_TRAIN);
checkForward();
// test backward
randomTopDiffs();
dnnLayer_->backward(nullptr);
refLayer_->backward(nullptr);
checkBackwardData();
checkBackwardWgts();
// clear buffers
// ref code will addto the diff, dnn code will writeto it
// and clearTopDatas() and clearWgtDiffs() should be coverd by test layers
clearBotDiffs(REF);
}
void MKLDNNTester::run(const TestConfig& dnn,
const TestConfig& ref,
size_t batchSize,
size_t inputImgH,
size_t inputImgW,
size_t iter,
float epsilon,
bool log,
int level) {
VLOG(MKLDNN_TESTS) << "Test MKLDNN functionality: " << dnn.layerConfig.type()
<< " vs " << ref.layerConfig.type();
ih_ = inputImgH;
iw_ = inputImgW;
iter_ = iter;
eps_ = epsilon;
log_ = log;
lvl_ = level;
// Firstly test FLAGS_use_mkldnn_wgt = false
FLAGS_use_mkldnn_wgt = false;
// reset and run once
reset(dnn, ref, batchSize);
randomWgtDatas();
clearWgtDiffs();
clearBotDiffs();
for (size_t i = 0; i < iter_; ++i) {
VLOG(MKLDNN_TESTS) << "Check Iteration " << i;
runOnce();
}
// Then test FLAGS_use_mkldnn_wgt = true
FLAGS_use_mkldnn_wgt = true;
// after run once the mkldnn weight has been stored in dnnlayer
// then save the weights and restart again
vector<VectorPtr> dnnWgts, refWgts;
CHECK_EQ(parameters_[DNN].size(), parameters_[REF].size());
saveWgt(parameters_[DNN], dnnWgts);
saveWgt(parameters_[REF], refWgts);
// restart again with flag true
reset(dnn, ref, batchSize);
// restore wgt
restoreWgt(dnnWgts, parameters_[DNN]);
restoreWgt(refWgts, parameters_[REF]);
clearWgtDiffs();
clearBotDiffs();
for (size_t i = 0; i < iter_; ++i) {
VLOG(MKLDNN_TESTS) << "Check Iteration " << i;
runOnce();
}
}
} // namespace paddle
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <string>
#include <vector>
#include "LayerGradUtil.h"
#include "paddle/gserver/layers/MKLDNNBase.h"
namespace paddle {
/**
* @brief test the functionality of Mkldnnlayers
* refer to paddle original function
*/
class MKLDNNTester {
enum {
DNN = 0, // MKLDNN layer
REF = 1, // Reference layer
NUM = 2, // Number of total
};
protected:
std::vector<TestConfig> configs_;
vector<string> layerNames_;
vector<vector<DataLayerPtr>> dataLayers_;
vector<vector<Argument>> datas_;
vector<LayerMap> layerMaps_;
vector<vector<ParameterPtr>> parameters_;
vector<LayerPtr> testLayers_;
LayerPtr dnnLayer_, refLayer_;
/// run some iterations, all the result should pass
size_t iter_;
/// whether to print out the details
bool log_;
/// vlog level to print the matrix details datas
int lvl_;
/// epsilon
float eps_;
/// input image size, default 1
size_t ih_, iw_;
public:
explicit MKLDNNTester(size_t iter = 3, float epsilon = 1e-4) {
iter_ = iter;
eps_ = epsilon;
log_ = false;
lvl_ = MKLDNN_ALL;
}
~MKLDNNTester() {}
public:
void run(const TestConfig& dnn,
const TestConfig& ref,
size_t batchSize,
size_t inputImgH = 1,
size_t inputImgW = 1,
size_t iter = 3,
float epsilon = 1e-4,
bool log = false,
int level = MKLDNN_ALL);
void setLogLevel(int lvl) { lvl_ = lvl; }
private:
void reset(const TestConfig& dnn, const TestConfig& ref, size_t batchSize);
void setInputImgSize();
void runOnce();
void randomWgtDatas();
void randomBotDatas();
void randomTopDiffs();
void checkForward();
void checkBackwardData();
void checkBackwardWgts();
void clearWgtDiffs();
void clearBotDiffs();
void clearBotDiffs(int n); // clear specific layer
void clearTopDatas();
void printTopDatas();
void printMatrix(const MatrixPtr& m);
void printVector(const VectorPtr& v);
void saveWgt(const vector<ParameterPtr>& from, vector<VectorPtr>& to);
void restoreWgt(const vector<VectorPtr>& from, vector<ParameterPtr>& to);
double compareMatrix(const MatrixPtr& m1, const MatrixPtr& m2);
double compareVector(const VectorPtr& v1, const VectorPtr& v2);
/**
* Get delta percent
* if many(>failRate) wrong(abs(dnn-ref)/abs(ref)>thres) points return the
* max(diff/ref)
* else return sum(abs(a-b)) / sum(abs(b))
* The return value should smaller than eps when passing.
*/
double getDelta(const real* d1,
const real* d2,
size_t len,
const float failRate = 1e-3,
const float thres = 0.1);
};
} // namespace paddle
...@@ -96,6 +96,11 @@ TEST(Layer, kmaxSeqScoreLayer) { ...@@ -96,6 +96,11 @@ TEST(Layer, kmaxSeqScoreLayer) {
MatrixPtr inValue = MatrixPtr inValue =
Matrix::create(subSeqStartPosition.back(), 1, false, false); Matrix::create(subSeqStartPosition.back(), 1, false, false);
std::vector<bool> mode = {false};
#ifndef PADDLE_ONLY_CPU
mode.push_back(true);
#endif
for (auto hasSubseq : {false, true}) { for (auto hasSubseq : {false, true}) {
vector<vector<int>> groundTruth; vector<vector<int>> groundTruth;
inValue->randomizeUniform(); inValue->randomizeUniform();
...@@ -104,7 +109,7 @@ TEST(Layer, kmaxSeqScoreLayer) { ...@@ -104,7 +109,7 @@ TEST(Layer, kmaxSeqScoreLayer) {
hasSubseq ? subSeqStartPosition : seqStartPosition, hasSubseq ? subSeqStartPosition : seqStartPosition,
beamSize); beamSize);
for (auto useGpu : {false, true}) { for (auto useGpu : mode) {
TestConfig config; TestConfig config;
config.layerConfig.set_type("kmax_seq_score"); config.layerConfig.set_type("kmax_seq_score");
config.layerConfig.set_beam_size(beamSize); config.layerConfig.set_beam_size(beamSize);
......
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <gtest/gtest.h>
#include <string>
#include <vector>
#include "MKLDNNTester.h"
#include "ModelConfig.pb.h"
using namespace paddle; // NOLINT
DECLARE_bool(thread_local_rand_use_global_seed);
DECLARE_bool(use_gpu);
DECLARE_bool(use_mkldnn);
struct testFCDesc {
int bs;
int ic;
int oc;
int ih, iw; // oh == ow == 1
};
void testFcLayer(const testFCDesc& pm) {
const std::string compareTypes[] = {"mkldnn_fc", "fc"};
TestConfig cfg;
cfg.layerConfig.set_type(compareTypes[0]);
cfg.layerConfig.set_size(pm.oc);
cfg.inputDefs.push_back(
{INPUT_DATA,
"layer_0",
/* size of input layer= */ size_t(pm.ic * pm.ih * pm.iw),
/* size of weight= */ size_t(pm.oc * pm.ic * pm.ih * pm.iw)});
cfg.layerConfig.add_inputs();
MKLDNNTester tester;
for (auto biasSize : {pm.oc, 0}) {
cfg.biasSize = biasSize;
TestConfig ref = cfg;
ref.layerConfig.set_type(compareTypes[1]);
for (auto bs : {pm.bs, 1}) {
tester.run(cfg, ref, bs, pm.ih, pm.iw);
}
}
}
TEST(MKLDNNLayer, FcLayer) {
testFcLayer({/*bs*/ 2, /*ic*/ 2, /*oc*/ 3, /*ih*/ 1, /*iw*/ 1});
testFcLayer({/*bs*/ 3, /*ic*/ 7, /*oc*/ 19, /*ih*/ 1, /*iw*/ 1});
testFcLayer({/*bs*/ 8, /*ic*/ 16, /*oc*/ 32, /*ih*/ 13, /*iw*/ 13});
testFcLayer({/*bs*/ 4, /*ic*/ 12, /*oc*/ 18, /*ih*/ 13, /*iw*/ 11});
testFcLayer({/*bs*/ 2, /*ic*/ 64, /*oc*/ 32, /*ih*/ 16, /*iw*/ 16});
testFcLayer({/*bs*/ 15, /*ic*/ 3, /*oc*/ 6, /*ih*/ 16, /*iw*/ 16});
}
// TODO(TJ): add branch test
int main(int argc, char** argv) {
testing::InitGoogleTest(&argc, argv);
FLAGS_use_gpu = false;
FLAGS_use_mkldnn = true;
initMain(argc, argv);
FLAGS_thread_local_rand_use_global_seed = true;
srand(1);
return RUN_ALL_TESTS();
}
...@@ -15,13 +15,13 @@ ...@@ -15,13 +15,13 @@
file(GLOB MATH_HEADERS . *.h) file(GLOB MATH_HEADERS . *.h)
file(GLOB MATH_SOURCES . *.cpp) file(GLOB MATH_SOURCES . *.cpp)
set(MATH_SOURCES set(MATH_SOURCES
"${PROJ_ROOT}/paddle/math/BaseMatrix.cu" "${PADDLE_SOURCE_DIR}/paddle/math/BaseMatrix.cu"
"${PROJ_ROOT}/paddle/math/TrainingAlgorithmOp.cu" "${PADDLE_SOURCE_DIR}/paddle/math/TrainingAlgorithmOp.cu"
${MATH_SOURCES}) ${MATH_SOURCES})
if(NOT WITH_GPU) if(NOT WITH_GPU)
# then compile BaseMatrix.cu as c++ file # then compile BaseMatrix.cu as c++ file
compile_cu_as_cpp("${PROJ_ROOT}/paddle/math/BaseMatrix.cu") compile_cu_as_cpp("${PADDLE_SOURCE_DIR}/paddle/math/BaseMatrix.cu")
compile_cu_as_cpp("${PROJ_ROOT}/paddle/math/TrainingAlgorithmOp.cu") compile_cu_as_cpp("${PADDLE_SOURCE_DIR}/paddle/math/TrainingAlgorithmOp.cu")
add_library(paddle_math STATIC add_library(paddle_math STATIC
${MATH_SOURCES}) ${MATH_SOURCES})
else() else()
......
...@@ -302,6 +302,10 @@ public: ...@@ -302,6 +302,10 @@ public:
bool isSparse() const { return true; } bool isSparse() const { return true; }
private: private:
using Matrix::mul;
using Matrix::copyFrom; using Matrix::copyFrom;
using Matrix::rowMax;
using Matrix::print;
using Matrix::subMatrix;
}; };
} // namespace paddle } // namespace paddle
...@@ -231,6 +231,9 @@ public: ...@@ -231,6 +231,9 @@ public:
private: private:
using Matrix::mul; using Matrix::mul;
using Matrix::copyFrom; using Matrix::copyFrom;
using Matrix::rowMax;
using Matrix::print;
using Matrix::subMatrix;
}; };
} // namespace paddle } // namespace paddle
...@@ -41,6 +41,9 @@ function(op_library TARGET) ...@@ -41,6 +41,9 @@ function(op_library TARGET)
endif() endif()
endfunction() endfunction()
add_subdirectory(math)
cc_test(gather_test SRCS gather_test.cc DEPS tensor)
cc_library(net_op SRCS net_op.cc DEPS op_registry) cc_library(net_op SRCS net_op.cc DEPS op_registry)
cc_test(net_op_test SRCS net_op_test.cc DEPS net_op) cc_test(net_op_test SRCS net_op_test.cc DEPS net_op)
...@@ -48,7 +51,7 @@ op_library(add_op SRCS add_op.cc add_op.cu) ...@@ -48,7 +51,7 @@ op_library(add_op SRCS add_op.cc add_op.cu)
op_library(mean_op SRCS mean_op.cc mean_op.cu) op_library(mean_op SRCS mean_op.cc mean_op.cu)
op_library(mul_op SRCS mul_op.cc mul_op.cu) op_library(mul_op SRCS mul_op.cc mul_op.cu DEPS math_function)
op_library(rowwise_add_op SRCS rowwise_add_op.cu rowwise_add_op.cc) op_library(rowwise_add_op SRCS rowwise_add_op.cu rowwise_add_op.cc)
op_library(sigmoid_op SRCS sigmoid_op.cc sigmoid_op.cu) op_library(sigmoid_op SRCS sigmoid_op.cc sigmoid_op.cu)
...@@ -59,11 +62,8 @@ op_library(fill_zeros_like_op SRCS fill_zeros_like_op.cc fill_zeros_like_op.cu) ...@@ -59,11 +62,8 @@ op_library(fill_zeros_like_op SRCS fill_zeros_like_op.cc fill_zeros_like_op.cu)
op_library(sgd_op SRCS sgd_op.cc sgd_op.cu) op_library(sgd_op SRCS sgd_op.cc sgd_op.cu)
op_library(fc_op
SRCS fc_op.cc
DEPS mul_op rowwise_add_op sigmoid_op softmax_op net_op)
op_library(recurrent_op SRCS recurrent_op.cc rnn/recurrent_op_utils.cc op_library(recurrent_op SRCS recurrent_op.cc rnn/recurrent_op_utils.cc
DEPS op_desc tensor op_registry operator net_op) DEPS framework_proto tensor op_registry operator net_op)
cc_test(recurrent_op_test SRCS recurrent_op_test.cc DEPS recurrent_op gtest mul_op add_op) cc_test(recurrent_op_test SRCS recurrent_op_test.cc DEPS recurrent_op gtest mul_op add_op)
op_library(uniform_random_op op_library(uniform_random_op
SRCS uniform_random_op.cc uniform_random_op.cu) SRCS uniform_random_op.cc uniform_random_op.cu)
...@@ -18,16 +18,15 @@ namespace paddle { ...@@ -18,16 +18,15 @@ namespace paddle {
namespace operators { namespace operators {
class AddOp : public framework::OperatorWithKernel { class AddOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected: protected:
void InferShape(const framework::InferShapeContext &ctx) const override { void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE_EQ(ctx.InputSize(), 2); PADDLE_ENFORCE_EQ(ctx.Input<Tensor>("X")->dims(),
PADDLE_ENFORCE_EQ(ctx.OutputSize(), 1); ctx.Input<Tensor>("Y")->dims(),
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(0), "Inputs of AddOp must all be set");
PADDLE_ENFORCE(ctx.OutputVar(0) != nullptr,
"Outputs of AddOp must all be set");
PADDLE_ENFORCE(ctx.Input<Tensor>(0)->dims() == ctx.Input<Tensor>(1)->dims(),
"Two input of Add Op's dimension must be same."); "Two input of Add Op's dimension must be same.");
ctx.Output<Tensor>(0)->Resize(ctx.Input<Tensor>(0)->dims()); ctx.Output<Tensor>("Out")->Resize(ctx.Input<Tensor>("X")->dims());
} }
}; };
...@@ -47,6 +46,9 @@ The equation is: Out = X + Y ...@@ -47,6 +46,9 @@ The equation is: Out = X + Y
}; };
class AddOpGrad : public framework::OperatorWithKernel { class AddOpGrad : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected: protected:
void InferShape(const framework::InferShapeContext &ctx) const override {} void InferShape(const framework::InferShapeContext &ctx) const override {}
}; };
......
...@@ -28,9 +28,9 @@ template <typename Place, typename T> ...@@ -28,9 +28,9 @@ template <typename Place, typename T>
class AddKernel : public framework::OpKernel { class AddKernel : public framework::OpKernel {
public: public:
void Compute(const framework::ExecutionContext& context) const override { void Compute(const framework::ExecutionContext& context) const override {
auto input0 = context.Input<Tensor>(0); auto* input0 = context.Input<Tensor>("X");
auto input1 = context.Input<Tensor>(1); auto* input1 = context.Input<Tensor>("Y");
auto output = context.Output<Tensor>(0); auto* output = context.Output<Tensor>("Out");
output->mutable_data<T>(context.GetPlace()); output->mutable_data<T>(context.GetPlace());
......
...@@ -18,26 +18,25 @@ namespace paddle { ...@@ -18,26 +18,25 @@ namespace paddle {
namespace operators { namespace operators {
class OnehotCrossEntropyOp : public framework::OperatorWithKernel { class OnehotCrossEntropyOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected: protected:
void InferShape(const framework::InferShapeContext &ctx) const override { void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE_EQ(ctx.InputSize(), 2, auto *X = ctx.Input<Tensor>("X");
"Input size of OnehotCrossEntropyOp must be two"); auto *label = ctx.Input<Tensor>("label");
PADDLE_ENFORCE_EQ(ctx.OutputSize(), 1,
"Output size of OnehotCrossEntropyOp must be one"); PADDLE_ENFORCE_EQ(X->dims().size(), 2, "X's dimension must be 2.");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(0), PADDLE_ENFORCE_EQ(label->dims().size(), 1, "label's dimension must be 1.");
"0-th input of OnehotCrossEntropyOp should be set"); PADDLE_ENFORCE_EQ(X->dims()[0], label->dims()[0]);
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(1), ctx.Output<Tensor>("Y")->Resize({X->dims()[0]});
"1-th input of OnehotCrossEntropyOp should be set");
PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar(0),
"Outputs of OnehotCrossEntropyOp must all be set");
PADDLE_ENFORCE_EQ(ctx.Input<Tensor>(0)->dims().size(), 2);
PADDLE_ENFORCE_EQ(ctx.Output<Tensor>(0)->dims().size(), 1,
"label's dimension must be 1.");
ctx.Output<Tensor>(0)->Resize({ctx.Input<Tensor>(0)->dims()[0]});
} }
}; };
class OnehotCrossEntropyGradientOp : public framework::OperatorWithKernel { class OnehotCrossEntropyGradientOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected: protected:
void InferShape(const framework::InferShapeContext &ctx) const override { void InferShape(const framework::InferShapeContext &ctx) const override {
auto X_grad = ctx.Output<Tensor>(framework::GradVarName("X")); auto X_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
......
...@@ -45,7 +45,7 @@ class OnehotCrossEntropyOpKernel : public framework::OpKernel { ...@@ -45,7 +45,7 @@ class OnehotCrossEntropyOpKernel : public framework::OpKernel {
void Compute(const framework::ExecutionContext& ctx) const override { void Compute(const framework::ExecutionContext& ctx) const override {
auto X = ctx.Input<Tensor>("X"); auto X = ctx.Input<Tensor>("X");
const T* Xdata = X->data<T>(); const T* Xdata = X->data<T>();
const int* label_data = ctx.Input<Tensor>(1)->data<int>(); const int* label_data = ctx.Input<Tensor>("label")->data<int>();
auto Y = ctx.Output<Tensor>("Y"); auto Y = ctx.Output<Tensor>("Y");
Y->mutable_data<T>(ctx.GetPlace()); Y->mutable_data<T>(ctx.GetPlace());
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/net_op.h"
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
namespace paddle {
namespace operators {
using OpRegistry = framework::OpRegistry;
class FullyConnectedOp : public NetOp {
public:
void Init() override {
AddOp(OpRegistry::CreateOp("mul",
{
Input("X"), Input("W"),
},
{Output("before_act")}, {}));
auto b = Input("b");
if (b != framework::kEmptyVarName) {
AddOp(OpRegistry::CreateOp("rowwise_add",
{Output("before_act"), Input("b")},
{Output("before_act")}, {}));
}
auto activation = GetAttr<std::string>("activation");
AddOp(OpRegistry::CreateOp(activation, {Output("before_act")},
{Output("Y")}, {}));
CompleteAddOp(false);
}
};
class FullyConnectedOpMaker : public framework::OpProtoAndCheckerMaker {
public:
FullyConnectedOpMaker(framework::OpProto *proto,
framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "the input of fc operator");
AddInput("W", "the weight of fc operator");
AddInput("b", "the bias of fc operator");
AddOutput("Y", "the output of fc operator");
AddOutput("before_act", "the before activation output of fc operator")
.SetTemporary();
AddAttr<std::string>("activation", "The activation key for fc layer")
.SetDefault("sigmoid")
.InEnum({"sigmoid", "softmax"});
//! TODO(yuyang18): Complete comment;
AddComment("FullyConnected Operator");
}
};
} // namespace operators
} // namespace paddle
USE_OP(mul);
USE_OP(rowwise_add);
USE_OP(sigmoid);
USE_OP(softmax);
namespace ops = paddle::operators;
REGISTER_OP(fc, ops::FullyConnectedOp, ops::FullyConnectedOpMaker);
...@@ -18,18 +18,13 @@ namespace paddle { ...@@ -18,18 +18,13 @@ namespace paddle {
namespace operators { namespace operators {
class FillZerosLikeOp : public framework::OperatorWithKernel { class FillZerosLikeOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected: protected:
void InferShape(const framework::InferShapeContext &ctx) const override { void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE_EQ(ctx.InputSize(), 1UL, ctx.Output<framework::Tensor>("Dst")->Resize(
"Input size of FillZerosLikeOp must be one."); ctx.Input<framework::Tensor>("Src")->dims());
PADDLE_ENFORCE_EQ(ctx.OutputSize(), 1UL,
"Output size of AddOp must be one.");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(0),
"Input of FillZerosLikeOp must be set.");
PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar(0),
"Output of FillZerosLikeOp must be set.");
ctx.Output<framework::Tensor>(0)->Resize(
ctx.Input<framework::Tensor>(0)->dims());
} }
}; };
......
...@@ -23,7 +23,7 @@ template <typename Place, typename T> ...@@ -23,7 +23,7 @@ template <typename Place, typename T>
class FillZerosLikeKernel : public framework::OpKernel { class FillZerosLikeKernel : public framework::OpKernel {
public: public:
void Compute(const framework::ExecutionContext& context) const override { void Compute(const framework::ExecutionContext& context) const override {
auto* output = context.Output<framework::Tensor>(0); auto* output = context.Output<framework::Tensor>("Dst");
output->mutable_data<T>(context.GetPlace()); output->mutable_data<T>(context.GetPlace());
auto t = framework::EigenVector<T>::Flatten(*output); auto t = framework::EigenVector<T>::Flatten(*output);
t.device(context.GetEigenDevice<Place>()) = t.constant(T(0)); t.device(context.GetEigenDevice<Place>()) = t.constant(T(0));
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <memory.h>
#include <cstring>
#include "paddle/framework/ddim.h"
#include "paddle/framework/tensor.h"
#include "paddle/platform/place.h"
namespace paddle {
namespace operators {
// Implementation of CPU copy
template <typename T>
void CPUGather(const T* params, const int* indices, const int slice_size,
const int index_size, T* output) {
const size_t slice_bytes = slice_size * sizeof(T);
for (size_t i = 0; i < index_size; ++i) {
int index_ = indices[i];
memcpy(output + i * slice_size, params + index_ * slice_size, slice_bytes);
}
}
// Implementation of GPU copy:
template <typename T>
void GPUGather(const T* src, const int* index, const int slice_size,
const int index_size, T* output);
/**
* Return a new tensor from source tensor, gathered according to index
* input[src]: type-T source Tensor
* input[index]: type-int index Tensor (1-D)
* return: output tensor
*/
template <typename T>
void Gather(const platform::Place& place, const paddle::framework::Tensor* src,
const paddle::framework::Tensor* index,
paddle::framework::Tensor* output) {
// check index of shape 1-D
PADDLE_ENFORCE(index->dims().size() == 1);
int index_size = index->dims()[0];
auto src_dims = src->dims();
paddle::framework::DDim output_dims(src_dims);
output_dims[0] = index_size;
// slice size
int slice_size = 1;
for (size_t i = 1; i < src_dims.size(); ++i) slice_size *= src_dims[i];
// Gathering
if (platform::is_cpu_place(place)) {
CPUGather<T>(src->data<T>(), index->data<int>(), slice_size, index_size,
output->data<T>());
}
}
} // namespace operators
} // namespace paddle
...@@ -12,17 +12,37 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ...@@ -12,17 +12,37 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
syntax = "proto2"; #include "paddle/operators/gather.h"
package paddle.framework; #include "paddle/framework/ddim.h"
#include "paddle/framework/tensor.h"
// Attribute Type for paddle's Op. #include "paddle/platform/place.h"
// Op contains many attributes. Each type of attributes could be different.
// The AttrType will be shared between AttrDesc and AttrProto. #include <gtest/gtest.h>
enum AttrType { #include <iostream>
INT = 0; #include <string>
FLOAT = 1;
STRING = 2; TEST(Gather, GatherData) {
INTS = 3; using namespace paddle::framework;
FLOATS = 4; using namespace paddle::platform;
STRINGS = 5; using namespace paddle::operators;
Tensor* src = new Tensor();
Tensor* index = new Tensor();
Tensor* output = new Tensor();
int* p_src = nullptr;
int* p_index = nullptr;
p_src = src->mutable_data<int>(make_ddim({3, 4}), CPUPlace());
p_index = index->mutable_data<int>(make_ddim({2}), CPUPlace());
for (size_t i = 0; i < 12; ++i) p_src[i] = i;
p_index[0] = 1;
p_index[1] = 0;
int* p_output = output->mutable_data<int>(make_ddim({2, 4}), CPUPlace());
Gather<int>(CPUPlace(), src, index, output);
for (size_t i = 0; i < 4; ++i) EXPECT_EQ(p_output[i], i + 4);
for (size_t i = 4; i < 8; ++i) EXPECT_EQ(p_output[i], i - 4);
} }
...@@ -43,6 +43,9 @@ class GaussianRandomKernel : public framework::OpKernel { ...@@ -43,6 +43,9 @@ class GaussianRandomKernel : public framework::OpKernel {
}; };
class GaussianRandomOp : public framework::OperatorWithKernel { class GaussianRandomOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected: protected:
void InferShape(const framework::InferShapeContext& context) const override { void InferShape(const framework::InferShapeContext& context) const override {
auto* tensor = context.Output<framework::Tensor>(0); auto* tensor = context.Output<framework::Tensor>(0);
......
...@@ -33,15 +33,16 @@ class GaussianRandomKernel : public framework::OpKernel { ...@@ -33,15 +33,16 @@ class GaussianRandomKernel : public framework::OpKernel {
int seed = context.op_.GetAttr<int>("seed"); int seed = context.op_.GetAttr<int>("seed");
if (seed == 0) { if (seed == 0) {
seed = std::random_device()(); std::random_device rd;
seed = rd();
} }
curandGenerator_t g; curandGenerator_t g;
PADDLE_ENFORCE(platform::dynload::curandCreateGenerator( PADDLE_ENFORCE(platform::dynload::curandCreateGenerator(
&g, CURAND_RNG_PSEUDO_DEFAULT)); &g, CURAND_RNG_PSEUDO_DEFAULT));
PADDLE_ENFORCE( PADDLE_ENFORCE(
platform::dynload::curandSetPseudoRandomGeneratorSeed(g, seed)); platform::dynload::curandSetPseudoRandomGeneratorSeed(g, seed));
curandGenerateNormal(g, data, framework::product(tensor->dims()), mean, platform::dynload::curandGenerateNormal(
std); g, data, framework::product(tensor->dims()), mean, std);
} }
}; };
......
if(WITH_MKLML)
set(BLAS_LIB mklml)
else()
set(BLAS_LIB cblas)
endif()
if(WITH_GPU)
nv_library(math_function SRCS math_function.cc math_function.cu DEPS ${BLAS_LIB} device_context)
else()
cc_library(math_function SRCS math_function.cc DEPS ${BLAS_LIB} device_context)
endif()
nv_test(math_function_test SRCS math_function_test.cc DEPS math_function tensor)
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/math/math_function.h"
namespace paddle {
namespace operators {
namespace math {
template <>
void gemm<platform::CPUPlace, float>(const CBLAS_TRANSPOSE transA,
const CBLAS_TRANSPOSE transB, const int M,
const int N, const int K,
const float alpha, const float* A,
const float* B, const float beta, float* C,
platform::DeviceContext* context) {
int lda = K;
int ldb = N;
int ldc = N;
cblas_sgemm(CblasRowMajor, transA, transB, M, N, K, alpha, A, lda, B, ldb,
beta, C, ldc);
}
template <>
void gemm<platform::CPUPlace, double>(const CBLAS_TRANSPOSE transA,
const CBLAS_TRANSPOSE transB, const int M,
const int N, const int K,
const double alpha, const double* A,
const double* B, const double beta,
double* C,
platform::DeviceContext* context) {
int lda = K;
int ldb = N;
int ldc = N;
cblas_dgemm(CblasRowMajor, transA, transB, M, N, K, alpha, A, lda, B, ldb,
beta, C, ldc);
}
template <>
void matmul<platform::CPUPlace, float>(const framework::Tensor& matrix_a,
bool trans_a,
const framework::Tensor& matrix_b,
bool trans_b, float alpha,
framework::Tensor* matrix_out,
float beta,
platform::DeviceContext* context) {
auto dim_a = matrix_a.dims();
auto dim_b = matrix_b.dims();
auto dim_out = matrix_out->dims();
PADDLE_ENFORCE(dim_a.size() == 2 && dim_b.size() == 2 && dim_out.size() == 2,
"The input and output of matmul be matrix");
PADDLE_ENFORCE(platform::is_cpu_place(matrix_a.place()) &&
platform::is_cpu_place(matrix_b.place()) &&
platform::is_cpu_place(matrix_out->place()),
"Matrix must all be in CPUPlace");
int M = dim_out[0];
int N = dim_out[1];
int K = (trans_a == false) ? dim_a[1] : dim_a[0];
CBLAS_TRANSPOSE transA = (trans_a == false) ? CblasNoTrans : CblasTrans;
CBLAS_TRANSPOSE transB = (trans_b == false) ? CblasNoTrans : CblasTrans;
gemm<platform::CPUPlace, float>(
transA, transB, M, N, K, alpha, matrix_a.data<float>(),
matrix_b.data<float>(), beta, matrix_out->data<float>(), context);
}
template <>
void matmul<platform::CPUPlace, double>(const framework::Tensor& matrix_a,
bool trans_a,
const framework::Tensor& matrix_b,
bool trans_b, double alpha,
framework::Tensor* matrix_out,
double beta,
platform::DeviceContext* context) {
auto dim_a = matrix_a.dims();
auto dim_b = matrix_b.dims();
auto dim_out = matrix_out->dims();
PADDLE_ENFORCE(dim_a.size() == 2 && dim_b.size() == 2 && dim_out.size() == 2,
"The input and output of matmul be matrix");
PADDLE_ENFORCE(platform::is_cpu_place(matrix_a.place()) &&
platform::is_cpu_place(matrix_b.place()) &&
platform::is_cpu_place(matrix_out->place()),
"Matrix must all be in CPUPlace");
int M = dim_out[0];
int N = dim_out[1];
int K = (trans_a == false) ? dim_a[1] : dim_a[0];
CBLAS_TRANSPOSE transA = (trans_a == false) ? CblasNoTrans : CblasTrans;
CBLAS_TRANSPOSE transB = (trans_b == false) ? CblasNoTrans : CblasTrans;
gemm<platform::CPUPlace, double>(
transA, transB, M, N, K, alpha, matrix_a.data<double>(),
matrix_b.data<double>(), beta, matrix_out->data<double>(), context);
}
} // namespace math
} // namespace operators
} // namespace paddle
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/math/math_function.h"
namespace paddle {
namespace operators {
namespace math {
template <>
void gemm<platform::GPUPlace, float>(const CBLAS_TRANSPOSE transA,
const CBLAS_TRANSPOSE transB, const int M,
const int N, const int K,
const float alpha, const float* A,
const float* B, const float beta, float* C,
platform::DeviceContext* context) {
// Note that cublas follows fortran order, so the order is different from
// the cblas convention.
int lda = (transA == CblasNoTrans) ? K : M;
int ldb = (transB == CblasNoTrans) ? N : K;
cublasOperation_t cuTransA =
(transA == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
cublasOperation_t cuTransB =
(transB == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
PADDLE_ENFORCE(platform::dynload::cublasSgemm(
reinterpret_cast<platform::CUDADeviceContext*>(context)->cublas_handle(),
cuTransB, cuTransA, N, M, K, &alpha, B, ldb, A, lda, &beta, C, N));
}
template <>
void gemm<platform::GPUPlace, double>(const CBLAS_TRANSPOSE transA,
const CBLAS_TRANSPOSE transB, const int M,
const int N, const int K,
const double alpha, const double* A,
const double* B, const double beta,
double* C,
platform::DeviceContext* context) {
// Note that cublas follows fortran order, so the order is different from
// the cblas convention.
int lda = (transA == CblasNoTrans) ? K : M;
int ldb = (transB == CblasNoTrans) ? N : K;
cublasOperation_t cuTransA =
(transA == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
cublasOperation_t cuTransB =
(transB == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
PADDLE_ENFORCE(platform::dynload::cublasDgemm(
reinterpret_cast<platform::CUDADeviceContext*>(context)->cublas_handle(),
cuTransB, cuTransA, N, M, K, &alpha, B, ldb, A, lda, &beta, C, N));
}
template <>
void matmul<platform::GPUPlace, float>(const framework::Tensor& matrix_a,
bool trans_a,
const framework::Tensor& matrix_b,
bool trans_b, float alpha,
framework::Tensor* matrix_out,
float beta,
platform::DeviceContext* context) {
auto dim_a = matrix_a.dims();
auto dim_b = matrix_b.dims();
auto dim_out = matrix_out->dims();
PADDLE_ENFORCE(dim_a.size() == 2 && dim_b.size() == 2 && dim_out.size() == 2,
"The input and output of matmul be matrix");
PADDLE_ENFORCE(platform::is_gpu_place(matrix_a.place()) &&
platform::is_gpu_place(matrix_b.place()) &&
platform::is_gpu_place(matrix_out->place()),
"Matrix must all be in GPUPlace");
int M = dim_out[0];
int N = dim_out[1];
int K = (trans_a == false) ? dim_a[1] : dim_a[0];
CBLAS_TRANSPOSE transA = (trans_a == false) ? CblasNoTrans : CblasTrans;
CBLAS_TRANSPOSE transB = (trans_b == false) ? CblasNoTrans : CblasTrans;
gemm<platform::GPUPlace, float>(
transA, transB, M, N, K, alpha, matrix_a.data<float>(),
matrix_b.data<float>(), beta, matrix_out->data<float>(), context);
}
template <>
void matmul<platform::GPUPlace, double>(const framework::Tensor& matrix_a,
bool trans_a,
const framework::Tensor& matrix_b,
bool trans_b, double alpha,
framework::Tensor* matrix_out,
double beta,
platform::DeviceContext* context) {
auto dim_a = matrix_a.dims();
auto dim_b = matrix_b.dims();
auto dim_out = matrix_out->dims();
PADDLE_ENFORCE(dim_a.size() == 2 && dim_b.size() == 2 && dim_out.size() == 2,
"The input and output of matmul be matrix");
PADDLE_ENFORCE(platform::is_gpu_place(matrix_a.place()) &&
platform::is_gpu_place(matrix_b.place()) &&
platform::is_gpu_place(matrix_out->place()),
"Matrix must all be in GPUPlace");
int M = dim_out[0];
int N = dim_out[1];
int K = (trans_a == false) ? dim_a[1] : dim_a[0];
CBLAS_TRANSPOSE transA = (trans_a == false) ? CblasNoTrans : CblasTrans;
CBLAS_TRANSPOSE transB = (trans_b == false) ? CblasNoTrans : CblasTrans;
gemm<platform::GPUPlace, double>(
transA, transB, M, N, K, alpha, matrix_a.data<double>(),
matrix_b.data<double>(), beta, matrix_out->data<double>(), context);
}
} // namespace math
} // namespace operators
} // namespace paddle
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#ifdef PADDLE_USE_MKLML
#include <mkl_cblas.h>
#include <mkl_lapacke.h>
#include <mkl_vml_functions.h>
#endif
#ifdef PADDLE_USE_MKL
#include <mkl.h>
#include <mkl_lapacke.h>
#endif
#ifdef PADDLE_USE_ATLAS
extern "C" {
#include <cblas.h>
#include <clapack.h>
}
#endif
#ifdef PADDLE_USE_OPENBLAS
#include <cblas.h>
#include <lapacke.h>
#endif
#ifndef LAPACK_FOUND
extern "C" {
#include <cblas.h>
int LAPACKE_sgetrf(int matrix_layout, int m, int n, float* a, int lda,
int* ipiv);
int LAPACKE_dgetrf(int matrix_layout, int m, int n, double* a, int lda,
int* ipiv);
int LAPACKE_sgetri(int matrix_layout, int n, float* a, int lda,
const int* ipiv);
int LAPACKE_dgetri(int matrix_layout, int n, double* a, int lda,
const int* ipiv);
}
#endif
#include <cmath>
#include "paddle/framework/tensor.h"
#include "paddle/platform/device_context.h"
#include "paddle/platform/enforce.h"
namespace paddle {
namespace operators {
namespace math {
// Support continuous memory now
// If transA = N, and transB = N
// Then matrixA: M * K, matrixB: K * N matrixC : M * N
// For more detailed info, please refer to
// http://www.netlib.org/lapack/explore-html/d4/de2/sgemm_8f.html
template <typename Place, typename T>
void gemm(const CBLAS_TRANSPOSE transA, const CBLAS_TRANSPOSE transB,
const int M, const int N, const int K, const T alpha, const T* A,
const T* B, const T beta, T* C, platform::DeviceContext* context);
// matrix multiply with continuous memory
template <typename Place, typename T>
void matmul(const framework::Tensor& matrix_a, bool trans_a,
const framework::Tensor& matrix_b, bool trans_b, T alpha,
framework::Tensor* matrix_out, T beta,
platform::DeviceContext* context);
} // namespace math
} // namespace operators
} // namespace paddle
#include "paddle/operators/math/math_function.h"
#include "gtest/gtest.h"
#ifndef PADDLE_ONLY_CPU
TEST(math_function, notrans_mul_trans) {
paddle::framework::Tensor input1;
paddle::framework::Tensor input1_gpu;
paddle::framework::Tensor input2_gpu;
paddle::framework::Tensor out_gpu;
paddle::framework::Tensor out;
auto* cpu_place = new paddle::platform::CPUPlace();
float* input1_ptr = input1.mutable_data<float>({2, 3}, *cpu_place);
float arr[6] = {0, 1, 2, 3, 4, 5};
memcpy(input1_ptr, arr, 6 * sizeof(float));
auto* gpu_place = new paddle::platform::GPUPlace(0);
paddle::platform::DeviceContext* context =
new paddle::platform::CUDADeviceContext(*gpu_place);
input1_gpu.CopyFrom<float>(input1, *gpu_place);
input2_gpu.CopyFrom<float>(input1, *gpu_place);
out_gpu.mutable_data<float>({2, 2}, *gpu_place);
paddle::operators::math::matmul<paddle::platform::GPUPlace, float>(
input1_gpu, false, input2_gpu, true, 1, &out_gpu, 0, context);
out.CopyFrom<float>(out_gpu, *cpu_place);
float* out_ptr = out.data<float>();
EXPECT_EQ(out_ptr[0], 5);
EXPECT_EQ(out_ptr[1], 14);
EXPECT_EQ(out_ptr[2], 14);
EXPECT_EQ(out_ptr[3], 50);
}
TEST(math_function, trans_mul_notrans) {
paddle::framework::Tensor input1;
paddle::framework::Tensor input1_gpu;
paddle::framework::Tensor input2_gpu;
paddle::framework::Tensor out_gpu;
paddle::framework::Tensor out;
auto* cpu_place = new paddle::platform::CPUPlace();
float* input1_ptr = input1.mutable_data<float>({2, 3}, *cpu_place);
float arr[6] = {0, 1, 2, 3, 4, 5};
memcpy(input1_ptr, arr, 6 * sizeof(float));
auto* gpu_place = new paddle::platform::GPUPlace(0);
paddle::platform::DeviceContext* context =
new paddle::platform::CUDADeviceContext(*gpu_place);
input1_gpu.CopyFrom<float>(input1, *gpu_place);
input2_gpu.CopyFrom<float>(input1, *gpu_place);
out_gpu.mutable_data<float>({3, 3}, *gpu_place);
paddle::operators::math::matmul<paddle::platform::GPUPlace, float>(
input1_gpu, true, input2_gpu, false, 1, &out_gpu, 0, context);
out.CopyFrom<float>(out_gpu, *cpu_place);
float* out_ptr = out.data<float>();
EXPECT_EQ(out_ptr[0], 9);
EXPECT_EQ(out_ptr[1], 12);
EXPECT_EQ(out_ptr[2], 15);
EXPECT_EQ(out_ptr[3], 12);
EXPECT_EQ(out_ptr[4], 17);
EXPECT_EQ(out_ptr[5], 22);
EXPECT_EQ(out_ptr[6], 15);
EXPECT_EQ(out_ptr[7], 22);
EXPECT_EQ(out_ptr[8], 29);
}
#endif
...@@ -18,13 +18,14 @@ namespace paddle { ...@@ -18,13 +18,14 @@ namespace paddle {
namespace operators { namespace operators {
class MeanOp : public framework::OperatorWithKernel { class MeanOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected: protected:
void InferShape(const framework::InferShapeContext &ctx) const override { void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE_EQ(ctx.InputSize(), 1, "Input size of AddOp must be one"); PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"),
PADDLE_ENFORCE_EQ(ctx.OutputSize(), 1, "Output size of AddOp must be one"); "Input of MeanOp must be initialized.");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(0), "input should be set"); ctx.Output<Tensor>("Out")->Resize({1});
PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar(0), "output should be set");
ctx.Output<Tensor>(0)->Resize(framework::make_ddim({1}));
} }
}; };
...@@ -33,12 +34,15 @@ class MeanOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -33,12 +34,15 @@ class MeanOpMaker : public framework::OpProtoAndCheckerMaker {
MeanOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) MeanOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) { : OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "The input of mean op"); AddInput("X", "The input of mean op");
AddOutput("Out", "The output of mean op").IgnoreGradient(); AddOutput("Out", "The output of mean op").AsNoGradient();
AddComment("Mean Operator"); AddComment("Mean Operator");
} }
}; };
class MeanGradOp : public framework::OperatorWithKernel { class MeanGradOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected: protected:
void InferShape(const framework::InferShapeContext &ctx) const override { void InferShape(const framework::InferShapeContext &ctx) const override {
ctx.Output<Tensor>(framework::GradVarName("X")) ctx.Output<Tensor>(framework::GradVarName("X"))
......
...@@ -31,14 +31,14 @@ template <typename Place, typename T> ...@@ -31,14 +31,14 @@ template <typename Place, typename T>
class MeanKernel : public framework::OpKernel { class MeanKernel : public framework::OpKernel {
public: public:
void Compute(const framework::ExecutionContext& context) const override { void Compute(const framework::ExecutionContext& context) const override {
auto input = context.Input<Tensor>(0); auto* input = context.Input<Tensor>("X");
auto output = context.Output<Tensor>(0); auto* output = context.Output<Tensor>("Out");
output->mutable_data<T>(context.GetPlace()); output->mutable_data<T>(context.GetPlace());
auto X = EigenVector<T>::Flatten(*input); auto X = EigenVector<T>::Flatten(*input);
auto y = EigenScalar<T>::From(*output); auto y = EigenScalar<T>::From(*output);
auto place = context.GetEigenDevice<Place>(); auto& place = context.GetEigenDevice<Place>();
y.device(place) = X.mean(); y.device(place) = X.mean();
} }
......
...@@ -13,16 +13,19 @@ ...@@ -13,16 +13,19 @@
limitations under the License. */ limitations under the License. */
#include "paddle/operators/mul_op.h" #include "paddle/operators/mul_op.h"
#include "paddle/operators/math/math_function.h"
namespace paddle { namespace paddle {
namespace operators { namespace operators {
class MulOp : public framework::OperatorWithKernel { class MulOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected: protected:
void InferShape(const framework::InferShapeContext &ctx) const override { void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE(ctx.InputSize() == 2, "The mul op must take two inputs"); auto dim0 = ctx.Input<Tensor>("X")->dims();
auto dim0 = ctx.Input<Tensor>(0)->dims(); auto dim1 = ctx.Input<Tensor>("Y")->dims();
auto dim1 = ctx.Input<Tensor>(1)->dims();
PADDLE_ENFORCE_EQ(dim0.size(), 2, PADDLE_ENFORCE_EQ(dim0.size(), 2,
"input X(%s) should be a tensor with 2 dims, a matrix", "input X(%s) should be a tensor with 2 dims, a matrix",
ctx.op_.Input("X")); ctx.op_.Input("X"));
...@@ -32,8 +35,7 @@ class MulOp : public framework::OperatorWithKernel { ...@@ -32,8 +35,7 @@ class MulOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_EQ( PADDLE_ENFORCE_EQ(
dim0[1], dim1[0], dim0[1], dim1[0],
"First matrix's width must be equal with second matrix's height."); "First matrix's width must be equal with second matrix's height.");
PADDLE_ENFORCE_EQ(ctx.OutputSize(), 1, "The mul op takes only one output"); ctx.Output<Tensor>("Out")->Resize({dim0[0], dim1[1]});
ctx.Output<Tensor>(0)->Resize({dim0[0], dim1[1]});
} }
}; };
...@@ -53,6 +55,9 @@ The equation is: Out = X * Y ...@@ -53,6 +55,9 @@ The equation is: Out = X * Y
}; };
class MulOpGrad : public framework::OperatorWithKernel { class MulOpGrad : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected: protected:
void InferShape(const framework::InferShapeContext &ctx) const override { void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE_EQ(ctx.InputSize(), 3UL, PADDLE_ENFORCE_EQ(ctx.InputSize(), 3UL,
......
...@@ -13,6 +13,9 @@ ...@@ -13,6 +13,9 @@
limitations under the License. */ limitations under the License. */
#pragma once #pragma once
#include "paddle/operators/math/math_function.h"
#include "paddle/framework/eigen.h" #include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h" #include "paddle/framework/op_registry.h"
...@@ -30,17 +33,14 @@ class MulKernel : public framework::OpKernel { ...@@ -30,17 +33,14 @@ class MulKernel : public framework::OpKernel {
void Compute(const framework::ExecutionContext& context) const override { void Compute(const framework::ExecutionContext& context) const override {
Eigen::array<Eigen::IndexPair<Eigen::DenseIndex>, 1> dim_pair = { Eigen::array<Eigen::IndexPair<Eigen::DenseIndex>, 1> dim_pair = {
{Eigen::IndexPair<Eigen::DenseIndex>(1, 0)}}; {Eigen::IndexPair<Eigen::DenseIndex>(1, 0)}};
auto* input0 = context.Input<Tensor>("X");
auto input0 = context.Input<Tensor>("X"); auto* input1 = context.Input<Tensor>("Y");
auto input1 = context.Input<Tensor>("Y"); auto* output = context.Output<Tensor>("Out");
auto output = context.Output<Tensor>(0);
output->mutable_data<T>(context.GetPlace()); output->mutable_data<T>(context.GetPlace());
auto X = EigenMatrix<T>::From(*input0); auto X = EigenMatrix<T>::From(*input0);
auto Y = EigenMatrix<T>::From(*input1); auto Y = EigenMatrix<T>::From(*input1);
auto Z = EigenMatrix<T>::From(*output); auto Z = EigenMatrix<T>::From(*output);
auto place = context.GetEigenDevice<Place>(); auto& place = context.GetEigenDevice<Place>();
Z.device(place) = X.contract(Y, dim_pair); Z.device(place) = X.contract(Y, dim_pair);
} }
......
...@@ -15,48 +15,42 @@ ...@@ -15,48 +15,42 @@
*/ */
#include "paddle/operators/net_op.h" #include "paddle/operators/net_op.h"
#include <set>
#include "paddle/framework/op_registry.h"
namespace paddle { namespace paddle {
namespace operators { namespace operators {
const char NetOp::kAll[] = "all";
void NetOp::CompleteAddOp(bool calc) { void NetOp::CompleteAddOp(bool calc) {
add_op_done_ = true; add_op_done_ = true;
if (!calc) return; if (!calc) return;
std::unordered_set<std::string> input_set; std::set<std::string> input_set;
std::unordered_set<std::string> output_set; std::set<std::string> output_set;
std::unordered_set<std::string> temp_output;
for (auto& op : ops_) { for (auto& op : ops_) {
for (auto& ipt : op->inputs_) { for (auto& ipt : op->inputs_) {
if (!Contains(output_set, ipt)) { // Not other op's output for (auto& var_name : ipt.second) {
input_set.insert(ipt); if (!Contains(output_set, var_name)) { // Not other op's output
input_set.insert(var_name);
} else { } else {
temp_output.insert(ipt); intermediate_outputs_.insert(var_name);
}
} }
} }
for (auto& opt : op->outputs_) { for (auto& opt : op->outputs_) {
output_set.insert(opt); for (auto& var_name : opt.second) {
output_set.insert(var_name);
} }
} }
inputs_.reserve(input_set.size());
std::copy(input_set.begin(), input_set.end(), std::back_inserter(inputs_));
std::sort(inputs_.begin(), inputs_.end());
outputs_.reserve(output_set.size());
std::copy(output_set.begin(), output_set.end(), std::back_inserter(outputs_));
std::sort(outputs_.begin(), outputs_.end());
std::vector<int> tmp_index;
tmp_index.reserve(temp_output.size());
int output_len = static_cast<int>(outputs_.size());
for (int i = 0; i < output_len; ++i) {
if (Contains(temp_output, outputs_[i])) {
tmp_index.push_back(i);
}
} }
auto& inputs = inputs_[kAll];
attrs_["temporary_index"] = tmp_index; inputs.reserve(input_set.size());
std::copy(input_set.begin(), input_set.end(), std::back_inserter(inputs));
auto& outputs = outputs_[kAll];
outputs.reserve(output_set.size());
std::copy(output_set.begin(), output_set.end(), std::back_inserter(outputs));
} }
std::string NetOp::DebugString() const { std::string NetOp::DebugString() const {
...@@ -73,5 +67,25 @@ std::string NetOp::DebugString() const { ...@@ -73,5 +67,25 @@ std::string NetOp::DebugString() const {
bool NetOp::IsNetOp() const { return true; } bool NetOp::IsNetOp() const { return true; }
std::vector<std::string> NetOp::OutputVars(bool has_intermediate) const {
if (has_intermediate) {
return this->outputs_.at(kAll);
}
auto& all = this->outputs_.at(kAll);
std::vector<std::string> ret_val;
for (auto& each : all) {
if (!Contains(intermediate_outputs_, each)) {
ret_val.push_back(each);
}
}
return ret_val;
}
NetOp::NetOp(const std::string& type,
const framework::OperatorBase::VarNameMap& inputs,
const framework::OperatorBase::VarNameMap& outputs,
const framework::AttributeMap& attrs)
: OperatorBase(type, inputs, outputs, attrs) {}
} // namespace operators } // namespace operators
} // namespace paddle } // namespace paddle
...@@ -14,6 +14,7 @@ limitations under the License. */ ...@@ -14,6 +14,7 @@ limitations under the License. */
#pragma once #pragma once
#include "paddle/framework/framework.pb.h"
#include "paddle/framework/op_registry.h" #include "paddle/framework/op_registry.h"
namespace paddle { namespace paddle {
...@@ -35,6 +36,11 @@ namespace operators { ...@@ -35,6 +36,11 @@ namespace operators {
*/ */
class NetOp : public framework::OperatorBase { class NetOp : public framework::OperatorBase {
public: public:
static const char kAll[];
NetOp() : framework::OperatorBase("plain_net", {}, {}, {}) {}
NetOp(const std::string& type, const VarNameMap& inputs,
const VarNameMap& outputs, const framework::AttributeMap& attrs);
/** /**
* Infer all the operators' input and output variables' shapes, will be called * Infer all the operators' input and output variables' shapes, will be called
* before every mini-batch * before every mini-batch
...@@ -90,11 +96,13 @@ class NetOp : public framework::OperatorBase { ...@@ -90,11 +96,13 @@ class NetOp : public framework::OperatorBase {
std::string DebugString() const override; std::string DebugString() const override;
bool IsNetOp() const override; bool IsNetOp() const override;
std::vector<std::string> OutputVars(bool has_intermediate) const override;
std::vector<std::shared_ptr<OperatorBase>> ops_; std::vector<std::shared_ptr<OperatorBase>> ops_;
private: private:
bool add_op_done_{false}; bool add_op_done_{false};
std::set<std::string> intermediate_outputs_;
template <typename T, typename KeyType> template <typename T, typename KeyType>
static bool Contains(T container, KeyType key) { static bool Contains(T container, KeyType key) {
......
...@@ -12,6 +12,7 @@ static int run_cnt = 0; ...@@ -12,6 +12,7 @@ static int run_cnt = 0;
class TestOp : public framework::OperatorBase { class TestOp : public framework::OperatorBase {
public: public:
using framework::OperatorBase::OperatorBase;
void InferShape(const Scope& scope) const override { ++infer_shape_cnt; } void InferShape(const Scope& scope) const override { ++infer_shape_cnt; }
void Run(const Scope& scope, void Run(const Scope& scope,
const platform::DeviceContext& dev_ctx) const override { const platform::DeviceContext& dev_ctx) const override {
...@@ -21,6 +22,7 @@ class TestOp : public framework::OperatorBase { ...@@ -21,6 +22,7 @@ class TestOp : public framework::OperatorBase {
class EmptyOp : public framework::OperatorBase { class EmptyOp : public framework::OperatorBase {
public: public:
using framework::OperatorBase::OperatorBase;
void InferShape(const Scope& scope) const override {} void InferShape(const Scope& scope) const override {}
void Run(const Scope& scope, const DeviceContext& dev_ctx) const override {} void Run(const Scope& scope, const DeviceContext& dev_ctx) const override {}
}; };
...@@ -42,40 +44,32 @@ TEST(OpKernel, all) { ...@@ -42,40 +44,32 @@ TEST(OpKernel, all) {
auto net = std::make_shared<NetOp>(); auto net = std::make_shared<NetOp>();
ASSERT_NE(net, nullptr); ASSERT_NE(net, nullptr);
auto op1 = std::make_shared<TestOp>(); auto op1 = std::shared_ptr<TestOp>(
op1->inputs_ = {"x", "w1", "b1"}; new TestOp("test", {{"X", {"x"}}, {"W", {"w1"}}, {"b", {"b1"}}},
op1->outputs_ = {"y"}; {{"Out", {"y"}}}, {}));
net->AddOp(op1); net->AddOp(op1);
auto op2 = std::make_shared<TestOp>(); auto op2 = std::shared_ptr<TestOp>(
op2->inputs_ = {"y", "w2", "b2"}; new TestOp("test", {{"X", {"y"}}, {"W", {"w2"}}, {"b", {"b2"}}},
op2->outputs_ = {"z"}; {{"Out", {"z"}}}, {}));
net->AddOp(op2); net->AddOp(op2);
net->CompleteAddOp(); net->CompleteAddOp();
AssertSameVectorWithoutOrder({"x", "w1", "b1", "w2", "b2"}, net->inputs_); AssertSameVectorWithoutOrder({"x", "w1", "b1", "w2", "b2"},
AssertSameVectorWithoutOrder({"y", "z"}, net->outputs_); net->inputs_.at(NetOp::kAll));
auto tmp_idx_iter = net->attrs_.find("temporary_index"); AssertSameVectorWithoutOrder({"y", "z"}, net->outputs_.at(NetOp::kAll));
ASSERT_NE(net->attrs_.end(), tmp_idx_iter);
auto& tmp_idx = boost::get<std::vector<int>>(tmp_idx_iter->second);
ASSERT_EQ(1UL, tmp_idx.size());
ASSERT_EQ("y", net->outputs_[tmp_idx[0]]);
Scope scope; auto final_outs = net->OutputVars(false);
platform::CPUDeviceContext dev_ctx;
net->InferShape(scope); ASSERT_EQ(final_outs.size(), 1UL);
net->Run(scope, dev_ctx); ASSERT_EQ(final_outs[0], "z");
ASSERT_EQ(2, infer_shape_cnt);
ASSERT_EQ(2, run_cnt);
ASSERT_THROW(net->AddOp(op2), platform::EnforceNotMet);
} }
TEST(NetOp, insert_op) { TEST(NetOp, insert_op) {
NetOp net; NetOp net;
auto op1 = std::make_shared<EmptyOp>(); auto op1 = std::shared_ptr<EmptyOp>(
op1->inputs_ = {"x", "w1", "b1"}; new EmptyOp("empty", {{"X", {"x"}}, {"W", {"w1"}}, {"b", {"b1"}}},
op1->outputs_ = {"y"}; {{"Out", {"y"}}}, {}));
net.AddOp(op1); net.AddOp(op1);
net.InsertOp(0, op1); net.InsertOp(0, op1);
ASSERT_EQ(2UL, net.ops_.size()); ASSERT_EQ(2UL, net.ops_.size());
......
...@@ -91,12 +91,17 @@ void RecurrentAlgorithm::CreateScopes(const Scope& scope) const { ...@@ -91,12 +91,17 @@ void RecurrentAlgorithm::CreateScopes(const Scope& scope) const {
// create step net's temp inputs // create step net's temp inputs
for (auto& input : net_op->inputs_) { for (auto& input : net_op->inputs_) {
// the weight are located in parent scope // the weight are located in parent scope
if (!step_scope.FindVar(input)) for (auto& var_name : input.second) {
step_scope.NewVar(input)->GetMutable<Tensor>(); if (!step_scope.FindVar(var_name)) {
step_scope.NewVar(var_name)->GetMutable<Tensor>();
}
}
} }
// create stepnet's outputs // create stepnet's outputs
for (const auto& output : net_op->outputs_) { for (const auto& output : net_op->outputs_) {
step_scope.NewVar(output); for (auto& var_name : output.second) {
step_scope.NewVar(var_name);
}
} }
step_scopes->emplace_back(&step_scope); step_scopes->emplace_back(&step_scope);
} }
...@@ -130,8 +135,11 @@ const rnn::ArgumentName RecurrentGradientOp::kArgName{ ...@@ -130,8 +135,11 @@ const rnn::ArgumentName RecurrentGradientOp::kArgName{
"inlink@grad", "inlink_alias", "outlink_alias", "inlink@grad", "inlink_alias", "outlink_alias",
"memories", "pre_memories", "boot_memories@grad"}; "memories", "pre_memories", "boot_memories@grad"};
void RecurrentOp::Init() { RecurrentOp::RecurrentOp(const std::string& type,
OperatorBase::Init(); const framework::OperatorBase::VarNameMap& inputs,
const framework::OperatorBase::VarNameMap& outputs,
const framework::AttributeMap& attrs)
: OperatorBase(type, inputs, outputs, attrs) {
std::unique_ptr<rnn::Argument> arg(new rnn::Argument()); std::unique_ptr<rnn::Argument> arg(new rnn::Argument());
rnn::InitArgument(kArgName, arg.get(), *this); rnn::InitArgument(kArgName, arg.get(), *this);
alg_.Init(std::move(arg)); alg_.Init(std::move(arg));
...@@ -147,13 +155,13 @@ class RecurrentAlgorithmProtoAndCheckerMaker ...@@ -147,13 +155,13 @@ class RecurrentAlgorithmProtoAndCheckerMaker
// inputs and outputs stored in proto // inputs and outputs stored in proto
AddInput(name.inlinks, AddInput(name.inlinks,
"the inputs that need to be segmented for each step.") "the inputs that need to be segmented for each step.")
.SetMultiple(); .AsDuplicable();
AddInput(name.boot_memories, "variables to initialize memories.") AddInput(name.boot_memories, "variables to initialize memories.")
.SetMultiple(); .AsDuplicable();
AddInput(name.step_net, "network shared by all steps."); AddInput(name.step_net, "network shared by all steps.");
AddOutput(name.outlinks, "the outputs that need to concated for all steps.") AddOutput(name.outlinks, "the outputs that need to concated for all steps.")
.SetMultiple(); .AsDuplicable();
AddOutput(name.step_scopes, "step scopes"); AddOutput(name.step_scopes, "step scopes");
// Attributes stored in AttributeMap // Attributes stored in AttributeMap
...@@ -225,8 +233,11 @@ void RecurrentGradientAlgorithm::InferShape(const Scope& scope) const { ...@@ -225,8 +233,11 @@ void RecurrentGradientAlgorithm::InferShape(const Scope& scope) const {
LinkBootMemoryGradients(step_scopes[0], true /*infer_shape_mode*/); LinkBootMemoryGradients(step_scopes[0], true /*infer_shape_mode*/);
} }
void RecurrentGradientOp::Init() { RecurrentGradientOp::RecurrentGradientOp(
OperatorBase::Init(); const std::string& type, const framework::OperatorBase::VarNameMap& inputs,
const framework::OperatorBase::VarNameMap& outputs,
const framework::AttributeMap& attrs)
: OperatorBase(type, inputs, outputs, attrs) {
std::unique_ptr<rnn::Argument> arg(new rnn::Argument()); std::unique_ptr<rnn::Argument> arg(new rnn::Argument());
rnn::InitArgument(kArgName, arg.get(), *this); rnn::InitArgument(kArgName, arg.get(), *this);
alg_.Init(std::move(arg)); alg_.Init(std::move(arg));
......
...@@ -101,8 +101,8 @@ class RecurrentGradientAlgorithm { ...@@ -101,8 +101,8 @@ class RecurrentGradientAlgorithm {
class RecurrentOp final : public framework::OperatorBase { class RecurrentOp final : public framework::OperatorBase {
public: public:
void Init() override; RecurrentOp(const std::string& type, const VarNameMap& inputs,
const VarNameMap& outputs, const framework::AttributeMap& attrs);
/** /**
* InferShape must be called before Run. * InferShape must be called before Run.
*/ */
...@@ -123,7 +123,9 @@ class RecurrentOp final : public framework::OperatorBase { ...@@ -123,7 +123,9 @@ class RecurrentOp final : public framework::OperatorBase {
class RecurrentGradientOp final : public framework::OperatorBase { class RecurrentGradientOp final : public framework::OperatorBase {
public: public:
void Init() override; RecurrentGradientOp(const std::string& type, const VarNameMap& inputs,
const VarNameMap& outputs,
const framework::AttributeMap& attrs);
/** /**
* InferShape must be called before Run. * InferShape must be called before Run.
......
...@@ -25,157 +25,7 @@ ...@@ -25,157 +25,7 @@
namespace paddle { namespace paddle {
namespace operators { namespace operators {
using framework::make_ddim; using namespace paddle::framework;
using framework::DDim;
using framework::Tensor;
using framework::Variable;
using framework::Scope;
using framework::OpRegistry;
class RecurrentOpTest : public ::testing::Test {
protected:
virtual void SetUp() override {
CreateGlobalVariables();
CreateStepNet();
CreateRNNOp();
}
virtual void TearDown() override {}
void CreateGlobalVariables() {
// create input, and init content
LOG(INFO) << "create global variable x";
for (auto inlink : std::vector<std::string>{"x", "x0", "x1", "h"}) {
Variable* x = scope_.NewVar(inlink);
DDim dims = make_ddim(std::vector<int>{
10 /*sent size*/, 20 /*batch size*/, 30 /*input dim*/});
x->GetMutable<Tensor>()->mutable_data<float>(dims, platform::CPUPlace());
}
// create output alias just for test
for (auto inlink : std::vector<std::string>{"h@alias"}) {
Variable* x = scope_.NewVar(inlink);
DDim dims =
make_ddim(std::vector<int>{20 /*batch size*/, 30 /*input dim*/});
x->GetMutable<Tensor>()->mutable_data<float>(dims, platform::CPUPlace());
}
LOG(INFO) << "create global variable w";
Variable* w = scope_.NewVar("rnn/w");
w->GetMutable<Tensor>()->mutable_data<float>(
make_ddim(std::vector<int>{30, 30}), platform::CPUPlace());
for (auto boot : std::vector<std::string>{"h_boot"}) {
LOG(INFO) << "create global variable " << boot;
Variable* h_boot = scope_.NewVar(boot);
h_boot->GetMutable<Tensor>()->mutable_data<float>(
make_ddim(std::vector<int>{20 /*batch size*/, 30 /*input dim*/}),
platform::CPUPlace());
}
LOG(INFO) << "create variable step_scopes";
scope_.NewVar("step_scopes");
LOG(INFO) << "create variable h";
scope_.NewVar("h");
}
void CreateRNNOp() {
framework::OpDesc op_desc;
op_desc.set_type("recurrent_op");
// inlinks 0
op_desc.add_inputs("x");
op_desc.add_inputs("x0");
op_desc.add_inputs("x1");
// boot_memories 3
op_desc.add_inputs("h_boot");
// step net 5
op_desc.add_inputs("step_net");
// outlinks 6
op_desc.add_outputs("h");
// step scopes 7
op_desc.add_outputs("step_scopes");
auto _input_format = std::vector<int>{
0, // in_link
3, // memories
4 // step_net
};
auto input_format = op_desc.add_attrs();
input_format->set_name("input_format");
input_format->set_type(paddle::framework::AttrType::INTS);
for (auto i : _input_format) {
input_format->add_ints(i);
}
auto output_format = op_desc.add_attrs();
output_format->set_name("output_format");
output_format->set_type(paddle::framework::AttrType::INTS);
for (auto i : std::vector<int>{0, 1, 2}) {
output_format->add_ints(i);
}
auto inlink_alias = op_desc.add_attrs();
inlink_alias->set_name("inlink_alias");
inlink_alias->set_type(paddle::framework::AttrType::STRINGS);
auto outlink_alias = op_desc.add_attrs();
outlink_alias->set_name("outlink_alias");
outlink_alias->set_type(paddle::framework::AttrType::STRINGS);
auto pre_memories = op_desc.add_attrs();
pre_memories->set_name("pre_memories");
pre_memories->set_type(paddle::framework::AttrType::STRINGS);
auto memories = op_desc.add_attrs();
memories->set_name("memories");
memories->set_type(paddle::framework::AttrType::STRINGS);
// create inlink_alias
for (const auto& item :
std::vector<std::string>{"x@alias", "x0@alias", "x1@alias"}) {
inlink_alias->add_strings(item);
}
// pre memories
for (const auto& item : std::vector<std::string>{"rnn/h@pre"}) {
pre_memories->add_strings(item);
}
// memories
for (const auto& item : std::vector<std::string>{"rnn/h"}) {
memories->add_strings(item);
}
// output alias
for (const auto& item : std::vector<std::string>{"h@alias"}) {
outlink_alias->add_strings(item);
}
rnn_op_ = OpRegistry::CreateOp(op_desc);
LOG(INFO) << "rnn_op finish init";
}
void CreateStepNet() {
LOG(INFO) << "create variable step_net";
Variable* var = scope_.NewVar("step_net");
auto net = var->GetMutable<NetOp>();
net->AddOp(
OpRegistry::CreateOp("mul", {"rnn/h@pre", "rnn/w"}, {"rnn/s"}, {}));
net->AddOp(
OpRegistry::CreateOp("add_two", {"x@alias", "rnn/s"}, {"rnn/h"}, {}));
net->CompleteAddOp();
}
// father scope
Scope scope_;
std::shared_ptr<framework::OperatorBase> rnn_op_;
};
TEST_F(RecurrentOpTest, Run) {
platform::CPUDeviceContext ctx;
rnn_op_->InferShape(scope_);
rnn_op_->Run(scope_, ctx);
}
class RecurrentGradientAlgorithmTest : public ::testing::Test { class RecurrentGradientAlgorithmTest : public ::testing::Test {
protected: protected:
...@@ -281,11 +131,13 @@ class RecurrentGradientAlgorithmTest : public ::testing::Test { ...@@ -281,11 +131,13 @@ class RecurrentGradientAlgorithmTest : public ::testing::Test {
LOG(INFO) << "create variable step_net"; LOG(INFO) << "create variable step_net";
Variable* var = scope_.NewVar("step_net"); Variable* var = scope_.NewVar("step_net");
auto net = var->GetMutable<NetOp>(); auto net = var->GetMutable<NetOp>();
net->AddOp(OpRegistry::CreateOp("mul", {"rnn/h_pre", "rnn/w", "rnn/s_grad"}, // TODO(qingqing) modify backward op create for RNNOp unit test
{"rnn/h_pre_grad", "rnn/w_grad"}, {})); // and the unit test will be removed to Python.
// net->AddOp(OpRegistry::CreateOp("mul", {"X", {"rnn/h_pre", "rnn/w",
// "rnn/s_grad"}}, {"Y", {"rnn/h_pre_grad", "rnn/w_grad"}}, {}));
net->AddOp(OpRegistry::CreateOp("add_two", {"rnn/h_grad"}, // net->AddOp(OpRegistry::CreateOp("add_two", {"X", {"rnn/h_grad"}},
{"rnn/x_grad", "rnn/s_grad"}, {})); // {"Y", {"rnn/x_grad"}}, {"Out", "rnn/s_grad"}}, {}));
net->CompleteAddOp(); net->CompleteAddOp();
} }
...@@ -359,7 +211,8 @@ TEST(RecurrentOp, LinkMemories) { ...@@ -359,7 +211,8 @@ TEST(RecurrentOp, LinkMemories) {
memories.push_back(mem_attr); memories.push_back(mem_attr);
for (size_t i = 1; i < len; ++i) { for (size_t i = 1; i < len; ++i) {
rnn::LinkMemories(step_scopes, memories, i, -1, false /*infer_shape_mode*/); rnn::LinkMemories(step_scopes, memories, i, -1, false
/*infer_shape_mode*/);
} }
// check // check
for (size_t i = 0; i < len - 1; ++i) { for (size_t i = 0; i < len - 1; ++i) {
...@@ -375,7 +228,8 @@ TEST(RecurrentOp, LinkMemories) { ...@@ -375,7 +228,8 @@ TEST(RecurrentOp, LinkMemories) {
} }
for (int i = len - 2; i >= 0; --i) { for (int i = len - 2; i >= 0; --i) {
rnn::LinkMemories(step_scopes, memories, i, 1, false /*infer_shape_mode*/); rnn::LinkMemories(step_scopes, memories, i, 1, false
/*infer_shape_mode*/);
} }
// check // check
for (int i = len - 2; i >= 0; --i) { for (int i = len - 2; i >= 0; --i) {
...@@ -395,4 +249,4 @@ TEST(RecurrentOp, LinkMemories) { ...@@ -395,4 +249,4 @@ TEST(RecurrentOp, LinkMemories) {
USE_OP(add_two); USE_OP(add_two);
USE_OP(mul); USE_OP(mul);
USE_OP_WITHOUT_KERNEL(recurrent_op); USE_OP_ITSELF(recurrent_op);
...@@ -18,18 +18,19 @@ namespace paddle { ...@@ -18,18 +18,19 @@ namespace paddle {
namespace operators { namespace operators {
class RowWiseAddOp : public framework::OperatorWithKernel { class RowWiseAddOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected: protected:
void InferShape(const framework::InferShapeContext &ctx) const override { void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE(ctx.InputSize() == 2UL, auto dim0 = ctx.Input<Tensor>("X")->dims();
"Two inputs is needed by rowwise add"); auto dim1 = ctx.Input<Tensor>("b")->dims();
auto dim0 = ctx.Input<Tensor>(0)->dims();
auto dim1 = ctx.Input<Tensor>(1)->dims();
PADDLE_ENFORCE(dim0.size() == 2, "Input 0 must be matrix"); PADDLE_ENFORCE(dim0.size() == 2, "Input 0 must be matrix");
PADDLE_ENFORCE(dim1.size() == 1, "The second input must be vector"); PADDLE_ENFORCE(dim1.size() == 1, "The second input must be vector");
PADDLE_ENFORCE(dim0[1] == dim1[0], "The width of two input must be same"); PADDLE_ENFORCE(dim0[1] == dim1[0], "The width of two input must be same");
PADDLE_ENFORCE(ctx.OutputSize() == 1, "The output size must be 1"); PADDLE_ENFORCE(ctx.OutputSize("Out") == 1, "The output size must be 1");
ctx.Output<Tensor>(0)->Resize(ctx.Input<Tensor>(0)->dims()); ctx.Output<Tensor>("Out")->Resize(ctx.Input<Tensor>("X")->dims());
} }
}; };
......
...@@ -31,11 +31,11 @@ template <typename Place, typename T> ...@@ -31,11 +31,11 @@ template <typename Place, typename T>
class RowWiseAddKernel : public framework::OpKernel { class RowWiseAddKernel : public framework::OpKernel {
public: public:
void Compute(const framework::ExecutionContext& context) const override { void Compute(const framework::ExecutionContext& context) const override {
auto out = context.Output<Tensor>(0); auto out = context.Output<Tensor>("Out");
out->mutable_data<T>(context.GetPlace()); out->mutable_data<T>(context.GetPlace());
auto input = EigenMatrix<T>::From(*context.Input<Tensor>(0)); auto input = EigenMatrix<T>::From(*context.Input<Tensor>("X"));
auto bias = EigenVector<T>::From(*context.Input<Tensor>(1)); auto bias = EigenVector<T>::From(*context.Input<Tensor>("b"));
auto output = EigenMatrix<T>::From(*out); auto output = EigenMatrix<T>::From(*out);
const int bias_size = bias.dimension(0); const int bias_size = bias.dimension(0);
......
...@@ -18,16 +18,15 @@ namespace paddle { ...@@ -18,16 +18,15 @@ namespace paddle {
namespace operators { namespace operators {
class SGDOp : public framework::OperatorWithKernel { class SGDOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected: protected:
void InferShape(const framework::InferShapeContext &ctx) const override { void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE_EQ(ctx.InputSize(), 2, "Input size of SGDOp must be two"); PADDLE_ENFORCE(
PADDLE_ENFORCE_EQ(ctx.OutputSize(), 1, "Output size of SGDOp must be one"); ctx.Input<Tensor>("param")->dims() == ctx.Input<Tensor>("grad")->dims(),
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(0), "inputs[0] mast be set");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(1), "inputs[1] mast be set");
PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar(0), "outputs[0] mast be set");
PADDLE_ENFORCE(ctx.Input<Tensor>(0)->dims() == ctx.Input<Tensor>(1)->dims(),
"Two input of SGD Op's dimension must be same."); "Two input of SGD Op's dimension must be same.");
ctx.Output<Tensor>(0)->Resize(ctx.Input<Tensor>(0)->dims()); ctx.Output<Tensor>("param_out")->Resize(ctx.Input<Tensor>("param")->dims());
} }
}; };
......
...@@ -18,11 +18,12 @@ namespace paddle { ...@@ -18,11 +18,12 @@ namespace paddle {
namespace operators { namespace operators {
class SigmoidOp : public framework::OperatorWithKernel { class SigmoidOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected: protected:
void InferShape(const framework::InferShapeContext &ctx) const override { void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE(ctx.InputSize() == 1, "Sigmoid Op only have one input"); ctx.Output<Tensor>("Y")->Resize(ctx.Input<Tensor>("X")->dims());
PADDLE_ENFORCE(ctx.OutputSize() == 1, "Sigmoid Op only have one output");
ctx.Output<Tensor>(0)->Resize(ctx.Input<Tensor>(0)->dims());
} }
}; };
...@@ -38,6 +39,9 @@ class SigmoidOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -38,6 +39,9 @@ class SigmoidOpMaker : public framework::OpProtoAndCheckerMaker {
}; };
class SigmoidOpGrad : public framework::OperatorWithKernel { class SigmoidOpGrad : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected: protected:
void InferShape(const framework::InferShapeContext &ctx) const override { void InferShape(const framework::InferShapeContext &ctx) const override {
ctx.Output<Tensor>(0)->Resize(ctx.Input<Tensor>(0)->dims()); ctx.Output<Tensor>(0)->Resize(ctx.Input<Tensor>(0)->dims());
......
...@@ -28,8 +28,8 @@ template <typename Place, typename T> ...@@ -28,8 +28,8 @@ template <typename Place, typename T>
class SigmoidKernel : public framework::OpKernel { class SigmoidKernel : public framework::OpKernel {
public: public:
void Compute(const framework::ExecutionContext& context) const override { void Compute(const framework::ExecutionContext& context) const override {
auto input = context.Input<Tensor>(0); auto input = context.Input<Tensor>("X");
auto output = context.Output<Tensor>(0); auto output = context.Output<Tensor>("Y");
output->mutable_data<T>(context.GetPlace()); output->mutable_data<T>(context.GetPlace());
// The clipping is used in Paddle's raw implenmention // The clipping is used in Paddle's raw implenmention
......
...@@ -18,14 +18,13 @@ namespace paddle { ...@@ -18,14 +18,13 @@ namespace paddle {
namespace operators { namespace operators {
class SoftmaxOp : public framework::OperatorWithKernel { class SoftmaxOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected: protected:
void InferShape(const framework::InferShapeContext &ctx) const override { void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE_EQ(ctx.InputSize(), 1UL, PADDLE_ENFORCE(ctx.Input<Tensor>("X")->dims().size() == 2UL,
"Only one input is need for softmax");
PADDLE_ENFORCE_EQ(ctx.Input<Tensor>("X")->dims().size(), 2UL,
"The input of softmax op must be matrix"); "The input of softmax op must be matrix");
PADDLE_ENFORCE_EQ(ctx.OutputSize(), 1UL,
"Only one output is need for softmax");
ctx.Output<Tensor>("Y")->Resize(ctx.Input<Tensor>("X")->dims()); ctx.Output<Tensor>("Y")->Resize(ctx.Input<Tensor>("X")->dims());
} }
}; };
...@@ -42,13 +41,12 @@ class SoftmaxOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -42,13 +41,12 @@ class SoftmaxOpMaker : public framework::OpProtoAndCheckerMaker {
}; };
class SoftmaxOpGrad : public framework::OperatorWithKernel { class SoftmaxOpGrad : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected: protected:
void InferShape(const framework::InferShapeContext &ctx) const override { void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE_EQ(ctx.InputSize(), 3UL, PADDLE_ENFORCE(ctx.InputVar("Y") != nullptr, "Input(Y) should not be null");
"Input of SoftmaxOpGrad should be 3, X, Y, YG");
PADDLE_ENFORCE_EQ(ctx.OutputSize(), 1UL,
"Output of SoftmaxOpGrad should be 1");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Y"), "Input(Y) should not be null");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Y")), PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Y")),
"Input(Y@GRAD) should not be null"); "Input(Y@GRAD) should not be null");
PADDLE_ENFORCE(ctx.Input<Tensor>("Y")->dims() == PADDLE_ENFORCE(ctx.Input<Tensor>("Y")->dims() ==
......
...@@ -27,7 +27,7 @@ template <typename T> ...@@ -27,7 +27,7 @@ template <typename T>
class CPUUniformRandomKernel : public framework::OpKernel { class CPUUniformRandomKernel : public framework::OpKernel {
public: public:
void Compute(const framework::ExecutionContext& context) const override { void Compute(const framework::ExecutionContext& context) const override {
auto* tensor = context.Output<framework::Tensor>(0); auto* tensor = context.Output<framework::Tensor>("Out");
T* data = tensor->mutable_data<T>(context.GetPlace()); T* data = tensor->mutable_data<T>(context.GetPlace());
unsigned int seed = unsigned int seed =
static_cast<unsigned int>(context.op_.GetAttr<int>("seed")); static_cast<unsigned int>(context.op_.GetAttr<int>("seed"));
...@@ -46,11 +46,14 @@ class CPUUniformRandomKernel : public framework::OpKernel { ...@@ -46,11 +46,14 @@ class CPUUniformRandomKernel : public framework::OpKernel {
}; };
class UniformRandomOp : public framework::OperatorWithKernel { class UniformRandomOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected: protected:
void InferShape(const framework::InferShapeContext& ctx) const override { void InferShape(const framework::InferShapeContext& ctx) const override {
PADDLE_ENFORCE(GetAttr<float>("min") < GetAttr<float>("max"), PADDLE_ENFORCE(GetAttr<float>("min") < GetAttr<float>("max"),
"uniform_random's min must less then max"); "uniform_random's min must less then max");
auto* tensor = ctx.Output<framework::Tensor>(0); auto* tensor = ctx.Output<framework::Tensor>("Out");
auto dims = GetAttr<std::vector<int>>("dims"); auto dims = GetAttr<std::vector<int>>("dims");
tensor->Resize(framework::make_ddim(dims)); tensor->Resize(framework::make_ddim(dims));
} }
......
...@@ -46,12 +46,13 @@ template <typename T> ...@@ -46,12 +46,13 @@ template <typename T>
class GPUUniformRandomKernel : public framework::OpKernel { class GPUUniformRandomKernel : public framework::OpKernel {
public: public:
void Compute(const framework::ExecutionContext& context) const override { void Compute(const framework::ExecutionContext& context) const override {
auto* tensor = context.Output<framework::Tensor>(0); auto* tensor = context.Output<framework::Tensor>("Out");
T* data = tensor->mutable_data<T>(context.GetPlace()); T* data = tensor->mutable_data<T>(context.GetPlace());
unsigned int seed = unsigned int seed =
static_cast<unsigned int>(context.op_.GetAttr<int>("seed")); static_cast<unsigned int>(context.op_.GetAttr<int>("seed"));
if (seed == 0) { if (seed == 0) {
seed = std::random_device()(); std::random_device rd;
seed = rd();
} }
T min = static_cast<T>(context.op_.GetAttr<float>("min")); T min = static_cast<T>(context.op_.GetAttr<float>("min"));
T max = static_cast<T>(context.op_.GetAttr<float>("max")); T max = static_cast<T>(context.op_.GetAttr<float>("max"));
......
...@@ -50,8 +50,8 @@ extern void *cublas_dso_handle; ...@@ -50,8 +50,8 @@ extern void *cublas_dso_handle;
#else #else
#define DECLARE_DYNAMIC_LOAD_CUBLAS_WRAP(__name) \ #define DECLARE_DYNAMIC_LOAD_CUBLAS_WRAP(__name) \
struct DynLoad__##__name { \ struct DynLoad__##__name { \
inline template <typename... Args> \ template <typename... Args> \
cublasStatus_t operator()(Args... args) { \ inline cublasStatus_t operator()(Args... args) { \
return __name(args...); \ return __name(args...); \
} \ } \
}; \ }; \
...@@ -62,12 +62,12 @@ extern void *cublas_dso_handle; ...@@ -62,12 +62,12 @@ extern void *cublas_dso_handle;
DECLARE_DYNAMIC_LOAD_CUBLAS_WRAP(__name) DECLARE_DYNAMIC_LOAD_CUBLAS_WRAP(__name)
#define CUBLAS_BLAS_ROUTINE_EACH(__macro) \ #define CUBLAS_BLAS_ROUTINE_EACH(__macro) \
__macro(cublasSgemv); \ __macro(cublasSgemv_v2); \
__macro(cublasDgemv); \ __macro(cublasDgemv_v2); \
__macro(cublasSgemm); \ __macro(cublasSgemm_v2); \
__macro(cublasDgemm); \ __macro(cublasDgemm_v2); \
__macro(cublasSgeam); \ __macro(cublasSgeam_v2); \
__macro(cublasDgeam); \ __macro(cublasDgeam_v2); \
__macro(cublasCreate_v2); \ __macro(cublasCreate_v2); \
__macro(cublasDestroy_v2); \ __macro(cublasDestroy_v2); \
__macro(cublasSetStream_v2); \ __macro(cublasSetStream_v2); \
......
...@@ -55,6 +55,7 @@ extern void *curand_dso_handle; ...@@ -55,6 +55,7 @@ extern void *curand_dso_handle;
__macro(curandSetPseudoRandomGeneratorSeed); \ __macro(curandSetPseudoRandomGeneratorSeed); \
__macro(curandGenerateUniform); \ __macro(curandGenerateUniform); \
__macro(curandGenerateUniformDouble); \ __macro(curandGenerateUniformDouble); \
__macro(curandGenerateNormal); \
__macro(curandDestroyGenerator); __macro(curandDestroyGenerator);
CURAND_RAND_ROUTINE_EACH(DECLARE_DYNAMIC_LOAD_CURAND_WRAP); CURAND_RAND_ROUTINE_EACH(DECLARE_DYNAMIC_LOAD_CURAND_WRAP);
......
...@@ -14,8 +14,8 @@ limitations under the License. */ ...@@ -14,8 +14,8 @@ limitations under the License. */
#pragma once #pragma once
#include <boost/variant.hpp>
#include <iostream> #include <iostream>
#include "paddle/platform/variant.h"
namespace paddle { namespace paddle {
namespace platform { namespace platform {
......
...@@ -14,33 +14,19 @@ ...@@ -14,33 +14,19 @@
#pragma once #pragma once
#include <memory> #include <boost/config.hpp>
namespace paddle { #ifndef PADDLE_ONLY_CPU
namespace framework {
namespace details { // Because boost's variadic templates has bug on nvcc, boost will disable
// variadic template support when GPU enabled on nvcc.
/* // Define BOOST_NO_CXX11_VARIADIC_TEMPLATES on gcc/clang to generate same
* Slice levels from LOD. // function symbols.
* //
* @lod: LOD to slice. // https://github.com/PaddlePaddle/Paddle/issues/3386
* @level_begin: level to begin slice. #ifndef BOOST_NO_CXX11_VARIADIC_TEMPLATES
* @level_end: level to end slice. #define BOOST_NO_CXX11_VARIADIC_TEMPLATES
*/ #endif
std::shared_ptr<LODTensor::LOD> SliceLOD(const LODTensor::LOD &lod, #endif
size_t level_begin, size_t level_end);
#include <boost/variant.hpp>
/*
* Slice elements from a level of LOD.
*
* @lod: LOD to slice.
* @level: which level to slice.
* @elem_begin: element's index to begin slice.
* @elem_end: element's index to end slice.
*/
std::shared_ptr<LODTensor::LOD> SliceLOD(const LODTensor::LOD &lod,
size_t level, size_t elem_begin,
size_t elem_end, bool tensor_shared);
} // namespace details
} // namespace framework
} // namespace paddle
...@@ -3,7 +3,7 @@ add_unittest_without_exec(socket_test ...@@ -3,7 +3,7 @@ add_unittest_without_exec(socket_test
SocketTest.cpp) SocketTest.cpp)
add_test(NAME socket_test add_test(NAME socket_test
COMMAND ${PROJ_ROOT}/paddle/.set_port.sh -p port COMMAND ${PADDLE_SOURCE_DIR}/paddle/.set_port.sh -p port
${CMAKE_CURRENT_BINARY_DIR}/socket_test --loop_time=10) ${CMAKE_CURRENT_BINARY_DIR}/socket_test --loop_time=10)
####################### test_ProtoServer #################### ####################### test_ProtoServer ####################
...@@ -12,7 +12,7 @@ add_unittest_without_exec(test_ProtoServer ...@@ -12,7 +12,7 @@ add_unittest_without_exec(test_ProtoServer
IF(NOT ON_TRAVIS) IF(NOT ON_TRAVIS)
add_test(NAME test_ProtoServer add_test(NAME test_ProtoServer
COMMAND ${PROJ_ROOT}/paddle/.set_port.sh -p port COMMAND ${PADDLE_SOURCE_DIR}/paddle/.set_port.sh -p port
${CMAKE_CURRENT_BINARY_DIR}/test_ProtoServer) ${CMAKE_CURRENT_BINARY_DIR}/test_ProtoServer)
ENDIF(NOT ON_TRAVIS) ENDIF(NOT ON_TRAVIS)
...@@ -24,5 +24,5 @@ ENDIF(NOT ON_TRAVIS) ...@@ -24,5 +24,5 @@ ENDIF(NOT ON_TRAVIS)
add_unittest_without_exec(test_ParameterServer2 add_unittest_without_exec(test_ParameterServer2
test_ParameterServer2.cpp) test_ParameterServer2.cpp)
add_test(NAME test_ParameterServer2 add_test(NAME test_ParameterServer2
COMMAND ${PROJ_ROOT}/paddle/.set_port.sh -p port -n 4 COMMAND ${PADDLE_SOURCE_DIR}/paddle/.set_port.sh -p port -n 4
${CMAKE_CURRENT_BINARY_DIR}/test_ParameterServer2) ${CMAKE_CURRENT_BINARY_DIR}/test_ParameterServer2)
...@@ -31,7 +31,7 @@ Configuring cmake in /paddle/build ... ...@@ -31,7 +31,7 @@ Configuring cmake in /paddle/build ...
-DWITH_DOC=OFF -DWITH_DOC=OFF
-DWITH_GPU=${WITH_GPU:-OFF} -DWITH_GPU=${WITH_GPU:-OFF}
-DWITH_AVX=${WITH_AVX:-OFF} -DWITH_AVX=${WITH_AVX:-OFF}
-DWITH_GOLANG=${WITH_GOLANG:-OFF} -DWITH_GOLANG=${WITH_GOLANG:-ON}
-DWITH_SWIG_PY=ON -DWITH_SWIG_PY=ON
-DWITH_C_API=${WITH_C_API:-OFF} -DWITH_C_API=${WITH_C_API:-OFF}
-DWITH_PYTHON=${WITH_PYTHON:-ON} -DWITH_PYTHON=${WITH_PYTHON:-ON}
...@@ -51,7 +51,7 @@ cmake .. \ ...@@ -51,7 +51,7 @@ cmake .. \
-DWITH_DOC=OFF \ -DWITH_DOC=OFF \
-DWITH_GPU=${WITH_GPU:-OFF} \ -DWITH_GPU=${WITH_GPU:-OFF} \
-DWITH_AVX=${WITH_AVX:-OFF} \ -DWITH_AVX=${WITH_AVX:-OFF} \
-DWITH_GOLANG=${WITH_GOLANG:-OFF} \ -DWITH_GOLANG=${WITH_GOLANG:-ON} \
-DWITH_SWIG_PY=${WITH_SWIG_PY:-ON} \ -DWITH_SWIG_PY=${WITH_SWIG_PY:-ON} \
-DWITH_C_API=${WITH_C_API:-OFF} \ -DWITH_C_API=${WITH_C_API:-OFF} \
-DWITH_PYTHON=${WITH_PYTHON:-ON} \ -DWITH_PYTHON=${WITH_PYTHON:-ON} \
...@@ -74,11 +74,11 @@ cat <<EOF ...@@ -74,11 +74,11 @@ cat <<EOF
Running unit tests ... Running unit tests ...
======================================== ========================================
EOF EOF
ctest --output-on-failure
# make install should also be test when unittest # make install should also be test when unittest
make install -j `nproc` make install -j `nproc`
pip install /usr/local/opt/paddle/share/wheels/*.whl pip install /usr/local/opt/paddle/share/wheels/*.whl
paddle version paddle version
ctest --output-on-failure
fi fi
...@@ -130,7 +130,7 @@ fi ...@@ -130,7 +130,7 @@ fi
# generate deb package for current build # generate deb package for current build
# FIXME(typhoonzero): should we remove paddle/scripts/deb ? # FIXME(typhoonzero): should we remove paddle/scripts/deb ?
if [[ ${WITH_DEB:-OFF} == "ON" ]]; then if [[ ${WITH_DEB:-ON} == "ON" ]]; then
cat <<EOF cat <<EOF
======================================== ========================================
Generating .deb package ... Generating .deb package ...
......
...@@ -66,28 +66,92 @@ void NewRemoteParameterUpdater::init( ...@@ -66,28 +66,92 @@ void NewRemoteParameterUpdater::init(
// from parameter server // from parameter server
if (paddle_begin_init_params(parameterClient_)) { if (paddle_begin_init_params(parameterClient_)) {
LOG(INFO) << "paddle_begin_init_params start"; LOG(INFO) << "paddle_begin_init_params start";
// NOTE: convert V1 OptimizatioinConfig proto to V2 OptimizerConfig.
// This makes golang pserver compatible with handy V1 demos.
// TODO(wuyi): Refine or remove these ugly converting lines
OptimizerConfig optimizerConfigV2;
if (trainerConfig_.learning_method() == "momentum") {
optimizerConfigV2.set_optimizer(paddle::OptimizerConfig::SGD);
} else if (trainerConfig_.learning_method() == "adagrad") {
optimizerConfigV2.set_optimizer(paddle::OptimizerConfig::Adagrad);
optimizerConfigV2.mutable_adagrad()->set_epsilon(
trainerConfig_.ada_epsilon());
} else if (trainerConfig_.learning_method() == "adadelta") {
optimizerConfigV2.set_optimizer(paddle::OptimizerConfig::Adagrad);
optimizerConfigV2.mutable_adadelta()->set_epsilon(
trainerConfig_.ada_epsilon());
optimizerConfigV2.mutable_adadelta()->set_rho(trainerConfig_.ada_rou());
} else if (trainerConfig_.learning_method() == "adam") {
optimizerConfigV2.set_optimizer(paddle::OptimizerConfig::Adam);
optimizerConfigV2.mutable_adam()->set_beta_1(trainerConfig_.adam_beta1());
optimizerConfigV2.mutable_adam()->set_beta_2(trainerConfig_.adam_beta2());
optimizerConfigV2.mutable_adam()->set_epsilon(
trainerConfig_.adam_epsilon());
} else {
LOG(ERROR) << "got unsupported v1 optimizer config: "
<< trainerConfig_.learning_method();
optimizerConfigV2.set_optimizer(paddle::OptimizerConfig::SGD);
}
if (trainerConfig_.learning_rate_schedule() == "constant") {
optimizerConfigV2.set_lr_policy(paddle::OptimizerConfig::Const);
optimizerConfigV2.mutable_const_lr()->set_learning_rate(
trainerConfig_.learning_rate());
} else if (trainerConfig_.learning_rate_schedule() == "linear") {
optimizerConfigV2.set_lr_policy(paddle::OptimizerConfig::Linear);
optimizerConfigV2.mutable_linear_lr()->set_learning_rate(
trainerConfig_.learning_rate());
optimizerConfigV2.mutable_linear_lr()->set_lr_decay_a(
trainerConfig_.learning_rate_decay_a());
optimizerConfigV2.mutable_linear_lr()->set_lr_decay_b(
trainerConfig_.learning_rate_decay_b());
} else {
LOG(ERROR) << "got unsupported v1 learning_rate_schedule config: "
<< trainerConfig_.learning_rate_schedule() << ", set to const";
optimizerConfigV2.set_lr_policy(paddle::OptimizerConfig::Const);
}
// overwrite optimizerConfigV2 for per-parameter(layer) configs
for (int i = 0; i < parameterSize(); ++i) { for (int i = 0; i < parameterSize(); ++i) {
auto paramConfig = parameters_[i]->getConfig(); auto paramConfig = parameters_[i]->getConfig();
LOG(INFO) << "old param config: " << paramConfig.DebugString(); if (paramConfig.has_momentum() &&
// FIXME(typhoonzero): convert old paramConfig to optimizerConfig trainerConfig_.learning_method() == "momentum") {
OptimizerConfig optimizeConfigV2; optimizerConfigV2.mutable_sgd()->set_momentum(paramConfig.momentum());
auto sgdConfigV2 = optimizeConfigV2.mutable_sgd(); }
sgdConfigV2->set_momentum(paramConfig.momentum());
sgdConfigV2->set_decay(paramConfig.decay_rate());
optimizeConfigV2.set_lr_policy(paddle::OptimizerConfig::Const);
auto constlr = optimizeConfigV2.mutable_const_lr();
if (paramConfig.has_learning_rate()) { if (paramConfig.has_learning_rate()) {
constlr->set_learning_rate(paramConfig.learning_rate()); switch (optimizerConfigV2.lr_policy()) {
} else { case 0:
constlr->set_learning_rate(trainerConfig_.learning_rate()); optimizerConfigV2.mutable_const_lr()->set_learning_rate(
paramConfig.learning_rate());
break;
case 1:
optimizerConfigV2.mutable_linear_lr()->set_learning_rate(
paramConfig.learning_rate());
break;
}
}
if (paramConfig.has_decay_rate()) {
switch (optimizerConfigV2.optimizer()) {
case 1: // SGD
optimizerConfigV2.mutable_sgd()->set_decay(
paramConfig.decay_rate());
break;
case 2: // Adadelta
optimizerConfigV2.mutable_adadelta()->set_decay(
paramConfig.decay_rate());
break;
case 3: // Adagrad
optimizerConfigV2.mutable_adagrad()->set_decay(
paramConfig.decay_rate());
break;
case 4: // Adam
optimizerConfigV2.mutable_adam()->set_decay(
paramConfig.decay_rate());
break;
} }
if (trainerConfig_.algorithm() == "sgd") {
optimizeConfigV2.set_optimizer(paddle::OptimizerConfig::SGD);
// FIXME: config all algorithms
} else {
optimizeConfigV2.set_optimizer(paddle::OptimizerConfig::SGD);
} }
std::string bytes = optimizeConfigV2.SerializeAsString(); // send param and config to pserver
std::string bytes = optimizerConfigV2.SerializeAsString();
const char *array = bytes.data(); const char *array = bytes.data();
int size = (int)bytes.size(); int size = (int)bytes.size();
paddle_init_param( paddle_init_param(
......
...@@ -28,6 +28,8 @@ DECLARE_bool(with_cost); ...@@ -28,6 +28,8 @@ DECLARE_bool(with_cost);
DECLARE_bool(with_gpu); DECLARE_bool(with_gpu);
DECLARE_bool(parallel_nn); DECLARE_bool(parallel_nn);
DECLARE_string(config_args); DECLARE_string(config_args);
DECLARE_bool(use_mkldnn);
DECLARE_bool(use_mkldnn_wgt);
const char *kConfigParserModuleName = "paddle.trainer.config_parser"; const char *kConfigParserModuleName = "paddle.trainer.config_parser";
const char *kConfigParserFuncName = "parse_config_and_serialize"; const char *kConfigParserFuncName = "parse_config_and_serialize";
...@@ -44,6 +46,8 @@ TrainerConfigHelper::TrainerConfigHelper(const std::string &configFilePath) ...@@ -44,6 +46,8 @@ TrainerConfigHelper::TrainerConfigHelper(const std::string &configFilePath)
configArgs << "trainer_id=" << FLAGS_trainer_id << ",local=" << FLAGS_local configArgs << "trainer_id=" << FLAGS_trainer_id << ",local=" << FLAGS_local
<< ",with_cost=" << FLAGS_with_cost << ",use_gpu=" << FLAGS_use_gpu << ",with_cost=" << FLAGS_with_cost << ",use_gpu=" << FLAGS_use_gpu
<< ",parallel_nn=" << FLAGS_parallel_nn << ",parallel_nn=" << FLAGS_parallel_nn
<< ",use_mkldnn=" << FLAGS_use_mkldnn
<< ",use_mkldnn_wgt=" << FLAGS_use_mkldnn_wgt
<< ",cudnn_version=" << hl_get_cudnn_lib_version(); << ",cudnn_version=" << hl_get_cudnn_lib_version();
if (!FLAGS_config_args.empty()) { if (!FLAGS_config_args.empty()) {
configArgs << "," << FLAGS_config_args; configArgs << "," << FLAGS_config_args;
......
...@@ -2,19 +2,19 @@ ...@@ -2,19 +2,19 @@
add_unittest_without_exec(test_Compare add_unittest_without_exec(test_Compare
test_Compare.cpp) test_Compare.cpp)
add_test(NAME test_Compare add_test(NAME test_Compare
COMMAND ${PROJ_ROOT}/paddle/.set_python_path.sh -d ${PROJ_ROOT}/python COMMAND ${PADDLE_SOURCE_DIR}/paddle/.set_python_path.sh -d ${PADDLE_SOURCE_DIR}/python
${CMAKE_CURRENT_BINARY_DIR}/test_Compare ${CMAKE_CURRENT_BINARY_DIR}/test_Compare
WORKING_DIRECTORY ${PROJ_ROOT}/paddle/) WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/paddle/)
################# test_Trainer ########################### ################# test_Trainer ###########################
add_unittest_without_exec(test_Trainer add_unittest_without_exec(test_Trainer
test_Trainer.cpp) test_Trainer.cpp)
add_test(NAME test_Trainer add_test(NAME test_Trainer
COMMAND ${PROJ_ROOT}/paddle/.set_python_path.sh -d ${PROJ_ROOT}/python/ COMMAND ${PADDLE_SOURCE_DIR}/paddle/.set_python_path.sh -d ${PADDLE_SOURCE_DIR}/python/
${PYTHON_EXECUTABLE} ${PROJ_ROOT}/paddle/trainer/tests/gen_proto_data.py && ${PYTHON_EXECUTABLE} ${PADDLE_SOURCE_DIR}/paddle/trainer/tests/gen_proto_data.py &&
${PROJ_ROOT}/paddle/.set_python_path.sh -d ${PROJ_ROOT}/python/ ${PADDLE_SOURCE_DIR}/paddle/.set_python_path.sh -d ${PADDLE_SOURCE_DIR}/python/
${CMAKE_CURRENT_BINARY_DIR}/test_Trainer ${CMAKE_CURRENT_BINARY_DIR}/test_Trainer
WORKING_DIRECTORY ${PROJ_ROOT}/paddle/) WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/paddle/)
############### test_TrainerOnePass ########################## ############### test_TrainerOnePass ##########################
if(WITH_PYTHON) if(WITH_PYTHON)
...@@ -23,60 +23,60 @@ if(WITH_PYTHON) ...@@ -23,60 +23,60 @@ if(WITH_PYTHON)
add_unittest_without_exec(test_TrainerOnePass add_unittest_without_exec(test_TrainerOnePass
test_TrainerOnePass.cpp) test_TrainerOnePass.cpp)
add_test(NAME test_TrainerOnePass add_test(NAME test_TrainerOnePass
COMMAND ${PROJ_ROOT}/paddle/.set_python_path.sh -d COMMAND ${PADDLE_SOURCE_DIR}/paddle/.set_python_path.sh -d
${PROJ_ROOT}/python/:${PROJ_ROOT}/paddle/trainer/tests ${PADDLE_SOURCE_DIR}/python/:${PADDLE_SOURCE_DIR}/paddle/trainer/tests
${PROJ_ROOT}/paddle/.set_port.sh -p port ${CMAKE_CURRENT_BINARY_DIR}/test_TrainerOnePass ${PADDLE_SOURCE_DIR}/paddle/.set_port.sh -p port ${CMAKE_CURRENT_BINARY_DIR}/test_TrainerOnePass
WORKING_DIRECTORY ${PROJ_ROOT}/paddle/) WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/paddle/)
endif() endif()
################ test_CompareTwoNets ###################### ################ test_CompareTwoNets ######################
add_unittest_without_exec(test_CompareTwoNets add_unittest_without_exec(test_CompareTwoNets
test_CompareTwoNets.cpp) test_CompareTwoNets.cpp)
add_test(NAME test_CompareTwoNets add_test(NAME test_CompareTwoNets
COMMAND ${PROJ_ROOT}/paddle/.set_python_path.sh -d ${PROJ_ROOT}/python/ COMMAND ${PADDLE_SOURCE_DIR}/paddle/.set_python_path.sh -d ${PADDLE_SOURCE_DIR}/python/
${CMAKE_CURRENT_BINARY_DIR}/test_CompareTwoNets ${CMAKE_CURRENT_BINARY_DIR}/test_CompareTwoNets
--config_file_a=trainer/tests/sample_trainer_config_qb_rnn.conf --config_file_b=trainer/tests/sample_trainer_config_rnn.conf --config_file_a=trainer/tests/sample_trainer_config_qb_rnn.conf --config_file_b=trainer/tests/sample_trainer_config_rnn.conf
WORKING_DIRECTORY ${PROJ_ROOT}/paddle/) WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/paddle/)
############### test_CompareTwoOpts ################### ############### test_CompareTwoOpts ###################
add_unittest_without_exec(test_CompareTwoOpts add_unittest_without_exec(test_CompareTwoOpts
test_CompareTwoOpts.cpp) test_CompareTwoOpts.cpp)
add_test(NAME test_CompareTwoOpts add_test(NAME test_CompareTwoOpts
COMMAND ${PROJ_ROOT}/paddle/.set_python_path.sh -d ${PROJ_ROOT}/python/ COMMAND ${PADDLE_SOURCE_DIR}/paddle/.set_python_path.sh -d ${PADDLE_SOURCE_DIR}/python/
${CMAKE_CURRENT_BINARY_DIR}/test_CompareTwoOpts ${CMAKE_CURRENT_BINARY_DIR}/test_CompareTwoOpts
--config_file_a=trainer/tests/sample_trainer_config_opt_a.conf --config_file_b=trainer/tests/sample_trainer_config_opt_b.conf --config_file_a=trainer/tests/sample_trainer_config_opt_a.conf --config_file_b=trainer/tests/sample_trainer_config_opt_b.conf
--num_passes=1 --need_high_accuracy=0 --num_passes=1 --need_high_accuracy=0
WORKING_DIRECTORY ${PROJ_ROOT}/paddle/) WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/paddle/)
################# test_CompareSparse ################## ################# test_CompareSparse ##################
add_unittest_without_exec(test_CompareSparse add_unittest_without_exec(test_CompareSparse
test_CompareSparse.cpp) test_CompareSparse.cpp)
if(NOT ON_TRAVIS) if(NOT ON_TRAVIS)
add_test(NAME test_CompareSparse add_test(NAME test_CompareSparse
COMMAND ${PROJ_ROOT}/paddle/.set_python_path.sh -d ${PROJ_ROOT}/python/ COMMAND ${PADDLE_SOURCE_DIR}/paddle/.set_python_path.sh -d ${PADDLE_SOURCE_DIR}/python/
./.set_port.sh -p port -n 6 ./.set_port.sh -p port -n 6
${CMAKE_CURRENT_BINARY_DIR}/test_CompareSparse ${CMAKE_CURRENT_BINARY_DIR}/test_CompareSparse
WORKING_DIRECTORY ${PROJ_ROOT}/paddle/) WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/paddle/)
endif() endif()
################# test_recurrent_machine_generation ############### ################# test_recurrent_machine_generation ###############
add_unittest_without_exec(test_recurrent_machine_generation add_unittest_without_exec(test_recurrent_machine_generation
test_recurrent_machine_generation.cpp) test_recurrent_machine_generation.cpp)
add_test(NAME test_recurrent_machine_generation add_test(NAME test_recurrent_machine_generation
COMMAND ${PROJ_ROOT}/paddle/.set_python_path.sh -d ${PROJ_ROOT}/python/ COMMAND ${PADDLE_SOURCE_DIR}/paddle/.set_python_path.sh -d ${PADDLE_SOURCE_DIR}/python/
${CMAKE_CURRENT_BINARY_DIR}/test_recurrent_machine_generation ${CMAKE_CURRENT_BINARY_DIR}/test_recurrent_machine_generation
WORKING_DIRECTORY ${PROJ_ROOT}/paddle/) WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/paddle/)
#################### test_PyDataProviderWrapper ######################### #################### test_PyDataProviderWrapper #########################
add_unittest_without_exec(test_PyDataProviderWrapper add_unittest_without_exec(test_PyDataProviderWrapper
test_PyDataProviderWrapper.cpp) test_PyDataProviderWrapper.cpp)
add_test(NAME test_PyDataProviderWrapper add_test(NAME test_PyDataProviderWrapper
COMMAND ${PROJ_ROOT}/paddle/.set_python_path.sh -d COMMAND ${PADDLE_SOURCE_DIR}/paddle/.set_python_path.sh -d
${PROJ_ROOT}/python/:${PROJ_ROOT}/paddle/trainer/tests ${PADDLE_SOURCE_DIR}/python/:${PADDLE_SOURCE_DIR}/paddle/trainer/tests
${CMAKE_CURRENT_BINARY_DIR}/test_PyDataProviderWrapper ${CMAKE_CURRENT_BINARY_DIR}/test_PyDataProviderWrapper
WORKING_DIRECTORY ${PROJ_ROOT}/paddle/) WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/paddle/)
#################### test_config_parser ######################### #################### test_config_parser #########################
add_test(NAME test_config_parser add_test(NAME test_config_parser
COMMAND ${PROJ_ROOT}/paddle/.set_python_path.sh -d ${PROJ_ROOT}/python/ COMMAND ${PADDLE_SOURCE_DIR}/paddle/.set_python_path.sh -d ${PADDLE_SOURCE_DIR}/python/
${PYTHON_EXECUTABLE} ${PROJ_ROOT}/paddle/trainer/tests/config_parser_test.py ${PYTHON_EXECUTABLE} ${PADDLE_SOURCE_DIR}/paddle/trainer/tests/config_parser_test.py
WORKING_DIRECTORY ${PROJ_ROOT}/paddle/) WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/paddle/)
...@@ -20,6 +20,14 @@ DEFINE_bool(use_gpu, false, "Only support CPU training"); ...@@ -20,6 +20,14 @@ DEFINE_bool(use_gpu, false, "Only support CPU training");
DEFINE_bool(use_gpu, true, "Whether to use GPU for training"); DEFINE_bool(use_gpu, true, "Whether to use GPU for training");
#endif #endif
#ifdef PADDLE_USE_MKLDNN
// TODO(TJ): change to true when MKLDNN layers support multi-inputs
DEFINE_bool(use_mkldnn, false, "Default still keep use CPU training");
#else
DEFINE_bool(use_mkldnn, false, "Only support CPU training");
#endif
DEFINE_bool(use_mkldnn_wgt, false, "Init weight from CPU weight");
DEFINE_bool(parallel_nn, DEFINE_bool(parallel_nn,
false, false,
"Whether to use multi-threads to calculate one neural network." "Whether to use multi-threads to calculate one neural network."
......
...@@ -40,3 +40,5 @@ DECLARE_bool(show_layer_stat); ...@@ -40,3 +40,5 @@ DECLARE_bool(show_layer_stat);
DECLARE_string(predict_file); DECLARE_string(predict_file);
DECLARE_bool(prev_batch_state); DECLARE_bool(prev_batch_state);
DECLARE_string(init_model_path); DECLARE_string(init_model_path);
DECLARE_bool(use_mkldnn);
DECLARE_bool(use_mkldnn_wgt);
...@@ -13,6 +13,6 @@ add_executable( ...@@ -13,6 +13,6 @@ add_executable(
link_paddle_exe(test_CustomStackTracePrint) link_paddle_exe(test_CustomStackTracePrint)
if(NOT APPLE) if(NOT APPLE)
add_test(NAME test_CustomStackTracePrint add_test(NAME test_CustomStackTracePrint
COMMAND ${PROJ_ROOT}/paddle/utils/tests/test_CustomStackTracePrint.sh COMMAND ${PADDLE_SOURCE_DIR}/paddle/utils/tests/test_CustomStackTracePrint.sh
WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}) WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR})
endif() endif()
...@@ -9,13 +9,13 @@ foreach(filename ${proto_filenames}) ...@@ -9,13 +9,13 @@ foreach(filename ${proto_filenames})
get_filename_component(ABS_FIL ${filename} ABSOLUTE) get_filename_component(ABS_FIL ${filename} ABSOLUTE)
get_filename_component(FIL_WE ${filename} NAME_WE) get_filename_component(FIL_WE ${filename} NAME_WE)
set(CUR_PROTO_GEN_PY set(CUR_PROTO_GEN_PY
${PROJ_ROOT}/paddle/python/paddle/proto/${FIL_WE}_pb2.py) ${PADDLE_SOURCE_DIR}/paddle/python/paddle/proto/${FIL_WE}_pb2.py)
set(PROTO_GEN_PY set(PROTO_GEN_PY
${CUR_PROTO_GEN_PY} ${CUR_PROTO_GEN_PY}
${PROTO_GEN_PY}) ${PROTO_GEN_PY})
add_custom_command(OUTPUT ${CUR_PROTO_GEN_PY} add_custom_command(OUTPUT ${CUR_PROTO_GEN_PY}
COMMAND ${PROTOBUF_PROTOC_EXECUTABLE} COMMAND ${PROTOBUF_PROTOC_EXECUTABLE}
ARGS "--python_out=${PROJ_ROOT}/python/paddle/proto" ARGS "--python_out=${PADDLE_SOURCE_DIR}/python/paddle/proto"
"-I" ${CMAKE_CURRENT_SOURCE_DIR} ${ABS_FIL} "-I" ${CMAKE_CURRENT_SOURCE_DIR} ${ABS_FIL}
DEPENDS ${ABS_FIL} protoc) DEPENDS ${ABS_FIL} protoc)
endforeach() endforeach()
......
set(OUTPUT_DIR
"${CMAKE_CURRENT_BINARY_DIR}/build")
file(GLOB TRAINER_PY_FILES . ./paddle/trainer/*.py) file(GLOB TRAINER_PY_FILES . ./paddle/trainer/*.py)
file(GLOB HELPERS_PY_FILES . ./paddle/trainer_config_helpers/*.py) file(GLOB HELPERS_PY_FILES . ./paddle/trainer_config_helpers/*.py)
...@@ -18,7 +16,7 @@ SET(COPY_PADDLE_MASTER "") ...@@ -18,7 +16,7 @@ SET(COPY_PADDLE_MASTER "")
if(WITH_GOLANG) if(WITH_GOLANG)
SET(COPY_PADDLE_MASTER "copy_paddle_master") SET(COPY_PADDLE_MASTER "copy_paddle_master")
add_custom_command(TARGET ${COPY_PADDLE_MASTER} add_custom_command(TARGET ${COPY_PADDLE_MASTER}
COMMAND cp ${paddle_master_LIB_PATH} ${PROJ_ROOT}/python/paddle/v2/master/ COMMAND cp ${paddle_master_LIB_PATH} ${PADDLE_SOURCE_DIR}/python/paddle/v2/master/
) )
add_dependencies(copy_paddle_master paddle_master) add_dependencies(copy_paddle_master paddle_master)
endif(WITH_GOLANG) endif(WITH_GOLANG)
...@@ -27,19 +25,21 @@ configure_file(${CMAKE_CURRENT_SOURCE_DIR}/setup.py.in ...@@ -27,19 +25,21 @@ configure_file(${CMAKE_CURRENT_SOURCE_DIR}/setup.py.in
${CMAKE_CURRENT_BINARY_DIR}/setup.py) ${CMAKE_CURRENT_BINARY_DIR}/setup.py)
add_custom_command(OUTPUT ${PROJ_ROOT}/python/paddle/v2/framework/core.so add_custom_command(OUTPUT ${PADDLE_SOURCE_DIR}/python/paddle/v2/framework/core.so
COMMAND cmake -E copy $<TARGET_FILE:paddle_pybind> ${PROJ_ROOT}/python/paddle/v2/framework/core.so COMMAND cmake -E copy $<TARGET_FILE:paddle_pybind> ${PADDLE_SOURCE_DIR}/python/paddle/v2/framework/core.so
DEPENDS paddle_pybind) DEPENDS paddle_pybind)
add_custom_target(copy_paddle_pybind ALL DEPENDS ${PROJ_ROOT}/python/paddle/v2/framework/core.so) add_custom_target(copy_paddle_pybind ALL DEPENDS ${PADDLE_SOURCE_DIR}/python/paddle/v2/framework/core.so)
add_custom_command(OUTPUT ${OUTPUT_DIR}/.timestamp add_custom_command(OUTPUT ${PADDLE_PYTHON_BUILD_DIR}/.timestamp
COMMAND env ${py_env} ${PYTHON_EXECUTABLE} setup.py bdist_wheel COMMAND env ${py_env} ${PYTHON_EXECUTABLE} setup.py bdist_wheel
COMMAND ${CMAKE_COMMAND} -E touch ${OUTPUT_DIR}/.timestamp COMMAND ${CMAKE_COMMAND} -E touch ${PADDLE_PYTHON_BUILD_DIR}/.timestamp
COMMAND ${CMAKE_COMMAND} -E remove_directory ${PADDLE_PYTHON_BUILD_DIR}/lib-python
COMMAND ${CMAKE_COMMAND} -E copy_directory ${PADDLE_PYTHON_BUILD_DIR}/lib* ${PADDLE_PYTHON_BUILD_DIR}/lib-python
DEPENDS gen_proto_py copy_paddle_pybind framework_py_proto ${PY_FILES} ${external_project_dependencies} ${COPY_PADDLE_MASTER}) DEPENDS gen_proto_py copy_paddle_pybind framework_py_proto ${PY_FILES} ${external_project_dependencies} ${COPY_PADDLE_MASTER})
add_custom_target(paddle_python ALL DEPENDS add_custom_target(paddle_python ALL DEPENDS
${OUTPUT_DIR}/.timestamp paddle_pserver_main paddle_trainer paddle_merge_model python_api_wheel) ${PADDLE_PYTHON_BUILD_DIR}/.timestamp paddle_pserver_main paddle_trainer paddle_merge_model python_api_wheel)
set(PADDLE_PYTHON_PACKAGE_DIR ${CMAKE_CURRENT_BINARY_DIR}/dist/) set(PADDLE_PYTHON_PACKAGE_DIR ${CMAKE_CURRENT_BINARY_DIR}/dist/)
......
...@@ -1604,6 +1604,8 @@ class MultiClassCrossEntropySelfNormCostLayer(LayerBase): ...@@ -1604,6 +1604,8 @@ class MultiClassCrossEntropySelfNormCostLayer(LayerBase):
@config_layer('fc') @config_layer('fc')
class FCLayer(LayerBase): class FCLayer(LayerBase):
layer_type = 'fc'
def __init__(self, def __init__(self,
name, name,
size, size,
...@@ -1611,14 +1613,27 @@ class FCLayer(LayerBase): ...@@ -1611,14 +1613,27 @@ class FCLayer(LayerBase):
bias=True, bias=True,
error_clipping_threshold=None, error_clipping_threshold=None,
**xargs): **xargs):
super(FCLayer, self).__init__(name, 'fc', size, inputs=inputs, **xargs) use_mkldnn = bool(int(g_command_config_args.get("use_mkldnn", 0)))
use_mkldnn_wgt = bool(
int(g_command_config_args.get("use_mkldnn_wgt", 0)))
if use_mkldnn:
self.layer_type = 'mkldnn_fc'
config_assert(
len(inputs) == 1,
"MkldnnFCLayer support one and only one input!")
super(FCLayer, self).__init__(
name, self.layer_type, size, inputs=inputs, **xargs)
for input_index in xrange(len(self.inputs)): for input_index in xrange(len(self.inputs)):
input_layer = self.get_input_layer(input_index) input_layer = self.get_input_layer(input_index)
psize = self.config.size * input_layer.size psize = self.config.size * input_layer.size
dims = [input_layer.size, self.config.size] dims = [input_layer.size, self.config.size]
format = self.inputs[input_index].format format = self.inputs[input_index].format
sparse = format == "csr" or format == "csc" sparse = format == "csr" or format == "csc"
if use_mkldnn:
config_assert(not sparse,
"MkldnnFCLayer do not support sparse format yet")
if use_mkldnn_wgt:
dims = [self.config.size, input_layer.size]
if sparse: if sparse:
psize = self.inputs[input_index].nnz psize = self.inputs[input_index].nnz
else: else:
...@@ -1631,6 +1646,11 @@ class FCLayer(LayerBase): ...@@ -1631,6 +1646,11 @@ class FCLayer(LayerBase):
self.config.error_clipping_threshold = error_clipping_threshold self.config.error_clipping_threshold = error_clipping_threshold
@config_layer('mkldnn_fc')
class MkldnnFcLayer(FCLayer):
layer_type = 'mkldnn_fc'
@config_layer('selective_fc') @config_layer('selective_fc')
class SelectiveFCLayer(LayerBase): class SelectiveFCLayer(LayerBase):
def __init__(self, def __init__(self,
......
#################### test_config_parser ######################### #################### test_config_parser #########################
add_test(NAME layers_test add_test(NAME layers_test
COMMAND ${PROJ_ROOT}/paddle/.set_python_path.sh -d ${PROJ_ROOT}/python/ COMMAND ${PADDLE_SOURCE_DIR}/paddle/.set_python_path.sh -d ${PADDLE_SOURCE_DIR}/python/
${PYTHON_EXECUTABLE} ${PROJ_ROOT}/python/paddle/trainer_config_helpers/tests/layers_test.py ${PYTHON_EXECUTABLE} ${PADDLE_SOURCE_DIR}/python/paddle/trainer_config_helpers/tests/layers_test.py
WORKING_DIRECTORY ${PROJ_ROOT}/python/paddle) WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/python/paddle)
add_test(NAME test_reset_hook add_test(NAME test_reset_hook
COMMAND ${PROJ_ROOT}/paddle/.set_python_path.sh -d ${PROJ_ROOT}/python/ COMMAND ${PADDLE_SOURCE_DIR}/paddle/.set_python_path.sh -d ${PADDLE_SOURCE_DIR}/python/
${PYTHON_EXECUTABLE} ${PROJ_ROOT}/python/paddle/trainer_config_helpers/tests/test_reset_hook.py ${PYTHON_EXECUTABLE} ${PADDLE_SOURCE_DIR}/python/paddle/trainer_config_helpers/tests/test_reset_hook.py
WORKING_DIRECTORY ${PROJ_ROOT}/python/paddle) WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/python/paddle)
add_paddle_exe(protobuf_equal ProtobufEqualMain.cpp) add_paddle_exe(protobuf_equal ProtobufEqualMain.cpp)
add_test(NAME test_layerHelpers add_test(NAME test_layerHelpers
COMMAND COMMAND
${PROJ_ROOT}/python/paddle/trainer_config_helpers/tests/configs/run_tests.sh ${PYTHON_EXECUTABLE} ${PADDLE_SOURCE_DIR}/python/paddle/trainer_config_helpers/tests/configs/run_tests.sh ${PYTHON_EXECUTABLE}
${CMAKE_CURRENT_BINARY_DIR}/protobuf_equal ${CMAKE_CURRENT_BINARY_DIR}/protobuf_equal
) )
import paddle.v2.framework.core as core import paddle.v2.framework.core as core
import paddle.v2.framework.proto.op_proto_pb2 as op_proto_pb2 import paddle.v2.framework.proto.framework_pb2 as framework_pb2
import paddle.v2.framework.proto.op_desc_pb2 as op_desc_pb2
import paddle.v2.framework.proto.attribute_pb2 as attribute_pb2
def get_all_op_protos(): def get_all_op_protos():
...@@ -12,11 +10,15 @@ def get_all_op_protos(): ...@@ -12,11 +10,15 @@ def get_all_op_protos():
protostrs = core.get_all_op_protos() protostrs = core.get_all_op_protos()
ret_values = [] ret_values = []
for pbstr in protostrs: for pbstr in protostrs:
op_proto = op_proto_pb2.OpProto.FromString(str(pbstr)) op_proto = framework_pb2.OpProto.FromString(str(pbstr))
ret_values.append(op_proto) ret_values.append(op_proto)
return ret_values return ret_values
def is_str(s):
return isinstance(s, str) or isinstance(s, unicode)
class OpDescCreationMethod(object): class OpDescCreationMethod(object):
""" """
A Functor object to convert user input(use key word args) to OpDesc based on A Functor object to convert user input(use key word args) to OpDesc based on
...@@ -27,7 +29,7 @@ class OpDescCreationMethod(object): ...@@ -27,7 +29,7 @@ class OpDescCreationMethod(object):
""" """
def __init__(self, op_proto): def __init__(self, op_proto):
if not isinstance(op_proto, op_proto_pb2.OpProto): if not isinstance(op_proto, framework_pb2.OpProto):
raise TypeError("Argument should be OpProto") raise TypeError("Argument should be OpProto")
self.__op_proto__ = op_proto self.__op_proto__ = op_proto
...@@ -39,26 +41,34 @@ class OpDescCreationMethod(object): ...@@ -39,26 +41,34 @@ class OpDescCreationMethod(object):
""" """
if len(args) != 0: if len(args) != 0:
raise ValueError("Only keyword arguments is supported by Paddle") raise ValueError("Only keyword arguments is supported by Paddle")
op_desc = op_desc_pb2.OpDesc() op_desc = framework_pb2.OpDesc()
# Inputs for input_parameter in self.__op_proto__.inputs:
ipts, ipt_format, _ = OpDescCreationMethod.extract_input_or_output( input_arguments = kwargs.get(input_parameter.name, [])
"input", kwargs, self.__op_proto__.inputs) if is_str(input_arguments):
op_desc.inputs.extend(ipts) input_arguments = [input_arguments]
if ipt_format is not None:
op_desc.attrs.extend([ipt_format]) if not input_parameter.duplicable and len(input_arguments) > 1:
raise ValueError("Input %s only accepts one input, but give %d"
# Outputs % (input_parameter.name, len(input_arguments)))
outs, out_format, tmp_index = OpDescCreationMethod.extract_input_or_output(
"output", kwargs, self.__op_proto__.outputs) ipt = op_desc.inputs.add()
op_desc.outputs.extend(outs) ipt.parameter = input_parameter.name
if out_format is not None: ipt.arguments.extend(input_arguments)
op_desc.attrs.extend([out_format])
if len(tmp_index) != 0: for output_parameter in self.__op_proto__.outputs:
tmp_index_attr = op_desc.attrs.add() output_arguments = kwargs.get(output_parameter.name, [])
tmp_index_attr.type = attribute_pb2.INTS if is_str(output_arguments):
tmp_index_attr.name = "temporary_index" output_arguments = [output_arguments]
tmp_index_attr.ints.extend(tmp_index)
if not output_parameter.duplicable and len(output_arguments) > 1:
raise ValueError(
"Output %s only accepts one output, but give %d" %
(output_parameter.name, len(output_arguments)))
out = op_desc.outputs.add()
out.parameter = output_parameter.name
out.arguments.extend(output_arguments)
# Types # Types
op_desc.type = self.__op_proto__.type op_desc.type = self.__op_proto__.type
...@@ -72,17 +82,17 @@ class OpDescCreationMethod(object): ...@@ -72,17 +82,17 @@ class OpDescCreationMethod(object):
new_attr = op_desc.attrs.add() new_attr = op_desc.attrs.add()
new_attr.name = attr.name new_attr.name = attr.name
new_attr.type = attr.type new_attr.type = attr.type
if attr.type == attribute_pb2.INT: if attr.type == framework_pb2.INT:
new_attr.i = user_defined_attr new_attr.i = user_defined_attr
elif attr.type == attribute_pb2.FLOAT: elif attr.type == framework_pb2.FLOAT:
new_attr.f = user_defined_attr new_attr.f = user_defined_attr
elif attr.type == attribute_pb2.STRING: elif attr.type == framework_pb2.STRING:
new_attr.s = user_defined_attr new_attr.s = user_defined_attr
elif attr.type == attribute_pb2.INTS: elif attr.type == framework_pb2.INTS:
new_attr.ints.extend(user_defined_attr) new_attr.ints.extend(user_defined_attr)
elif attr.type == attribute_pb2.FLOATS: elif attr.type == framework_pb2.FLOATS:
new_attr.floats.extend(user_defined_attr) new_attr.floats.extend(user_defined_attr)
elif attr.type == attribute_pb2.STRINGS: elif attr.type == framework_pb2.STRINGS:
new_attr.strings.extend(user_defined_attr) new_attr.strings.extend(user_defined_attr)
else: else:
raise NotImplementedError("Not support attribute type " + raise NotImplementedError("Not support attribute type " +
...@@ -90,50 +100,6 @@ class OpDescCreationMethod(object): ...@@ -90,50 +100,6 @@ class OpDescCreationMethod(object):
return op_desc return op_desc
@staticmethod
def extract_input_or_output(in_out, kwargs, meta):
"""
Extract input variable names or output variable names from key-word
arguments, which base on VarProtos.
:param in_out: "input" or "output"
:param kwargs: key-word arguments that user inputted.
:param meta: a list of VarProto
:return: The three object will be return. The variable names. The
input_format or output_format attribute(None if the input or output is
not multiple). The temporary variable index list.
"""
multiple = OpDescCreationMethod.any_is_true((m.multiple for m in meta))
tmp_index = []
retv = []
if multiple:
var_format = op_desc_pb2.AttrDesc()
var_format.type = attribute_pb2.INTS
var_format.name = "%s_format" % in_out
var_format.ints.append(0)
for var in meta:
var_name = var.name
if var.temporary:
var_name = [core.var_names.temp()]
tmp_index.append(len(retv))
else:
var_name = kwargs.get(var_name, [])
if not isinstance(var_name, list):
var_name = [var_name]
retv.extend(var_name)
var_format.ints.append(len(var_name) + var_format.ints[-1])
return retv, var_format, tmp_index
else:
for var in meta:
if var.temporary:
retv.append(kwargs.get(var.name, core.var_names.temp()))
tmp_index.append(len(retv))
else:
retv.append(kwargs.get(var.name, core.var_names.empty()))
return retv, None, tmp_index
@staticmethod @staticmethod
def any_is_true(generator): def any_is_true(generator):
""" """
...@@ -146,13 +112,12 @@ class OpDescCreationMethod(object): ...@@ -146,13 +112,12 @@ class OpDescCreationMethod(object):
class OpInfo(object): class OpInfo(object):
def __init__(self, name, method, inputs, outputs, attrs, no_temp_outputs): def __init__(self, name, method, inputs, outputs, attrs):
self.name = name self.name = name
self.method = method self.method = method
self.inputs = inputs self.inputs = inputs
self.outputs = outputs self.outputs = outputs
self.attrs = attrs self.attrs = attrs
self.no_temp_outputs = no_temp_outputs
def create_op_creation_method(op_proto): def create_op_creation_method(op_proto):
...@@ -170,10 +135,7 @@ def create_op_creation_method(op_proto): ...@@ -170,10 +135,7 @@ def create_op_creation_method(op_proto):
name=op_proto.type, name=op_proto.type,
inputs=[var.name for var in op_proto.inputs], inputs=[var.name for var in op_proto.inputs],
outputs=[var.name for var in op_proto.outputs], outputs=[var.name for var in op_proto.outputs],
attrs=[attr.name for attr in op_proto.attrs], attrs=[attr.name for attr in op_proto.attrs])
no_temp_outputs=[
var.name for var in op_proto.outputs if not var.temporary
])
class OperatorFactory(object): class OperatorFactory(object):
...@@ -214,8 +176,5 @@ class OperatorFactory(object): ...@@ -214,8 +176,5 @@ class OperatorFactory(object):
def get_op_attr_names(self, type): def get_op_attr_names(self, type):
return self.get_op_info(type).attrs return self.get_op_info(type).attrs
def get_op_no_temp_output_names(self, type):
return self.get_op_info(type).no_temp_outputs
Operator = OperatorFactory() # Default global factory Operator = OperatorFactory() # Default global factory
py_test(test_net SRCS test_net.py) py_test(test_net SRCS test_net.py)
py_test(test_fc_op SRCS test_fc_op.py)
py_test(test_scope SRCS test_scope.py) py_test(test_scope SRCS test_scope.py)
py_test(test_tensor SRCS test_tensor.py) py_test(test_tensor SRCS test_tensor.py)
...@@ -23,6 +22,6 @@ py_test(test_rowwise_add_op SRCS test_rowwise_add_op.py) ...@@ -23,6 +22,6 @@ py_test(test_rowwise_add_op SRCS test_rowwise_add_op.py)
py_test(test_default_scope_funcs SRCS test_default_scope_funcs.py) py_test(test_default_scope_funcs SRCS test_default_scope_funcs.py)
py_test(test_operator SRCS test_operator.py) py_test(test_operator SRCS test_operator.py)
# py_test(test_gaussian_random_op SRCS test_gaussian_random_op.py)
py_test(test_gaussian_random_op SRCS test_gaussian_random_op.py)
py_test(test_uniform_random_op SRCS test_uniform_random_op.py) py_test(test_uniform_random_op SRCS test_uniform_random_op.py)
py_test(test_recurrent_op SRCS test_recurrent_op.py)
...@@ -53,15 +53,18 @@ def get_numeric_gradient(op, ...@@ -53,15 +53,18 @@ def get_numeric_gradient(op,
tensor.set(input_values[var_name], core.CPUPlace()) tensor.set(input_values[var_name], core.CPUPlace())
# Create all output variable in local_scope # Create all output variable in local_scope
for output in op.outputs(): opts = op.outputs()
for key in opts:
for output in opts[key]:
if local_scope.find_var(output) is None: if local_scope.find_var(output) is None:
local_scope.new_var(output).get_tensor() local_scope.new_var(output).get_tensor()
op.infer_shape(local_scope) op.infer_shape(local_scope)
# allocate output memory # allocate output memory
for output in op.outputs(): for key in opts:
local_scope.find_var(output).get_tensor().alloc_float(core.CPUPlace()) for output in opts[key]:
local_scope.find_var(output).get_tensor().alloc_float(core.CPUPlace(
))
# TODO(yuyang18): Only CPU is support now. # TODO(yuyang18): Only CPU is support now.
cpu_ctx = core.DeviceContext.create(core.CPUPlace()) cpu_ctx = core.DeviceContext.create(core.CPUPlace())
...@@ -73,21 +76,35 @@ def get_numeric_gradient(op, ...@@ -73,21 +76,35 @@ def get_numeric_gradient(op,
def product(dim): def product(dim):
return reduce(lambda a, b: a * b, dim, 1) return reduce(lambda a, b: a * b, dim, 1)
# get the input tensor that we want to get it's numeric gradient.
tensor_to_check = local_scope.find_var(input_to_check).get_tensor() tensor_to_check = local_scope.find_var(input_to_check).get_tensor()
tensor_size = product(tensor_to_check.get_dims()) tensor_size = product(tensor_to_check.get_dims())
# prepare a numpy array to store the gradient.
gradient_flat = numpy.zeros(shape=(tensor_size, ), dtype='float32') gradient_flat = numpy.zeros(shape=(tensor_size, ), dtype='float32')
# we only compute gradient of one element each time.
# we use a for loop to compute the gradient of every element.
for i in xrange(tensor_size): for i in xrange(tensor_size):
# get one input element throw it's index i.
origin = tensor_to_check.get_float_element(i) origin = tensor_to_check.get_float_element(i)
# add delta to it, run op and then get the sum of the result tensor.
x_pos = origin + delta x_pos = origin + delta
tensor_to_check.set_float_element(i, x_pos) tensor_to_check.set_float_element(i, x_pos)
y_pos = get_output() y_pos = get_output()
# plus delta to this element, run op and get the sum of the result tensor.
x_neg = origin - delta x_neg = origin - delta
tensor_to_check.set_float_element(i, x_neg) tensor_to_check.set_float_element(i, x_neg)
y_neg = get_output() y_neg = get_output()
tensor_to_check.set_float_element(i, origin) # restore old value # restore old value
tensor_to_check.set_float_element(i, origin)
# compute the gradient of this element and store it into a numpy array.
gradient_flat[i] = (y_pos - y_neg) / delta / 2 gradient_flat[i] = (y_pos - y_neg) / delta / 2
# reshape the gradient result to the shape of the source tensor.
return gradient_flat.reshape(tensor_to_check.get_dims()) return gradient_flat.reshape(tensor_to_check.get_dims())
...@@ -136,19 +153,24 @@ class GradientChecker(unittest.TestCase): ...@@ -136,19 +153,24 @@ class GradientChecker(unittest.TestCase):
if no_grad_set is None: if no_grad_set is None:
no_grad_set = set() no_grad_set = set()
tmp_outs = forward_op.temp_outputs() no_tmp_out = forward_op.no_intermediate_outputs()
no_tmp_out = filter(lambda name: name not in tmp_outs,
forward_op.outputs())
if len(no_tmp_out) != 1: if len(no_tmp_out) != 1:
raise ValueError("non temp out_names should be 1") raise ValueError("non temp out_names should be 1")
in_names = forward_op.inputs() inputs = forward_op.inputs()
in_names = [item for k in inputs for item in inputs[k]]
outputs = forward_op.outputs()
out_names = [item for k in outputs for item in outputs[k]]
for no_grad in no_grad_set: for no_grad in no_grad_set:
if no_grad not in in_names: if no_grad not in in_names:
raise ValueError("no_grad should be in in_names") raise ValueError("no_grad should be in in_names")
backward_op = core.Operator.backward(forward_op, no_grad_set) backward_op = core.Operator.backward(forward_op, no_grad_set)
bwd_outputs = backward_op.outputs()
bwd_out_names = [item for k in bwd_outputs for item in bwd_outputs[k]]
places = [core.CPUPlace()] places = [core.CPUPlace()]
if not only_cpu and core.is_compile_gpu() and backward_op.support_gpu(): if not only_cpu and core.is_compile_gpu() and backward_op.support_gpu():
places.append(core.GPUPlace(0)) places.append(core.GPUPlace(0))
...@@ -174,7 +196,7 @@ class GradientChecker(unittest.TestCase): ...@@ -174,7 +196,7 @@ class GradientChecker(unittest.TestCase):
var.set(value, place) var.set(value, place)
# create output var # create output var
for out_name in forward_op.outputs(): for out_name in out_names:
scope.new_var(out_name).get_tensor() scope.new_var(out_name).get_tensor()
# infer the shape of output var and compute/set value of output var # infer the shape of output var and compute/set value of output var
...@@ -184,7 +206,7 @@ class GradientChecker(unittest.TestCase): ...@@ -184,7 +206,7 @@ class GradientChecker(unittest.TestCase):
# create output grad var # create output grad var
# set shape as the output var # set shape as the output var
# set value of this grad to ones # set value of this grad to ones
for name in forward_op.outputs(): for name in out_names:
out_tensor = scope.find_var(name).get_tensor() out_tensor = scope.find_var(name).get_tensor()
grad_tensor = scope.new_var(grad_var_name(name)).get_tensor() grad_tensor = scope.new_var(grad_var_name(name)).get_tensor()
grad_tensor.set_dims(out_tensor.shape()) grad_tensor.set_dims(out_tensor.shape())
...@@ -192,7 +214,7 @@ class GradientChecker(unittest.TestCase): ...@@ -192,7 +214,7 @@ class GradientChecker(unittest.TestCase):
grad_tensor.set(data, place) grad_tensor.set(data, place)
# create input grad var # create input grad var
for name in backward_op.outputs(): for name in bwd_out_names:
scope.new_var(name).get_tensor() scope.new_var(name).get_tensor()
# infer the shape of input gradient var and compute/set it's value # infer the shape of input gradient var and compute/set it's value
......
...@@ -19,14 +19,5 @@ class TestAddOp(unittest.TestCase): ...@@ -19,14 +19,5 @@ class TestAddOp(unittest.TestCase):
self.outputs = {'Out': self.inputs['X'] + self.inputs['Y']} self.outputs = {'Out': self.inputs['X'] + self.inputs['Y']}
class TestAddGradOp(unittest.TestCase):
def test_add_grad(self):
op = Operator('add_two', X="X", Y="Y", Out="Out")
backward_op = core.Operator.backward(op, set())
self.assertEqual(backward_op.type(), "add_two_grad")
expected = '''Op(add_two_grad), inputs:(X, Y, Out, Out@GRAD), outputs:(X@GRAD, Y@GRAD).'''
self.assertEqual(expected, str(backward_op))
if __name__ == '__main__': if __name__ == '__main__':
unittest.main() unittest.main()
import paddle.v2.framework.core as core
import unittest
import numpy
from paddle.v2.framework.op import Operator
class TestFc(unittest.TestCase):
def test_fc(self):
scope = core.Scope()
place = core.CPUPlace()
x = scope.new_var("X")
x_tensor = x.get_tensor()
x_tensor.set_dims([1000, 784])
x_tensor.alloc_float(place)
w = scope.new_var("W")
w_tensor = w.get_tensor()
w_tensor.set_dims([784, 100])
w_tensor.alloc_float(place)
w_tensor.set(numpy.random.random((784, 100)).astype("float32"), place)
# Set a real numpy array here.
# x_tensor.set(numpy.array([]))
op = Operator("fc", X="X", Y="Y", W="W")
for out in op.outputs():
if scope.find_var(out) is None:
scope.new_var(out).get_tensor()
tensor = scope.find_var("Y").get_tensor()
op.infer_shape(scope)
self.assertEqual([1000, 100], tensor.shape())
ctx = core.DeviceContext.create(place)
op.run(scope, ctx)
# After complete all ops, check Y is expect or not.
if __name__ == '__main__':
unittest.main()
...@@ -3,6 +3,15 @@ from paddle.v2.framework.op import Operator ...@@ -3,6 +3,15 @@ from paddle.v2.framework.op import Operator
import unittest import unittest
def fc(X, W, Y):
ret_v = core.Net.create()
ret_v.add_op(Operator("mul", X="X", Y="W", Out="pre_activation"))
ret_v.add_op(Operator("sigmoid", X="pre_activation", Y=Y))
ret_v.complete_add_op(True)
return ret_v
class TestNet(unittest.TestCase): class TestNet(unittest.TestCase):
def test_net_all(self): def test_net_all(self):
net = core.Net.create() net = core.Net.create()
...@@ -10,18 +19,18 @@ class TestNet(unittest.TestCase): ...@@ -10,18 +19,18 @@ class TestNet(unittest.TestCase):
net.add_op(op1) net.add_op(op1)
net2 = core.Net.create() net2 = core.Net.create()
net2.add_op(Operator("fc", X="X", W="w", Y="fc.out")) net2.add_op(fc(X="X", W="w", Y="fc.out"))
net2.complete_add_op(True) net2.complete_add_op(True)
net.add_op(net2) net.add_op(net2)
net.complete_add_op(True) net.complete_add_op(True)
expected = ''' expected = '''
Op(plain_net), inputs:(@EMPTY@, X, Y, w), outputs:(@TEMP@fc@0, Out, fc.out). Op(plain_net), inputs:{all[W, X, Y]}, outputs:{all[Out, fc.out, pre_activation]}.
Op(add_two), inputs:(X, Y), outputs:(Out). Op(add_two), inputs:{X[X], Y[Y]}, outputs:{Out[Out]}.
Op(plain_net), inputs:(@EMPTY@, X, w), outputs:(@TEMP@fc@0, fc.out). Op(plain_net), inputs:{all[W, X]}, outputs:{all[fc.out, pre_activation]}.
Op(fc), inputs:(X, w, @EMPTY@), outputs:(fc.out, @TEMP@fc@0). Op(plain_net), inputs:{all[W, X]}, outputs:{all[fc.out, pre_activation]}.
Op(mul), inputs:(X, w), outputs:(@TEMP@fc@0). Op(mul), inputs:{X[X], Y[W]}, outputs:{Out[pre_activation]}.
Op(sigmoid), inputs:(@TEMP@fc@0), outputs:(fc.out). Op(sigmoid), inputs:{X[pre_activation]}, outputs:{Y[fc.out]}.
''' '''
self.assertEqual(expected, "\n" + str(net)) self.assertEqual(expected, "\n" + str(net))
......
import unittest import unittest
import paddle.v2.framework.op as op import paddle.v2.framework.op as op
import paddle.v2.framework.core as core import paddle.v2.framework.core as core
import paddle.v2.framework.proto.op_proto_pb2 as op_proto_pb2 import paddle.v2.framework.proto.framework_pb2 as framework_pb2
import paddle.v2.framework.proto.op_desc_pb2 as op_desc_pb2
import paddle.v2.framework.proto.attribute_pb2 as attribute_pb2
class TestGetAllProtos(unittest.TestCase): class TestGetAllProtos(unittest.TestCase):
...@@ -17,7 +15,7 @@ class TestGetAllProtos(unittest.TestCase): ...@@ -17,7 +15,7 @@ class TestGetAllProtos(unittest.TestCase):
class TestOpDescCreationMethod(unittest.TestCase): class TestOpDescCreationMethod(unittest.TestCase):
def test_plain_input_output(self): def test_plain_input_output(self):
op_proto = op_proto_pb2.OpProto() op_proto = framework_pb2.OpProto()
op_proto.type = "test" op_proto.type = "test"
ipt = op_proto.inputs.add() ipt = op_proto.inputs.add()
ipt.name = "X" ipt.name = "X"
...@@ -37,25 +35,32 @@ class TestOpDescCreationMethod(unittest.TestCase): ...@@ -37,25 +35,32 @@ class TestOpDescCreationMethod(unittest.TestCase):
method = op.OpDescCreationMethod(op_proto) method = op.OpDescCreationMethod(op_proto)
output = method(X="a", Y="b", Z="c") output = method(X="a", Y="b", Z="c")
expected = framework_pb2.OpDesc()
expected = op_desc_pb2.OpDesc()
expected.type = "test" expected.type = "test"
expected.inputs.extend(["a", "b"]) ipt_0 = expected.inputs.add()
expected.outputs.append("c") ipt_0.parameter = "X"
ipt_0.arguments.extend(["a"])
ipt_1 = expected.inputs.add()
ipt_1.parameter = 'Y'
ipt_1.arguments.extend(['b'])
opt = expected.outputs.add()
opt.parameter = "Z"
opt.arguments.extend(["c"])
self.assertEqual(expected, output) self.assertEqual(expected, output)
def test_multiple_input_plain_output(self): def test_multiple_input_plain_output(self):
op_proto = op_proto_pb2.OpProto() op_proto = framework_pb2.OpProto()
op_proto.type = "fc" op_proto.type = "fc"
ipt = op_proto.inputs.add() ipt = op_proto.inputs.add()
ipt.name = "X" ipt.name = "X"
ipt.comment = "" ipt.comment = ""
ipt.multiple = True ipt.duplicable = True
ipt = op_proto.inputs.add() ipt = op_proto.inputs.add()
ipt.name = "W" ipt.name = "W"
ipt.comment = "" ipt.comment = ""
ipt.multiple = True ipt.duplicable = True
ipt = op_proto.inputs.add() ipt = op_proto.inputs.add()
ipt.name = "b" ipt.name = "b"
...@@ -70,30 +75,50 @@ class TestOpDescCreationMethod(unittest.TestCase): ...@@ -70,30 +75,50 @@ class TestOpDescCreationMethod(unittest.TestCase):
method = op.OpDescCreationMethod(op_proto) method = op.OpDescCreationMethod(op_proto)
generated1 = method(X="x", W="w", b="b", Y="y") generated1 = method(X="x", W="w", b="b", Y="y")
expected1 = op_desc_pb2.OpDesc() expected1 = framework_pb2.OpDesc()
expected1.inputs.extend(['x', 'w', 'b']) tmp = expected1.inputs.add()
expected1.outputs.extend(['y']) tmp.parameter = "X"
tmp.arguments.extend(['x'])
tmp = expected1.inputs.add()
tmp.parameter = 'W'
tmp.arguments.extend(['w'])
tmp = expected1.inputs.add()
tmp.parameter = 'b'
tmp.arguments.extend(['b'])
tmp = expected1.outputs.add()
tmp.parameter = 'Y'
tmp.arguments.extend(['y'])
expected1.type = 'fc' expected1.type = 'fc'
attr = expected1.attrs.add()
attr.name = 'input_format'
attr.type = attribute_pb2.INTS
attr.ints.extend([0, 1, 2, 3])
self.assertEqual(expected1, generated1) self.assertEqual(expected1, generated1)
generated2 = method( generated2 = method(
X=['x1', 'x2', 'x3'], b='b', W=['w1', 'w2', 'w3'], Y='y') X=['x1', 'x2', 'x3'], b='b', W=['w1', 'w2', 'w3'], Y='y')
expected2 = op_desc_pb2.OpDesc() expected2 = framework_pb2.OpDesc()
expected2.inputs.extend(['x1', 'x2', 'x3', 'w1', 'w2', 'w3', 'b'])
expected2.outputs.extend(['y']) tmp = expected2.inputs.add()
tmp.parameter = "X"
tmp.arguments.extend(['x1', 'x2', 'x3'])
tmp = expected2.inputs.add()
tmp.parameter = 'W'
tmp.arguments.extend(['w1', 'w2', 'w3'])
tmp = expected2.inputs.add()
tmp.parameter = 'b'
tmp.arguments.extend(['b'])
tmp = expected2.outputs.add()
tmp.parameter = 'Y'
tmp.arguments.extend(['y'])
expected2.type = 'fc' expected2.type = 'fc'
attr = expected2.attrs.add()
attr.name = 'input_format'
attr.type = attribute_pb2.INTS
attr.ints.extend([0, 3, 6, 7])
self.assertEqual(expected2, generated2) self.assertEqual(expected2, generated2)
def test_attrs(self): def test_attrs(self):
op_proto = op_proto_pb2.OpProto() op_proto = framework_pb2.OpProto()
op_proto.type = "test" op_proto.type = "test"
ipt = op_proto.inputs.add() ipt = op_proto.inputs.add()
ipt.name = 'X' ipt.name = 'X'
...@@ -105,12 +130,12 @@ class TestOpDescCreationMethod(unittest.TestCase): ...@@ -105,12 +130,12 @@ class TestOpDescCreationMethod(unittest.TestCase):
attr.comment = "" attr.comment = ""
attr.type = type attr.type = type
__add_attr__("int_attr", attribute_pb2.INT) __add_attr__("int_attr", framework_pb2.INT)
__add_attr__("float_attr", attribute_pb2.FLOAT) __add_attr__("float_attr", framework_pb2.FLOAT)
__add_attr__("string_attr", attribute_pb2.STRING) __add_attr__("string_attr", framework_pb2.STRING)
__add_attr__("ints_attr", attribute_pb2.INTS) __add_attr__("ints_attr", framework_pb2.INTS)
__add_attr__("floats_attr", attribute_pb2.FLOATS) __add_attr__("floats_attr", framework_pb2.FLOATS)
__add_attr__("strings_attr", attribute_pb2.STRINGS) __add_attr__("strings_attr", framework_pb2.STRINGS)
op_proto.comment = "" op_proto.comment = ""
self.assertTrue(op_proto.IsInitialized()) self.assertTrue(op_proto.IsInitialized())
...@@ -126,76 +151,52 @@ class TestOpDescCreationMethod(unittest.TestCase): ...@@ -126,76 +151,52 @@ class TestOpDescCreationMethod(unittest.TestCase):
floats_attr=[0.2, 3.2, 4.5], floats_attr=[0.2, 3.2, 4.5],
strings_attr=["a", "b", "c"]) strings_attr=["a", "b", "c"])
expected = op_desc_pb2.OpDesc() expected = framework_pb2.OpDesc()
expected.type = "test" expected.type = "test"
expected.inputs.extend(['a'])
ipt = expected.inputs.add()
ipt.parameter = "X"
ipt.arguments.extend(['a'])
attr = expected.attrs.add() attr = expected.attrs.add()
attr.name = "int_attr" attr.name = "int_attr"
attr.type = attribute_pb2.INT attr.type = framework_pb2.INT
attr.i = 10 attr.i = 10
attr = expected.attrs.add() attr = expected.attrs.add()
attr.name = "float_attr" attr.name = "float_attr"
attr.type = attribute_pb2.FLOAT attr.type = framework_pb2.FLOAT
attr.f = 3.2 attr.f = 3.2
attr = expected.attrs.add() attr = expected.attrs.add()
attr.name = "string_attr" attr.name = "string_attr"
attr.type = attribute_pb2.STRING attr.type = framework_pb2.STRING
attr.s = "test_str" attr.s = "test_str"
attr = expected.attrs.add() attr = expected.attrs.add()
attr.name = "ints_attr" attr.name = "ints_attr"
attr.type = attribute_pb2.INTS attr.type = framework_pb2.INTS
attr.ints.extend([0, 1, 2, 3, 4]) attr.ints.extend([0, 1, 2, 3, 4])
attr = expected.attrs.add() attr = expected.attrs.add()
attr.name = 'floats_attr' attr.name = 'floats_attr'
attr.type = attribute_pb2.FLOATS attr.type = framework_pb2.FLOATS
attr.floats.extend([0.2, 3.2, 4.5]) attr.floats.extend([0.2, 3.2, 4.5])
attr = expected.attrs.add() attr = expected.attrs.add()
attr.name = 'strings_attr' attr.name = 'strings_attr'
attr.type = attribute_pb2.STRINGS attr.type = framework_pb2.STRINGS
attr.strings.extend(['a', 'b', 'c']) attr.strings.extend(['a', 'b', 'c'])
self.assertEqual(expected, generated) self.assertEqual(expected, generated)
def test_input_temporary_output(self):
op_proto = op_proto_pb2.OpProto()
op_proto.type = "test"
out = op_proto.outputs.add()
out.name = "OUT"
out.comment = ""
out = op_proto.outputs.add()
out.name = "TMP"
out.comment = ""
out.temporary = True
out = op_proto.outputs.add()
out.name = "OUT2"
out.comment = ""
op_proto.comment = ""
method = op.OpDescCreationMethod(op_proto)
generated = method(OUT="a", OUT2="b")
desc = op_desc_pb2.OpDesc()
desc.outputs.extend(["a", core.var_names.temp(), "b"])
desc.type = "test"
attr = desc.attrs.add()
attr.name = "temporary_index"
attr.type = attribute_pb2.INTS
attr.ints.append(2)
self.assertEqual(generated, desc)
class TestOpCreations(unittest.TestCase): class TestOpCreations(unittest.TestCase):
def test_all(self): def test_all(self):
add_op = op.Operator("add_two", X="a", Y="b", Out="z") add_op = op.Operator("add_two", X="a", Y="b", Out="z")
self.assertIsNotNone(add_op) self.assertIsNotNone(add_op)
# Invoke C++ DebugString() # Invoke C++ DebugString()
self.assertEqual('Op(add_two), inputs:(a, b), outputs:(z).', self.assertEqual('Op(add_two), inputs:{X[a], Y[b]}, outputs:{Out[z]}.',
str(add_op)) str(add_op))
......
import paddle.v2.framework.proto.op_proto_pb2 as op_proto_lib import paddle.v2.framework.proto.framework_pb2 as framework_pb2
import paddle.v2.framework.proto.attribute_pb2 as attr_type_lib
import unittest import unittest
class TestFrameworkProto(unittest.TestCase): class TestFrameworkProto(unittest.TestCase):
def test_all(self): def test_all(self):
op_proto = op_proto_lib.OpProto() op_proto = framework_pb2.OpProto()
ipt0 = op_proto.inputs.add() ipt0 = op_proto.inputs.add()
ipt0.name = "a" ipt0.name = "a"
ipt0.comment = "the input of cosine op" ipt0.comment = "the input of cosine op"
...@@ -19,7 +18,7 @@ class TestFrameworkProto(unittest.TestCase): ...@@ -19,7 +18,7 @@ class TestFrameworkProto(unittest.TestCase):
attr = op_proto.attrs.add() attr = op_proto.attrs.add()
attr.name = "scale" attr.name = "scale"
attr.comment = "scale of cosine op" attr.comment = "scale of cosine op"
attr.type = attr_type_lib.FLOAT attr.type = framework_pb2.FLOAT
op_proto.type = "cos" op_proto.type = "cos"
self.assertTrue(op_proto.IsInitialized()) self.assertTrue(op_proto.IsInitialized())
......
...@@ -2,19 +2,74 @@ import logging ...@@ -2,19 +2,74 @@ import logging
import paddle.v2.framework.core as core import paddle.v2.framework.core as core
import unittest import unittest
import numpy as np import numpy as np
import paddle.v2.framework.create_op_creation_methods as creation from paddle.v2.framework.op import Operator
ops = creation.op_creations
def py_sigmoid(x):
return 1. / (1. + np.exp(-x))
def create_tensor(scope, name, shape):
class PySimpleRNN(object):
'''
A simple implementation of RNN based on numpy, to futhur test RecurrentOp's alogorithm
'''
def __init__(self, input_dim=30, batch_size=50, weight_dim=15, sent_len=11):
self.x = np.random.normal(size=(sent_len, batch_size, input_dim))
self.W = np.random.normal(size=(input_dim, input_dim))
self.U = np.random.normal(size=(input_dim, input_dim))
self.h_boot = np.random.normal(size=(batch_size, input_dim))
# memories
self.mems = [
np.zeros(shape=(batch_size, input_dim)) for i in range(sent_len)
]
def forward(self):
xs = self.segment_inputs()
for step_id in range(self.x.shape[0]):
self.step(step_id, xs[step_id])
return self.concat_outputs()
def segment_inputs(self):
return [self.x[i] for i in range(self.x.shape[0])]
def concat_outputs(self):
return np.array(self.mems)
def step(self, step_id, x):
'''
run a step
'''
mem = self.mems[step_id]
if step_id > 0:
pre_mem = self.mems[step_id - 1]
else:
pre_mem = self.h_boot
xW = np.matmul(x, self.W)
hU = np.matmul(mem, self.U)
sum = xW + hU
self.mems[step_id] = py_sigmoid(sum)
class PySimpleRNNTest(unittest.TestCase):
def setUp(self):
self.rnn = PySimpleRNN()
def test_forward(self):
output = self.rnn.forward()
print 'output', output
def create_tensor(scope, name, shape, np_data):
tensor = scope.new_var(name).get_tensor() tensor = scope.new_var(name).get_tensor()
tensor.set_dims(shape) tensor.set_dims(shape)
tensor.set(np.random.random(shape), core.CPUPlace()) tensor.set(np_data, core.CPUPlace())
return tensor return tensor
class TestRNN(unittest.TestCase): class TestRecurrentOp(unittest.TestCase):
''' '''
Test RNNOp Test RNNOp
...@@ -36,33 +91,45 @@ class TestRNN(unittest.TestCase): ...@@ -36,33 +91,45 @@ class TestRNN(unittest.TestCase):
weight_dim = 15 weight_dim = 15
sent_len = 11 sent_len = 11
def init(self): def setUp(self):
self.py_rnn = PySimpleRNN(self.input_dim, self.batch_size,
self.weight_dim, self.sent_len)
def forward(self):
self.scope = core.Scope() self.scope = core.Scope()
self.create_global_variables() self.create_global_variables()
self.create_step_net() self.create_step_net()
rnn_op = self.create_rnn_op() rnn_op = self.create_rnn_op()
ctx = core.DeviceContext.create(core.CPUPlace()) ctx = core.DeviceContext.create(core.CPUPlace())
print 'infer_shape'
rnn_op.infer_shape(self.scope) rnn_op.infer_shape(self.scope)
rnn_op.run(self.scope, ctx) rnn_op.run(self.scope, ctx)
return np.array(self.scope.find_var("h").get_tensor())
def create_global_variables(self): def create_global_variables(self):
# create inlink # create inlink
x_np_data = self.py_rnn.x
create_tensor(self.scope, "x", create_tensor(self.scope, "x",
[self.sent_len, self.batch_size, self.input_dim]) [self.sent_len, self.batch_size, self.input_dim],
create_tensor(self.scope, "W", [self.input_dim, self.input_dim]) x_np_data)
create_tensor(self.scope, "U", [self.input_dim, self.input_dim]) W_np_data = self.py_rnn.W
create_tensor(self.scope, "h_boot", [self.batch_size, self.input_dim]) create_tensor(self.scope, "W", [self.input_dim, self.input_dim],
W_np_data)
U_np_data = self.py_rnn.U
create_tensor(self.scope, "U", [self.input_dim, self.input_dim],
U_np_data)
h_boot_np_data = self.py_rnn.h_boot
create_tensor(self.scope, "h_boot", [self.batch_size, self.input_dim],
h_boot_np_data)
self.scope.new_var("step_scopes") self.scope.new_var("step_scopes")
self.scope.new_var("h@alias") self.scope.new_var("h@alias")
self.scope.new_var("h") self.scope.new_var("h")
def create_rnn_op(self): def create_rnn_op(self):
# create RNNOp # create RNNOp
rnnop = ops.recurrent_op( rnnop = Operator(
"recurrent_op",
# inputs # inputs
inlinks=["x"], inlinks=["x"],
boot_memories=["h_boot"], boot_memories=["h_boot"],
...@@ -81,17 +148,25 @@ class TestRNN(unittest.TestCase): ...@@ -81,17 +148,25 @@ class TestRNN(unittest.TestCase):
var = self.scope.new_var("stepnet") var = self.scope.new_var("stepnet")
stepnet = var.get_net() stepnet = var.get_net()
x_fc_op = ops.fc(X="x@alias", W="W", Y="Wx") # x_fc_op = Operator("fc", X="x@alias", W="W", Y="Wx")
h_fc_op = ops.fc(X="h@pre", W="U", Y="Uh") # h_fc_op = Operator("fc", X="h@pre", W="U", Y="Uh")
sum_op = ops.add_two(X="Wx", Y="Uh", Out="sum") x_fc_op = Operator("mul", X="x@alias", Y="W", Out="Wx")
sig_op = ops.sigmoid(X="sum", Y="h@alias") h_fc_op = Operator("mul", X="h@pre", Y="U", Out="Uh")
sum_op = Operator("add_two", X="Wx", Y="Uh", Out="sum")
sig_op = Operator("sigmoid", X="sum", Y="h@alias")
for op in [x_fc_op, h_fc_op, sum_op, sig_op]: for op in [x_fc_op, h_fc_op, sum_op, sig_op]:
stepnet.add_op(op) stepnet.add_op(op)
stepnet.complete_add_op(True) stepnet.complete_add_op(True)
def test_recurrent(self): def test_forward(self):
self.init() print 'test recurrent op forward'
pd_output = self.forward()
py_output = self.py_rnn.forward()
print 'pd_output', pd_output
print
print 'py_output', py_output
self.assertEqual(pd_output.shape, py_output.shape)
if __name__ == '__main__': if __name__ == '__main__':
......
import paddle.trainer_config_helpers.config_parser_utils as config_parser_utils # Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
import paddle.trainer_config_helpers.optimizers as v1_optimizers #
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" """
Optimizers(update equation) for SGD method. Optimizers(update equation) for SGD method.
TODO(zhihong) : create new optimizer with proto config, add new optimizer here
TODO(yuyang18): Complete comments. TODO(yuyang18): Complete comments.
""" """
import paddle.trainer_config_helpers.config_parser_utils as config_parser_utils
import paddle.trainer_config_helpers.optimizers as v1_optimizers
from paddle.proto.OptimizerConfig_pb2 import OptimizerConfig
__all__ = [ __all__ = [
'Momentum', 'Adam', 'Adamax', 'AdaGrad', 'DecayedAdaGrad', 'AdaDelta', 'Momentum', 'Adam', 'Adamax', 'AdaGrad', 'DecayedAdaGrad', 'AdaDelta',
'RMSProp', 'ModelAverage', 'L2Regularization' 'RMSProp', 'ModelAverage', 'L2Regularization'
...@@ -70,7 +83,8 @@ class Optimizer(object): ...@@ -70,7 +83,8 @@ class Optimizer(object):
gradient_machine.prefetch(in_args) gradient_machine.prefetch(in_args)
parameter_updater.getParametersRemote() parameter_updater.getParametersRemote()
:param pserver_spec: pserver location, eg: localhost:3000 :param pserver_spec: pserver location, eg: localhost:3000, if use etcd,
pserver_spec should be the etcd endpoints, eg: http://localhost:2379
:return: parameter_updater :return: parameter_updater
""" """
if is_local: if is_local:
......
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np import numpy as np
from paddle.proto.ParameterConfig_pb2 import ParameterConfig from paddle.proto.ParameterConfig_pb2 import ParameterConfig
import paddle.trainer.config_parser as cp import paddle.trainer.config_parser as cp
...@@ -113,16 +127,7 @@ class Parameters(object): ...@@ -113,16 +127,7 @@ class Parameters(object):
""" """
return iter(self.__param_conf__) return iter(self.__param_conf__)
def __getitem__(self, key): def __getter_inner(self, key, param_type):
"""
Get parameter by parameter name. It uses Python dict syntax.
:note: It will always copy the parameter from C++ side.
:param key: Parameter name
:type key: basestring
:return: parameter value
:rtype: np.ndarray
"""
import py_paddle.swig_paddle as api import py_paddle.swig_paddle as api
shape = self.get_shape(key) shape = self.get_shape(key)
...@@ -138,7 +143,7 @@ class Parameters(object): ...@@ -138,7 +143,7 @@ class Parameters(object):
each_gradient_machine, key) each_gradient_machine, key)
# for simplify implementation now, we always copy from C++ # for simplify implementation now, we always copy from C++
assert isinstance(param, api.Parameter) assert isinstance(param, api.Parameter)
val = param.getBuf(api.PARAMETER_VALUE) val = param.getBuf(param_type)
assert isinstance(val, api.Vector) assert isinstance(val, api.Vector)
val = val.copyToNumpyArray() val = val.copyToNumpyArray()
return val return val
...@@ -146,6 +151,19 @@ class Parameters(object): ...@@ -146,6 +151,19 @@ class Parameters(object):
raise RuntimeError("Unexpected branch") raise RuntimeError("Unexpected branch")
def __getitem__(self, key):
"""
Get parameter by parameter name. It uses Python dict syntax.
:note: It will always copy the parameter from C++ side.
:param key: Parameter name
:type key: basestring
:return: parameter value
:rtype: np.ndarray
"""
import py_paddle.swig_paddle as api
return self.__getter_inner(key, api.PARAMETER_VALUE)
def get_shape(self, key): def get_shape(self, key):
""" """
get shape of the parameter. get shape of the parameter.
...@@ -202,6 +220,19 @@ class Parameters(object): ...@@ -202,6 +220,19 @@ class Parameters(object):
""" """
return self.__getitem__(key=parameter_name) return self.__getitem__(key=parameter_name)
def get_grad(self, key):
"""
Get grandient by parameter name.
:note: It will always copy the parameter from C++ side.
:param key: parameter name
:type key: basestring
:return: The grandient matrix.
:rtype: np.ndarray
"""
import py_paddle.swig_paddle as api
return self.__getter_inner(key, api.PARAMETER_GRADIENT)
def set(self, parameter_name, value): def set(self, parameter_name, value):
""" """
Set parameter by parameter name & matrix. Set parameter by parameter name & matrix.
...@@ -250,7 +281,13 @@ class Parameters(object): ...@@ -250,7 +281,13 @@ class Parameters(object):
size = reduce(lambda a, b: a * b, param.shape) size = reduce(lambda a, b: a * b, param.shape)
f.write(struct.pack("IIQ", 0, 4, size)) f.write(struct.pack("IIQ", 0, 4, size))
param = param.astype(np.float32) param = param.astype(np.float32)
f.write(param.tostring()) s = param.tostring()
wrote_size = 0
buf = buffer(s, wrote_size, 65535)
while buf: # f.write crashes with big data blog.
f.write(buf)
wrote_size += 65535
buf = buffer(s, wrote_size, 65535)
def deserialize(self, name, f): def deserialize(self, name, f):
""" """
......
...@@ -161,14 +161,14 @@ class SGD(object): ...@@ -161,14 +161,14 @@ class SGD(object):
self.__parameter_updater__.update(each_param) self.__parameter_updater__.update(each_param)
cost_sum = out_args.sum() cost_sum = out_args.sum()
cost = cost_sum / len(data_batch) cost = cost_sum / len(data_batch)
self.__parameter_updater__.finishBatch(cost)
batch_evaluator.finish()
event_handler( event_handler(
v2_event.EndIteration( v2_event.EndIteration(
pass_id=pass_id, pass_id=pass_id,
batch_id=batch_id, batch_id=batch_id,
cost=cost, cost=cost,
evaluator=batch_evaluator)) evaluator=batch_evaluator))
self.__parameter_updater__.finishBatch(cost)
batch_evaluator.finish()
self.__parameter_updater__.finishPass() self.__parameter_updater__.finishPass()
pass_evaluator.finish() pass_evaluator.finish()
......
requests==2.9.2
numpy>=1.12
protobuf==3.1
recordio
matplotlib
rarfile
scipy>=0.19.0
Pillow
nltk>=3.2.2
from setuptools import setup, Distribution from setuptools import setup, Distribution
class BinaryDistribution(Distribution): class BinaryDistribution(Distribution):
def has_ext_modules(foo): def has_ext_modules(foo):
return True return True
...@@ -18,15 +17,8 @@ packages=['paddle', ...@@ -18,15 +17,8 @@ packages=['paddle',
'paddle.v2.framework.proto', 'paddle.v2.framework.proto',
'py_paddle'] 'py_paddle']
setup_requires=["requests", with open('@PADDLE_SOURCE_DIR@/python/requirements.txt') as f:
"numpy>=1.12", setup_requires = f.read().splitlines()
"protobuf==3.1",
"recordio",
"matplotlib",
"rarfile",
"scipy>=0.19.0",
"Pillow",
"nltk>=3.2.2"]
if '${CMAKE_SYSTEM_PROCESSOR}' not in ['arm', 'armv7-a', 'aarch64']: if '${CMAKE_SYSTEM_PROCESSOR}' not in ['arm', 'armv7-a', 'aarch64']:
setup_requires+=["opencv-python"] setup_requires+=["opencv-python"]
...@@ -45,14 +37,14 @@ setup(name='paddlepaddle', ...@@ -45,14 +37,14 @@ setup(name='paddlepaddle',
'': '${CMAKE_CURRENT_SOURCE_DIR}', '': '${CMAKE_CURRENT_SOURCE_DIR}',
# The paddle.v2.framework.proto will be generated while compiling. # The paddle.v2.framework.proto will be generated while compiling.
# So that package points to other directory. # So that package points to other directory.
'paddle.v2.framework.proto': '${PROJ_BINARY_ROOT}/paddle/framework', 'paddle.v2.framework.proto': '${PADDLE_BINARY_DIR}/paddle/framework',
'py_paddle': '${PROJ_ROOT}/paddle/py_paddle' 'py_paddle': '${PADDLE_SOURCE_DIR}/paddle/py_paddle'
}, },
scripts=['${PROJ_BINARY_ROOT}/paddle/scripts/paddle'], scripts=['${PADDLE_BINARY_DIR}/paddle/scripts/paddle'],
distclass=BinaryDistribution, distclass=BinaryDistribution,
data_files=[('/usr/local/opt/paddle/bin', data_files=[('/usr/local/opt/paddle/bin',
['${PROJ_BINARY_ROOT}/paddle/scripts/paddle_usage', ['${PADDLE_BINARY_DIR}/paddle/scripts/paddle_usage',
'${PROJ_BINARY_ROOT}/paddle/trainer/paddle_trainer', '${PADDLE_BINARY_DIR}/paddle/trainer/paddle_trainer',
'${PROJ_BINARY_ROOT}/paddle/trainer/paddle_merge_model', '${PADDLE_BINARY_DIR}/paddle/trainer/paddle_merge_model',
'${PROJ_BINARY_ROOT}/paddle/pserver/paddle_pserver_main'])] '${PADDLE_BINARY_DIR}/paddle/pserver/paddle_pserver_main'])]
) )
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册