未验证 提交 3fc0861f 编写于 作者: J Jiawei Wang 提交者: GitHub

add export Serving model (#605)

* add serving export model
* add paddle serving client in requirement.txt
* remove redundant code with codestyle check
* fix export model doc
* fix according to professional reviews
* move paddle serving model export tutorial to the last of doc
上级 be2c012b
......@@ -41,6 +41,7 @@ python tools/export_model.py -c configs/faster_rcnn_r50_1x.yml \
预测模型会导出到`inference_model/faster_rcnn_r50_1x`目录下,模型名和参数名分别为`__model__``__params__`
## 设置导出模型的输入大小
使用Fluid-TensorRT进行预测时,由于<=TensorRT 5.1的版本仅支持定长输入,保存模型的`data`层的图片大小需要和实际输入图片大小一致。而Fluid C++预测引擎没有此限制。可通过设置TestReader中`image_shape`可以修改保存模型中的输入图片大小。示例如下:
......@@ -64,3 +65,20 @@ python tools/export_model.py -c configs/ssd/ssd_mobilenet_v1_voc.yml \
-o weights=https://paddlemodels.bj.bcebos.com/object_detection/ssd_mobilenet_v1_voc.tar \
TestReader.inputs_def.image_shape=[3,300,300]
```
## Paddle Serving部署模型导出
如果您要将上述模型用于[Paddle Serving](https://github.com/PaddlePaddle/Serving)在线预估服务,操作如下
```bash
# 导出Serving模型需要安装paddle-serving-client
pip install paddle-serving-client
# 导出FasterRCNN模型, 模型中data层默认的shape为3x800x1333
python tools/export_serving_model.py -c configs/faster_rcnn_r50_1x.yml \
--output_dir=./inference_model \
-o weights=output/faster_rcnn_r50_1x/model_final \
```
用于Serving的预测模型会导出到`inference_model/faster_rcnn_r50_1x`目录下,其中`serving_client`为客户端配置文件夹,`serving_server`为服务端配置文件夹,模型参数也在服务端配置文件夹中。
更多的信息详情参见 [使用Paddle Serving部署Faster RCNN模型](https://github.com/PaddlePaddle/Serving/tree/develop/python/examples/faster_rcnn_model)
......@@ -86,7 +86,7 @@ def parse_reader(reader_cfg, metric, arch):
return with_background, preprocess_list, label_list
def dump_infer_config(config):
def dump_infer_config(FLAGS, config):
cfg_name = os.path.basename(FLAGS.config).split('.')[0]
save_dir = os.path.join(FLAGS.output_dir, cfg_name)
from ppdet.core.config.yaml_helpers import setup_orderdict
......@@ -192,7 +192,7 @@ def main():
checkpoint.load_params(exe, infer_prog, cfg.weights)
save_infer_model(FLAGS, exe, feed_vars, test_fetches, infer_prog)
dump_infer_config(cfg)
dump_infer_config(FLAGS, cfg)
if __name__ == '__main__':
......
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
from paddle import fluid
from ppdet.core.workspace import load_config, merge_config, create
from ppdet.utils.cli import ArgsParser
import ppdet.utils.checkpoint as checkpoint
import yaml
import logging
from export_model import parse_reader, dump_infer_config, prune_feed_vars
FORMAT = '%(asctime)s-%(levelname)s: %(message)s'
logging.basicConfig(level=logging.INFO, format=FORMAT)
logger = logging.getLogger(__name__)
def save_serving_model(FLAGS, exe, feed_vars, test_fetches, infer_prog):
cfg_name = os.path.basename(FLAGS.config).split('.')[0]
save_dir = os.path.join(FLAGS.output_dir, cfg_name)
feed_var_names = [var.name for var in feed_vars.values()]
fetch_list = sorted(test_fetches.items(), key=lambda i: i[0])
target_vars = [var[1] for var in fetch_list]
feed_var_names = prune_feed_vars(feed_var_names, target_vars, infer_prog)
serving_client = os.path.join(FLAGS.output_dir, 'serving_client')
serving_server = os.path.join(FLAGS.output_dir, 'serving_server')
logger.info(
"Export serving model to {}, client side: {}, server side: {}. input: {}, output: "
"{}...".format(FLAGS.output_dir, serving_client, serving_server,
feed_var_names, [str(var.name) for var in target_vars]))
feed_dict = {x: infer_prog.global_block().var(x) for x in feed_var_names}
fetch_dict = {x.name: x for x in target_vars}
import paddle_serving_client.io as serving_io
serving_client = os.path.join(save_dir, 'serving_client')
serving_server = os.path.join(save_dir, 'serving_server')
serving_io.save_model(serving_client, serving_server, feed_dict, fetch_dict,
infer_prog)
def main():
cfg = load_config(FLAGS.config)
if 'architecture' in cfg:
main_arch = cfg.architecture
else:
raise ValueError("'architecture' not specified in config file.")
merge_config(FLAGS.opt)
# Use CPU for exporting inference model instead of GPU
place = fluid.CPUPlace()
exe = fluid.Executor(place)
model = create(main_arch)
startup_prog = fluid.Program()
infer_prog = fluid.Program()
with fluid.program_guard(infer_prog, startup_prog):
with fluid.unique_name.guard():
inputs_def = cfg['TestReader']['inputs_def']
inputs_def['use_dataloader'] = False
feed_vars, _ = model.build_inputs(**inputs_def)
test_fetches = model.test(feed_vars)
infer_prog = infer_prog.clone(True)
exe.run(startup_prog)
checkpoint.load_params(exe, infer_prog, cfg.weights)
save_serving_model(FLAGS, exe, feed_vars, test_fetches, infer_prog)
dump_infer_config(FLAGS, cfg)
if __name__ == '__main__':
parser = ArgsParser()
parser.add_argument(
"--output_dir",
type=str,
default="output",
help="Directory for storing the output model files.")
FLAGS = parser.parse_args()
main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册