Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
3994e91a
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
3994e91a
编写于
9月 08, 2017
作者:
G
guosheng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add reduce_op
上级
a2393fc1
变更
4
显示空白变更内容
内联
并排
Showing
4 changed file
with
596 addition
and
0 deletion
+596
-0
paddle/operators/reduce_op.cc
paddle/operators/reduce_op.cc
+207
-0
paddle/operators/reduce_op.cu
paddle/operators/reduce_op.cu
+46
-0
paddle/operators/reduce_op.h
paddle/operators/reduce_op.h
+251
-0
python/paddle/v2/framework/tests/test_reduce_op.py
python/paddle/v2/framework/tests/test_reduce_op.py
+92
-0
未找到文件。
paddle/operators/reduce_op.cc
0 → 100644
浏览文件 @
3994e91a
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/reduce_op.h"
namespace
paddle
{
namespace
operators
{
using
framework
::
Tensor
;
using
framework
::
DDim
;
class
ReduceOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
protected:
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"X"
),
"Input(X) should not be null"
);
auto
x_dims
=
ctx
.
Input
<
Tensor
>
(
"X"
)
->
dims
();
auto
x_rank
=
x_dims
.
size
();
PADDLE_ENFORCE_LE
(
x_rank
,
6
,
"Tensors with rank at most 6 are supported"
);
int
dim
=
static_cast
<
int
>
(
ctx
.
Attr
<
int
>
(
"dim"
));
if
(
dim
<
0
)
dim
=
x_rank
+
dim
;
PADDLE_ENFORCE_LT
(
dim
,
x_rank
,
"The dim should be in the range [-rank(input), rank(input)]"
);
bool
keep_dim
=
true
;
// TODO;
auto
dims_vector
=
vectorize
(
x_dims
);
if
(
keep_dim
||
x_rank
==
1
)
{
dims_vector
[
dim
]
=
1
;
}
else
{
dims_vector
.
erase
(
dims_vector
.
begin
()
+
dim
);
}
auto
out_dims
=
framework
::
make_ddim
(
dims_vector
);
ctx
.
Output
<
Tensor
>
(
"Out"
)
->
Resize
(
out_dims
);
}
};
class
ReduceGradOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
protected:
void
InferShape
(
const
framework
::
InferShapeContext
&
ctx
)
const
override
{
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
"X"
),
"Input(X) should not be null"
);
PADDLE_ENFORCE_NOT_NULL
(
ctx
.
InputVar
(
framework
::
GradVarName
(
"Out"
)),
"Input(Out@GRAD) should not be null"
);
auto
x_dims
=
ctx
.
Input
<
Tensor
>
(
"X"
)
->
dims
();
auto
x_rank
=
x_dims
.
size
();
PADDLE_ENFORCE_LE
(
x_rank
,
6
,
"Tensors with rank at most 6 are supported"
);
int
dim
=
static_cast
<
int
>
(
ctx
.
Attr
<
int
>
(
"dim"
));
if
(
dim
<
0
)
dim
=
x_rank
+
dim
;
PADDLE_ENFORCE_LT
(
dim
,
x_rank
,
"The dim should be in the range [-rank(input), rank(input)]"
);
auto
*
x_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
if
(
x_grad
)
x_grad
->
Resize
(
x_dims
);
}
};
class
ReduceSumOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
ReduceSumOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"(Tensor) The input tensor. Tensors with rank at most 6 are supported"
);
AddOutput
(
"Out"
,
"(Tensor) The result tensor."
);
AddComment
(
R"DOC(
ReduceMean operator computes the sum of input tensor along the given dimension.
The result tensor has 1 fewer dimension than the input unless `keep_dim` is true.
)DOC"
);
AddAttr
<
int
>
(
"dim"
,
"(int, default 0) The dimension to reduce. "
"Must be in the range [-rank(input), rank(input)]"
)
.
SetDefault
(
0
);
AddAttr
<
bool
>
(
"keep_dim"
,
"(bool, default fasle) "
"If true, retain the reduced dimension with length 1."
)
.
SetDefault
(
false
);
}
};
class
ReduceMeanOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
ReduceMeanOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"(Tensor) The input tensor. Tensors with rank at most 6 are supported"
);
AddOutput
(
"Out"
,
"(Tensor) The result tensor."
);
AddComment
(
R"DOC(
ReduceMean operator computes the mean of input tensor along the given dimension.
The result tensor has 1 fewer dimension than the input unless `keep_dim` is true.
)DOC"
);
AddAttr
<
int
>
(
"dim"
,
"(int, default 0) The dimension to reduce. "
"Must be in the range [-rank(input), rank(input)]"
)
.
SetDefault
(
0
);
AddAttr
<
bool
>
(
"keep_dim"
,
"(bool, default fasle) "
"If true, retain the reduced dimension with length 1."
)
.
SetDefault
(
false
);
}
};
class
ReduceMaxOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
ReduceMaxOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"(Tensor) The input tensor. Tensors with rank at most 6 are supported"
);
AddOutput
(
"Out"
,
"(Tensor) The result tensor."
);
AddComment
(
R"DOC(
ReduceMax operator computes the maximum of input tensor along the given dimension.
The result tensor has 1 fewer dimension than the input unless `keep_dim` is true.
)DOC"
);
AddAttr
<
int
>
(
"dim"
,
"(int, default 0) The dimension to reduce. "
"Must be in the range [-rank(input), rank(input)]"
)
.
SetDefault
(
0
);
AddAttr
<
bool
>
(
"keep_dim"
,
"(bool, default fasle) "
"If true, retain the reduced dimension with length 1."
)
.
SetDefault
(
false
);
}
};
class
ReduceMinOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
ReduceMinOpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"X"
,
"(Tensor) The input tensor. Tensors with rank at most 6 are supported"
);
AddOutput
(
"Out"
,
"(Tensor) The result tensor."
);
AddComment
(
R"DOC(
ReduceMin operator computes the minimum of input tensor along the given dimension.
The result tensor has 1 fewer dimension than the input unless `keep_dim` is true.
)DOC"
);
AddAttr
<
int
>
(
"dim"
,
"(int, default 0) The dimension to reduce. "
"Must be in the range [-rank(input), rank(input)]"
)
.
SetDefault
(
0
);
AddAttr
<
bool
>
(
"keep_dim"
,
"(bool, default fasle) "
"If true, retain the reduced dimension with length 1."
)
.
SetDefault
(
false
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP
(
reduce_sum
,
ops
::
ReduceOp
,
ops
::
ReduceSumOpMaker
,
reduce_sum_grad
,
ops
::
ReduceGradOp
);
REGISTER_OP_CPU_KERNEL
(
reduce_sum
,
ops
::
ReduceKernel
<
paddle
::
platform
::
CPUPlace
,
float
,
ops
::
SumFunctor
>
);
REGISTER_OP_CPU_KERNEL
(
reduce_sum_grad
,
ops
::
ReduceGradKernel
<
paddle
::
platform
::
CPUPlace
,
float
,
ops
::
SumGradFunctor
>
);
REGISTER_OP
(
reduce_mean
,
ops
::
ReduceOp
,
ops
::
ReduceMeanOpMaker
,
reduce_mean_grad
,
ops
::
ReduceGradOp
);
REGISTER_OP_CPU_KERNEL
(
reduce_mean
,
ops
::
ReduceKernel
<
paddle
::
platform
::
CPUPlace
,
float
,
ops
::
MeanFunctor
>
);
REGISTER_OP_CPU_KERNEL
(
reduce_mean_grad
,
ops
::
ReduceGradKernel
<
paddle
::
platform
::
CPUPlace
,
float
,
ops
::
MeanGradFunctor
>
);
REGISTER_OP
(
reduce_max
,
ops
::
ReduceOp
,
ops
::
ReduceMaxOpMaker
,
reduce_max_grad
,
ops
::
ReduceGradOp
);
REGISTER_OP_CPU_KERNEL
(
reduce_max
,
ops
::
ReduceKernel
<
paddle
::
platform
::
CPUPlace
,
float
,
ops
::
MaxFunctor
>
);
REGISTER_OP_CPU_KERNEL
(
reduce_max_grad
,
ops
::
ReduceGradKernel
<
paddle
::
platform
::
CPUPlace
,
float
,
ops
::
MaxOrMinGradFunctor
>
);
REGISTER_OP
(
reduce_min
,
ops
::
ReduceOp
,
ops
::
ReduceMaxOpMaker
,
reduce_min_grad
,
ops
::
ReduceGradOp
);
REGISTER_OP_CPU_KERNEL
(
reduce_min
,
ops
::
ReduceKernel
<
paddle
::
platform
::
CPUPlace
,
float
,
ops
::
MinFunctor
>
);
REGISTER_OP_CPU_KERNEL
(
reduce_min_grad
,
ops
::
ReduceGradKernel
<
paddle
::
platform
::
CPUPlace
,
float
,
ops
::
MaxOrMinGradFunctor
>
);
paddle/operators/reduce_op.cu
0 → 100644
浏览文件 @
3994e91a
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#define EIGEN_USE_GPU
#include "paddle/operators/reduce_op.h"
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_GPU_KERNEL
(
reduce_sum
,
ops
::
ReduceKernel
<
paddle
::
platform
::
GPUPlace
,
float
,
ops
::
SumFunctor
>
);
REGISTER_OP_GPU_KERNEL
(
reduce_sum_grad
,
ops
::
ReduceGradEigenKernel
<
paddle
::
platform
::
GPUPlace
,
float
,
ops
::
SumGradFunctor
>
);
REGISTER_OP_GPU_KERNEL
(
reduce_mean
,
ops
::
ReduceKernel
<
paddle
::
platform
::
GPUPlace
,
float
,
ops
::
MeanFunctor
>
);
REGISTER_OP_GPU_KERNEL
(
reduce_mean_grad
,
ops
::
ReduceGradKernel
<
paddle
::
platform
::
GPUPlace
,
float
,
ops
::
MeanGradFunctor
>
);
REGISTER_OP_GPU_KERNEL
(
reduce_max
,
ops
::
ReduceKernel
<
paddle
::
platform
::
GPUPlace
,
float
,
ops
::
MaxFunctor
>
);
REGISTER_OP_GPU_KERNEL
(
reduce_max_grad
,
ops
::
ReduceGradKernel
<
paddle
::
platform
::
GPUPlace
,
float
,
ops
::
MaxOrMinGradFunctor
>
);
REGISTER_OP_GPU_KERNEL
(
reduce_min
,
ops
::
ReduceKernel
<
paddle
::
platform
::
GPUPlace
,
float
,
ops
::
MinFunctor
>
);
REGISTER_OP_GPU_KERNEL
(
reduce_min_grad
,
ops
::
ReduceGradKernel
<
paddle
::
platform
::
GPUPlace
,
float
,
ops
::
MaxOrMinGradFunctor
>
);
\ No newline at end of file
paddle/operators/reduce_op.h
0 → 100644
浏览文件 @
3994e91a
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/operators/math/math_function.h"
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
using
DDim
=
framework
::
DDim
;
template
<
typename
T
,
size_t
D
,
int
MajorType
=
Eigen
::
RowMajor
,
typename
IndexType
=
Eigen
::
DenseIndex
>
using
EigenTensor
=
framework
::
EigenTensor
<
T
,
D
,
MajorType
,
IndexType
>
;
struct
SumFunctor
{
template
<
typename
Place
,
typename
In
,
typename
Out
,
typename
Dim
>
void
operator
()(
const
Place
&
place
,
In
&
in
,
Out
&
out
,
const
Dim
&
dim
)
{
out
.
device
(
place
)
=
in
.
sum
(
dim
);
}
};
struct
SumGradFunctor
{
template
<
typename
Place
,
typename
In
,
typename
In_Const
,
typename
Out
,
typename
Dim
>
void
operator
()(
const
Place
&
place
,
In_Const
&
in
,
In
&
in_grad
,
Out
&
out
,
Out
&
out_grad
,
const
Dim
&
dim
,
int
size
)
{
in_grad
.
device
(
place
)
=
out_grad
.
broadcast
(
dim
);
}
};
struct
MeanFunctor
{
template
<
typename
Place
,
typename
In
,
typename
Out
,
typename
Dim
>
void
operator
()(
const
Place
&
place
,
In
&
in
,
Out
&
out
,
const
Dim
&
dim
)
{
out
.
device
(
place
)
=
in
.
mean
(
dim
);
}
};
struct
MeanGradFunctor
{
template
<
typename
Place
,
typename
In
,
typename
In_Const
,
typename
Out
,
typename
Dim
>
void
operator
()(
const
Place
&
place
,
In_Const
&
in
,
In
&
in_grad
,
Out
&
out
,
Out
&
out_grad
,
const
Dim
&
dim
,
int
size
)
{
in_grad
.
device
(
place
)
=
out_grad
.
broadcast
(
dim
)
/
in_grad
.
constant
(
size
);
}
};
struct
MaxFunctor
{
template
<
typename
Place
,
typename
In
,
typename
Out
,
typename
Dim
>
void
operator
()(
const
Place
&
place
,
In
&
in
,
Out
&
out
,
const
Dim
&
dim
)
{
out
.
device
(
place
)
=
in
.
maximum
(
dim
);
}
};
struct
MinFunctor
{
template
<
typename
Place
,
typename
In
,
typename
Out
,
typename
Dim
>
void
operator
()(
const
Place
&
place
,
In
&
in
,
Out
&
out
,
const
Dim
&
dim
)
{
out
.
device
(
place
)
=
in
.
minimum
(
dim
);
}
};
struct
MaxOrMinGradFunctor
{
template
<
typename
Place
,
typename
In
,
typename
In_Const
,
typename
Out
,
typename
Dim
>
void
operator
()(
const
Place
&
place
,
In_Const
&
in
,
In
&
in_grad
,
Out
&
out
,
Out
&
out_grad
,
const
Dim
&
dim
,
int
size
)
{
auto
equals
=
in
==
out
.
broadcast
(
dim
);
auto
ones
=
in_grad
.
constant
(
1
);
auto
zeros
=
in_grad
.
constant
(
0
);
in_grad
.
device
(
place
)
=
out_grad
.
broadcast
(
dim
)
*
equals
.
select
(
ones
,
zeros
);
}
};
template
<
typename
Place
,
typename
T
,
typename
Functor
>
class
ReduceKernel
:
public
framework
::
OpKernel
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
int
rank
=
context
.
Input
<
Tensor
>
(
"X"
)
->
dims
().
size
();
switch
(
rank
)
{
case
1
:
ReduceCompute
<
1
>
(
context
);
break
;
case
2
:
ReduceCompute
<
2
>
(
context
);
break
;
case
3
:
ReduceCompute
<
3
>
(
context
);
break
;
case
4
:
ReduceCompute
<
4
>
(
context
);
break
;
case
5
:
ReduceCompute
<
5
>
(
context
);
break
;
case
6
:
ReduceCompute
<
6
>
(
context
);
break
;
}
}
private:
template
<
size_t
D
>
void
ReduceCompute
(
const
framework
::
ExecutionContext
&
context
)
const
{
auto
*
input
=
context
.
Input
<
Tensor
>
(
"X"
);
auto
*
output
=
context
.
Output
<
Tensor
>
(
"Out"
);
output
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
x
=
EigenTensor
<
T
,
D
>::
From
(
*
input
);
auto
x_rank
=
static_cast
<
int
>
(
x
.
dimensions
().
size
());
int
dim
=
static_cast
<
int
>
(
context
.
Attr
<
int
>
(
"dim"
));
if
(
dim
<
0
)
dim
=
x_rank
+
dim
;
auto
reduce_dim
=
Eigen
::
array
<
int
,
1
>
({{
dim
}});
// construct the squeezed output tensor
bool
keep_dim
=
true
;
// static_cast<bool>(context.Attr<bool>("keep_dim"));
DDim
dims
=
output
->
dims
();
auto
dims_vector
=
vectorize
(
dims
);
if
(
keep_dim
&&
x_rank
>
1
)
{
dims_vector
.
erase
(
dims_vector
.
begin
()
+
dim
);
dims
=
framework
::
make_ddim
(
dims_vector
);
}
auto
out
=
EigenTensor
<
T
,
D
==
1
?
1
:
(
D
-
1
)
>
::
From
(
*
output
,
dims
);
auto
&
place
=
context
.
GetEigenDevice
<
Place
>
();
Functor
functor
;
functor
(
place
,
x
,
out
,
reduce_dim
);
}
};
template
<
typename
Place
,
typename
T
,
typename
Functor
>
class
ReduceGradKernel
:
public
framework
::
OpKernel
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
int
rank
=
context
.
Input
<
Tensor
>
(
"X"
)
->
dims
().
size
();
switch
(
rank
)
{
case
1
:
ReduceCompute
<
1
>
(
context
);
break
;
case
2
:
ReduceCompute
<
2
>
(
context
);
break
;
case
3
:
ReduceCompute
<
3
>
(
context
);
break
;
case
4
:
ReduceCompute
<
4
>
(
context
);
break
;
case
5
:
ReduceCompute
<
5
>
(
context
);
break
;
case
6
:
ReduceCompute
<
6
>
(
context
);
break
;
}
}
private:
template
<
size_t
D
>
void
ReduceCompute
(
const
framework
::
ExecutionContext
&
context
)
const
{
auto
*
input0
=
context
.
Input
<
Tensor
>
(
"X"
);
auto
*
input1
=
context
.
Input
<
Tensor
>
(
"Out"
);
auto
*
input2
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
output
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
if
(
output
!=
nullptr
)
{
output
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
x
=
EigenTensor
<
T
,
D
>::
From
(
*
input0
);
auto
x_grad
=
EigenTensor
<
T
,
D
>::
From
(
*
output
);
auto
x_rank
=
static_cast
<
int
>
(
x
.
dimensions
().
size
());
int
dim
=
static_cast
<
int
>
(
context
.
Attr
<
int
>
(
"dim"
));
if
(
dim
<
0
)
dim
=
x_rank
+
dim
;
DDim
dims
=
input0
->
dims
();
dims
[
dim
]
=
1
;
auto
x_reduce
=
EigenTensor
<
T
,
D
>::
From
(
*
input1
,
dims
);
auto
x_reduce_grad
=
EigenTensor
<
T
,
D
>::
From
(
*
input2
,
dims
);
Eigen
::
array
<
int
,
D
>
braodcast_dim
;
for
(
size_t
i
=
0
;
i
<
D
;
++
i
)
braodcast_dim
[
i
]
=
1
;
braodcast_dim
[
dim
]
=
input0
->
dims
()[
dim
];
auto
&
place
=
context
.
GetEigenDevice
<
Place
>
();
Functor
functor
;
functor
(
place
,
x
,
x_grad
,
x_reduce
,
x_reduce_grad
,
braodcast_dim
,
braodcast_dim
[
dim
]);
}
}
};
// For EigenTensor unsupported reduce
template
<
typename
T
,
typename
Functor
>
class
ReduceGradEigenFreeKernel
:
public
framework
::
OpKernel
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
x
=
context
.
Input
<
Tensor
>
(
"X"
);
auto
*
out
=
context
.
Input
<
Tensor
>
(
"Out"
);
auto
*
x_grad
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
out_grad
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
if
(
x_grad
!=
nullptr
)
{
DDim
dims
=
x
->
dims
();
int
rank
=
dims
.
size
();
int
dim
=
static_cast
<
int
>
(
context
.
Attr
<
int
>
(
"dim"
));
if
(
dim
<
0
)
dim
=
rank
+
dim
;
auto
*
x_data
=
x
->
data
<
T
>
();
auto
*
x_grad_data
=
x_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
*
out_data
=
out
->
data
<
T
>
();
auto
*
out_grad_data
=
out_grad
->
data
<
T
>
();
int
outer_count
=
1
;
int
inner_count
=
1
;
int
mid_count
=
dims
[
dim
];
for
(
int
i
=
0
;
i
<
dim
;
++
i
)
{
outer_count
*=
dims
[
i
];
}
for
(
int
i
=
dim
+
1
;
i
<
rank
;
++
i
)
{
inner_count
*=
dims
[
i
];
}
int
x_offset
=
0
;
// offset on raw data
int
out_offset
=
0
;
// offset on reduced data
Functor
functor
;
for
(
int
i
=
0
;
i
<
outer_count
;
++
i
)
{
for
(
int
j
=
0
;
j
<
inner_count
;
++
j
)
{
out_offset
=
inner_count
*
i
+
j
;
for
(
int
k
=
0
;
k
<
mid_count
;
++
k
)
{
x_offset
=
(
inner_count
*
mid_count
)
*
i
+
inner_count
*
k
+
j
;
functor
(
x_data
+
x_offset
,
x_grad_data
+
x_offset
,
out_data
+
out_offset
,
out_grad_data
+
out_offset
,
mid_count
);
}
}
}
}
}
};
}
// namespace operators
}
// namespace paddle
python/paddle/v2/framework/tests/test_reduce_op.py
0 → 100644
浏览文件 @
3994e91a
import
unittest
import
numpy
as
np
from
gradient_checker
import
GradientChecker
,
create_op
from
op_test_util
import
OpTestMeta
from
paddle.v2.framework.op
import
Operator
class
TestSumOp
(
unittest
.
TestCase
):
__metaclass__
=
OpTestMeta
def
setUp
(
self
):
self
.
type
=
"reduce_sum"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
5
,
6
,
10
)).
astype
(
"float32"
)}
self
.
attrs
=
{
'dim'
:
-
2
}
out
=
self
.
inputs
[
'X'
].
sum
(
axis
=
self
.
attrs
[
'dim'
])
self
.
outputs
=
{
'Out'
:
out
}
class
TestSumGradOp
(
GradientChecker
):
def
test_normal
(
self
):
op
=
Operator
(
"reduce_sum"
,
X
=
"X"
,
Out
=
"Out"
,
dim
=-
2
)
# use small size to decrease the error of numerical calculation
inputs
=
{
'X'
:
np
.
random
.
random
((
5
,
6
,
10
)).
astype
(
"float32"
)}
self
.
check_grad
(
op
,
inputs
,
set
([
"X"
]),
"Out"
)
def
test_1d_tensor
(
self
):
op
=
Operator
(
"reduce_sum"
,
X
=
"X"
,
Out
=
"Out"
,
dim
=
0
)
# use small size to decrease the error of numerical calculation
inputs
=
{
'X'
:
np
.
random
.
random
(
10
).
astype
(
"float32"
)}
self
.
check_grad
(
op
,
inputs
,
set
([
"X"
]),
"Out"
)
class
TestKeepdimSumOp
(
unittest
.
TestCase
):
__metaclass__
=
OpTestMeta
def
setUp
(
self
):
self
.
type
=
"reduce_sum"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
5
,
6
,
10
)).
astype
(
"float32"
)}
self
.
attrs
=
{
'dim'
:
-
2
}
out
=
self
.
inputs
[
'X'
].
sum
(
axis
=
self
.
attrs
[
'dim'
],
keepdims
=
True
)
self
.
outputs
=
{
'Out'
:
out
}
class
TestMeanOp
(
unittest
.
TestCase
):
__metaclass__
=
OpTestMeta
def
setUp
(
self
):
self
.
type
=
"reduce_mean"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
5
,
6
,
10
)).
astype
(
"float32"
)}
self
.
attrs
=
{
'dim'
:
-
1
}
out
=
self
.
inputs
[
'X'
].
mean
(
axis
=
self
.
attrs
[
'dim'
])
self
.
outputs
=
{
'Out'
:
out
}
class
TestMeanGradOp
(
GradientChecker
):
def
test_normal
(
self
):
op
=
Operator
(
"reduce_mean"
,
X
=
"X"
,
Out
=
"Out"
,
dim
=-
2
)
# use small size to decrease the error of numerical calculation
inputs
=
{
'X'
:
np
.
random
.
random
((
5
,
6
,
10
)).
astype
(
"float32"
)}
self
.
check_grad
(
op
,
inputs
,
set
([
"X"
]),
"Out"
)
def
test_1d_tensor
(
self
):
op
=
Operator
(
"reduce_mean"
,
X
=
"X"
,
Out
=
"Out"
,
dim
=
0
)
# use small size to decrease the error of numerical calculation
inputs
=
{
'X'
:
np
.
random
.
random
(
10
).
astype
(
"float32"
)}
self
.
check_grad
(
op
,
inputs
,
set
([
"X"
]),
"Out"
)
class
TestMaxOp
(
unittest
.
TestCase
):
__metaclass__
=
OpTestMeta
def
setUp
(
self
):
self
.
type
=
"reduce_max"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
5
,
6
,
10
)).
astype
(
"float32"
)}
self
.
attrs
=
{
'dim'
:
-
1
}
out
=
self
.
inputs
[
'X'
].
max
(
axis
=
self
.
attrs
[
'dim'
])
self
.
outputs
=
{
'Out'
:
out
}
class
TestMinOp
(
unittest
.
TestCase
):
__metaclass__
=
OpTestMeta
def
setUp
(
self
):
self
.
type
=
"reduce_max"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
5
,
6
,
10
)).
astype
(
"float32"
)}
self
.
attrs
=
{
'dim'
:
-
2
}
out
=
self
.
inputs
[
'X'
].
min
(
axis
=
self
.
attrs
[
'dim'
])
self
.
outputs
=
{
'Out'
:
out
}
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录