未验证 提交 37a94370 编写于 作者: F fengjiayi 提交者: GitHub

Merge pull request #7538 from JiayiFeng/dev_elementwise_max_min

elementwise max min
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle.trainer_config_helpers import *
######################## data source ################################
......
......@@ -28,39 +28,7 @@ template <typename DeviceContext, typename T>
class ElementwiseAddKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
using Tensor = framework::Tensor;
auto* x = ctx.Input<Tensor>("X");
auto* y = ctx.Input<Tensor>("Y");
auto* z = ctx.Output<Tensor>("Out");
z->mutable_data<T>(ctx.GetPlace());
TransformFunctor<AddFunctor<T>, T, DeviceContext> functor(
x, y, z, ctx.template device_context<DeviceContext>(), AddFunctor<T>());
auto x_dims = x->dims();
auto y_dims = y->dims();
PADDLE_ENFORCE_GE(x_dims.size(), y_dims.size(),
"Rank of first input must >= rank of second input.");
if (x_dims == y_dims) {
functor.Run();
return;
}
int axis = ctx.Attr<int>("axis");
axis = (axis == -1 ? x_dims.size() - y_dims.size() : axis);
PADDLE_ENFORCE(axis >= 0 && axis < x_dims.size(),
"Axis should be in range [0, x_dims)");
int pre, n, post;
get_mid_dims(x_dims, y_dims, axis, pre, n, post);
if (post == 1) {
functor.RunRowWise(n, pre);
return;
} else {
functor.RunMidWise(n, pre, post);
return;
}
ElementwiseComputeEx<AddFunctor<T>, DeviceContext, T>(ctx);
}
};
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/elementwise_max_op.h"
#include "paddle/operators/elementwise_op.h"
namespace paddle {
namespace operators {
class ElementwiseMaxOpMaker : public ElementwiseOpMaker {
public:
ElementwiseMaxOpMaker(OpProto* proto, OpAttrChecker* op_checker)
: ElementwiseOpMaker(proto, op_checker) {
SetComment("Max", "Out = max(X, Y)");
AddComment(comment_);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP(elementwise_max, ops::ElementwiseOp, ops::ElementwiseMaxOpMaker,
elementwise_max_grad, ops::ElementwiseOpGrad);
REGISTER_OP_CPU_KERNEL(
elementwise_max,
ops::ElementwiseMaxKernel<paddle::platform::CPUDeviceContext, float>,
ops::ElementwiseMaxKernel<paddle::platform::CPUDeviceContext, double>,
ops::ElementwiseMaxKernel<paddle::platform::CPUDeviceContext, int>,
ops::ElementwiseMaxKernel<paddle::platform::CPUDeviceContext, int64_t>);
REGISTER_OP_CPU_KERNEL(
elementwise_max_grad,
ops::ElementwiseMaxGradKernel<paddle::platform::CPUDeviceContext, float>,
ops::ElementwiseMaxGradKernel<paddle::platform::CPUDeviceContext, double>,
ops::ElementwiseMaxGradKernel<paddle::platform::CPUDeviceContext, int>,
ops::ElementwiseMaxGradKernel<paddle::platform::CPUDeviceContext, int64_t>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#define EIGEN_USE_GPU
#include "paddle/operators/elementwise_max_op.h"
namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
elementwise_max,
ops::ElementwiseMaxKernel<paddle::platform::CUDADeviceContext, float>,
ops::ElementwiseMaxKernel<paddle::platform::CUDADeviceContext, double>,
ops::ElementwiseMaxKernel<paddle::platform::CUDADeviceContext, int>,
ops::ElementwiseMaxKernel<paddle::platform::CUDADeviceContext, int64_t>);
REGISTER_OP_CUDA_KERNEL(
elementwise_max_grad,
ops::ElementwiseMaxGradKernel<paddle::platform::CUDADeviceContext, float>,
ops::ElementwiseMaxGradKernel<paddle::platform::CUDADeviceContext, double>,
ops::ElementwiseMaxGradKernel<paddle::platform::CUDADeviceContext, int>,
ops::ElementwiseMaxGradKernel<paddle::platform::CUDADeviceContext,
int64_t>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/operators/elementwise_op_function.h"
namespace paddle {
namespace operators {
template <typename T>
struct MaxFunctor {
inline HOSTDEVICE T operator()(T a, T b) const { return a > b ? a : b; }
};
template <typename DeviceContext, typename T>
class ElementwiseMaxKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
ElementwiseComputeEx<MaxFunctor<T>, DeviceContext, T>(ctx);
}
};
template <typename T>
struct ElementwiseMaxGradFunctor {
template <typename Device, typename X, typename Y, typename Z, typename dX,
typename dY, typename dZ>
void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz) {
auto x_e = framework::EigenVector<T>::Flatten(*x);
auto y_e = framework::EigenVector<T>::Flatten(*y);
auto dz_e = framework::EigenVector<T>::Flatten(*dz);
if (dx) {
auto dx_e = framework::EigenVector<T>::Flatten(*dx);
dx_e.device(d) = (x_e > y_e).template cast<T>() * dz_e;
}
if (dy) {
auto dy_e = framework::EigenVector<T>::Flatten(*dy);
dy_e.device(d) = (x_e <= y_e).template cast<T>() * dz_e;
}
}
};
template <typename T>
struct ElementwiseMaxBroadCastGradFunctor {
template <typename Device, typename X, typename Y, typename Z, typename dX,
typename dY, typename dZ, typename Pre, typename N>
void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz, Pre pre, N n) {
auto x_e = framework::EigenVector<T>::Flatten(*x);
auto y_e = framework::EigenVector<T>::Flatten(*y);
auto dz_e = framework::EigenVector<T>::Flatten(*dz);
auto y_e_bcast = y_e.reshape(Eigen::DSizes<int, 2>(1, n))
.broadcast(Eigen::DSizes<int, 2>(pre, 1))
.reshape(Eigen::DSizes<int, 1>(x_e.size()));
if (dx) {
auto dx_e = framework::EigenVector<T>::Flatten(*dx);
dx_e.device(d) = (x_e > y_e_bcast).template cast<T>() * dz_e;
}
if (dy) {
auto dy_e = framework::EigenVector<T>::Flatten(*dy);
dy_e.device(d) = ((x_e <= y_e_bcast).template cast<T>() * dz_e)
.reshape(Eigen::DSizes<int, 2>(pre, n))
.sum(Eigen::array<int, 1>{{0}});
}
}
};
template <typename T>
struct ElementwiseMaxBroadCast2GradFunctor {
template <typename Device, typename X, typename Y, typename Z, typename dX,
typename dY, typename dZ, typename Pre, typename N, typename Post>
void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz, Pre pre, N n,
Post post) {
auto x_e = framework::EigenVector<T>::Flatten(*x);
auto y_e = framework::EigenVector<T>::Flatten(*y);
auto dz_e = framework::EigenVector<T>::Flatten(*dz);
auto y_e_bcast = y_e.reshape(Eigen::DSizes<int, 3>(1, n, 1))
.broadcast(Eigen::DSizes<int, 3>(pre, 1, post))
.reshape(Eigen::DSizes<int, 1>(x_e.size()));
if (dx) {
auto dx_e = framework::EigenVector<T>::Flatten(*dx);
dx_e.device(d) = (x_e > y_e_bcast).template cast<T>() * dz_e;
}
if (dy) {
auto dy_e = framework::EigenVector<T>::Flatten(*dy);
dy_e.device(d) = ((x_e <= y_e_bcast).template cast<T>() * dz_e)
.reshape(Eigen::DSizes<int, 3>(pre, n, post))
.sum(Eigen::array<int, 2>{{0, 2}});
}
}
};
template <typename DeviceContext, typename T>
class ElementwiseMaxGradKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
ElementwiseGradCompute<DeviceContext, T, ElementwiseMaxGradFunctor<T>,
ElementwiseMaxBroadCastGradFunctor<T>,
ElementwiseMaxBroadCast2GradFunctor<T>>(ctx);
}
};
} // namespace operators
} // namespace paddle
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/elementwise_min_op.h"
#include "paddle/operators/elementwise_op.h"
namespace paddle {
namespace operators {
class ElementwiseMinOpMaker : public ElementwiseOpMaker {
public:
ElementwiseMinOpMaker(OpProto* proto, OpAttrChecker* op_checker)
: ElementwiseOpMaker(proto, op_checker) {
SetComment("Max", "Out = min(X, Y)");
AddComment(comment_);
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP(elementwise_min, ops::ElementwiseOp, ops::ElementwiseMinOpMaker,
elementwise_min_grad, ops::ElementwiseOpGrad);
REGISTER_OP_CPU_KERNEL(
elementwise_min,
ops::ElementwiseMinKernel<paddle::platform::CPUDeviceContext, float>,
ops::ElementwiseMinKernel<paddle::platform::CPUDeviceContext, double>,
ops::ElementwiseMinKernel<paddle::platform::CPUDeviceContext, int>,
ops::ElementwiseMinKernel<paddle::platform::CPUDeviceContext, int64_t>);
REGISTER_OP_CPU_KERNEL(
elementwise_min_grad,
ops::ElementwiseMinGradKernel<paddle::platform::CPUDeviceContext, float>,
ops::ElementwiseMinGradKernel<paddle::platform::CPUDeviceContext, double>,
ops::ElementwiseMinGradKernel<paddle::platform::CPUDeviceContext, int>,
ops::ElementwiseMinGradKernel<paddle::platform::CPUDeviceContext, int64_t>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#define EIGEN_USE_GPU
#include "paddle/operators/elementwise_min_op.h"
namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
elementwise_min,
ops::ElementwiseMinKernel<paddle::platform::CUDADeviceContext, float>,
ops::ElementwiseMinKernel<paddle::platform::CUDADeviceContext, double>,
ops::ElementwiseMinKernel<paddle::platform::CUDADeviceContext, int>,
ops::ElementwiseMinKernel<paddle::platform::CUDADeviceContext, int64_t>);
REGISTER_OP_CUDA_KERNEL(
elementwise_min_grad,
ops::ElementwiseMinGradKernel<paddle::platform::CUDADeviceContext, float>,
ops::ElementwiseMinGradKernel<paddle::platform::CUDADeviceContext, double>,
ops::ElementwiseMinGradKernel<paddle::platform::CUDADeviceContext, int>,
ops::ElementwiseMinGradKernel<paddle::platform::CUDADeviceContext,
int64_t>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/operators/elementwise_op_function.h"
namespace paddle {
namespace operators {
template <typename T>
struct MinFunctor {
inline HOSTDEVICE T operator()(T a, T b) const { return a < b ? a : b; }
};
template <typename DeviceContext, typename T>
class ElementwiseMinKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
ElementwiseComputeEx<MinFunctor<T>, DeviceContext, T>(ctx);
}
};
template <typename T>
struct ElementwiseMinGradFunctor {
template <typename Device, typename X, typename Y, typename Z, typename dX,
typename dY, typename dZ>
void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz) {
auto x_e = framework::EigenVector<T>::Flatten(*x);
auto y_e = framework::EigenVector<T>::Flatten(*y);
auto dz_e = framework::EigenVector<T>::Flatten(*dz);
if (dx) {
auto dx_e = framework::EigenVector<T>::Flatten(*dx);
dx_e.device(d) = (x_e < y_e).template cast<T>() * dz_e;
}
if (dy) {
auto dy_e = framework::EigenVector<T>::Flatten(*dy);
dy_e.device(d) = (x_e >= y_e).template cast<T>() * dz_e;
}
}
};
template <typename T>
struct ElementwiseMinBroadCastGradFunctor {
template <typename Device, typename X, typename Y, typename Z, typename dX,
typename dY, typename dZ, typename Pre, typename N>
void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz, Pre pre, N n) {
auto x_e = framework::EigenVector<T>::Flatten(*x);
auto y_e = framework::EigenVector<T>::Flatten(*y);
auto dz_e = framework::EigenVector<T>::Flatten(*dz);
auto y_e_bcast = y_e.reshape(Eigen::DSizes<int, 2>(1, n))
.broadcast(Eigen::DSizes<int, 2>(pre, 1))
.reshape(Eigen::DSizes<int, 1>(x_e.size()));
if (dx) {
auto dx_e = framework::EigenVector<T>::Flatten(*dx);
dx_e.device(d) = (x_e < y_e_bcast).template cast<T>() * dz_e;
}
if (dy) {
auto dy_e = framework::EigenVector<T>::Flatten(*dy);
dy_e.device(d) = ((x_e >= y_e_bcast).template cast<T>() * dz_e)
.reshape(Eigen::DSizes<int, 2>(pre, n))
.sum(Eigen::array<int, 1>{{0}});
}
}
};
template <typename T>
struct ElementwiseMinBroadCast2GradFunctor {
template <typename Device, typename X, typename Y, typename Z, typename dX,
typename dY, typename dZ, typename Pre, typename N, typename Post>
void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz, Pre pre, N n,
Post post) {
auto x_e = framework::EigenVector<T>::Flatten(*x);
auto y_e = framework::EigenVector<T>::Flatten(*y);
auto dz_e = framework::EigenVector<T>::Flatten(*dz);
auto y_e_bcast = y_e.reshape(Eigen::DSizes<int, 3>(1, n, 1))
.broadcast(Eigen::DSizes<int, 3>(pre, 1, post))
.reshape(Eigen::DSizes<int, 1>(x_e.size()));
if (dx) {
auto dx_e = framework::EigenVector<T>::Flatten(*dx);
dx_e.device(d) = (x_e < y_e_bcast).template cast<T>() * dz_e;
}
if (dy) {
auto dy_e = framework::EigenVector<T>::Flatten(*dy);
dy_e.device(d) = ((x_e >= y_e_bcast).template cast<T>() * dz_e)
.reshape(Eigen::DSizes<int, 3>(pre, n, post))
.sum(Eigen::array<int, 2>{{0, 2}});
}
}
};
template <typename DeviceContext, typename T>
class ElementwiseMinGradKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
ElementwiseGradCompute<DeviceContext, T, ElementwiseMinGradFunctor<T>,
ElementwiseMinBroadCastGradFunctor<T>,
ElementwiseMinBroadCast2GradFunctor<T>>(ctx);
}
};
} // namespace operators
} // namespace paddle
......@@ -356,5 +356,43 @@ void ElementwiseGradCompute(const framework::ExecutionContext& ctx) {
return;
}
}
template <typename Functor, typename DeviceContext, typename T>
void ElementwiseComputeEx(const framework::ExecutionContext& ctx) {
using Tensor = framework::Tensor;
auto* x = ctx.Input<Tensor>("X");
auto* y = ctx.Input<Tensor>("Y");
auto* z = ctx.Output<Tensor>("Out");
z->mutable_data<T>(ctx.GetPlace());
TransformFunctor<Functor, T, DeviceContext> functor(
x, y, z, ctx.template device_context<DeviceContext>(), Functor());
auto x_dims = x->dims();
auto y_dims = y->dims();
PADDLE_ENFORCE_GE(x_dims.size(), y_dims.size(),
"Rank of first input must >= rank of second input.");
if (x_dims == y_dims) {
functor.Run();
return;
}
int axis = ctx.Attr<int>("axis");
axis = (axis == -1 ? x_dims.size() - y_dims.size() : axis);
PADDLE_ENFORCE(axis >= 0 && axis < x_dims.size(),
"Axis should be in range [0, x_dims)");
int pre, n, post;
get_mid_dims(x_dims, y_dims, axis, pre, n, post);
if (post == 1) {
functor.RunRowWise(n, pre);
return;
} else {
functor.RunMidWise(n, pre, post);
return;
}
}
} // namespace operators
} // namespace paddle
......@@ -55,6 +55,8 @@ __all__ = [
'elementwise_div',
'elementwise_sub',
'elementwise_mul',
'elementwise_max',
'elementwise_min',
'clip',
'sequence_softmax',
] + __activations__
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
import unittest
import numpy as np
from op_test import OpTest
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
import unittest
import numpy as np
from op_test import OpTest
class TestElementwiseOp(OpTest):
def setUp(self):
self.op_type = "elementwise_max"
# If x and y have the same value, the max() is not differentiable.
# So we generate test data by the following method
# to avoid them being too close to each other.
x = np.random.uniform(0.1, 1, [13, 17]).astype("float32")
sgn = np.random.choice([-1, 1], [13, 17]).astype("float32")
y = x + sgn * np.random.uniform(0.1, 1, [13, 17]).astype("float32")
self.inputs = {'X': x, 'Y': y}
self.outputs = {'Out': np.maximum(self.inputs['X'], self.inputs['Y'])}
def test_check_output(self):
self.check_output()
def test_check_grad_normal(self):
self.check_grad(['X', 'Y'], 'Out', max_relative_error=0.005)
def test_check_grad_ingore_x(self):
self.check_grad(
['Y'], 'Out', max_relative_error=0.005, no_grad_set=set("X"))
def test_check_grad_ingore_y(self):
self.check_grad(
['X'], 'Out', max_relative_error=0.005, no_grad_set=set('Y'))
class TestElementwiseMaxOp_Vector(TestElementwiseOp):
def setUp(self):
self.op_type = "elementwise_max"
x = np.random.random((32, )).astype("float32")
sgn = np.random.choice([-1, 1], (32, )).astype("float32")
y = x + sgn * np.random.uniform(0.1, 1, (32, )).astype("float32")
self.inputs = {'X': x, 'Y': y}
self.outputs = {'Out': np.maximum(self.inputs['X'], self.inputs['Y'])}
class TestElementwiseMaxOp_broadcast_0(TestElementwiseOp):
def setUp(self):
self.op_type = "elementwise_max"
x = np.random.uniform(0.5, 1, (2, 3, 4)).astype(np.float32)
sgn = np.random.choice([-1, 1], (2, )).astype(np.float32)
y = x[:, 0, 0] + sgn * \
np.random.uniform(1, 2, (2, )).astype(np.float32)
self.inputs = {'X': x, 'Y': y}
self.attrs = {'axis': 0}
self.outputs = {
'Out':
np.maximum(self.inputs['X'], self.inputs['Y'].reshape(2, 1, 1))
}
class TestElementwiseMaxOp_broadcast_1(TestElementwiseOp):
def setUp(self):
self.op_type = "elementwise_max"
x = np.random.uniform(0.5, 1, (2, 3, 4)).astype(np.float32)
sgn = np.random.choice([-1, 1], (3, )).astype(np.float32)
y = x[0, :, 0] + sgn * \
np.random.uniform(1, 2, (3, )).astype(np.float32)
self.inputs = {'X': x, 'Y': y}
self.attrs = {'axis': 1}
self.outputs = {
'Out':
np.maximum(self.inputs['X'], self.inputs['Y'].reshape(1, 3, 1))
}
class TestElementwiseMaxOp_broadcast_2(TestElementwiseOp):
def setUp(self):
self.op_type = "elementwise_max"
x = np.random.uniform(0.5, 1, (2, 3, 4)).astype(np.float32)
sgn = np.random.choice([-1, 1], (4, )).astype(np.float32)
y = x[0, 0, :] + sgn * \
np.random.uniform(1, 2, (4, )).astype(np.float32)
self.inputs = {'X': x, 'Y': y}
self.outputs = {
'Out':
np.maximum(self.inputs['X'], self.inputs['Y'].reshape(1, 1, 4))
}
class TestElementwiseMaxOp_broadcast_3(TestElementwiseOp):
def setUp(self):
self.op_type = "elementwise_max"
x = np.random.uniform(0.5, 1, (2, 3, 4, 5)).astype(np.float32)
sgn = np.random.choice([-1, 1], (3, 4)).astype(np.float32)
y = x[0, :, :, 0] + sgn * \
np.random.uniform(1, 2, (3, 4)).astype(np.float32)
self.inputs = {'X': x, 'Y': y}
self.attrs = {'axis': 1}
self.outputs = {
'Out':
np.maximum(self.inputs['X'], self.inputs['Y'].reshape(1, 3, 4, 1))
}
if __name__ == '__main__':
unittest.main()
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
import unittest
import numpy as np
from op_test import OpTest
class TestElementwiseOp(OpTest):
def setUp(self):
self.op_type = "elementwise_min"
# If x and y have the same value, the min() is not differentiable.
# So we generate test data by the following method
# to avoid them being too close to each other.
x = np.random.uniform(0.1, 1, [13, 17]).astype("float32")
sgn = np.random.choice([-1, 1], [13, 17]).astype("float32")
y = x + sgn * np.random.uniform(0.1, 1, [13, 17]).astype("float32")
self.inputs = {'X': x, 'Y': y}
self.outputs = {'Out': np.minimum(self.inputs['X'], self.inputs['Y'])}
def test_check_output(self):
self.check_output()
def test_check_grad_normal(self):
self.check_grad(['X', 'Y'], 'Out', max_relative_error=0.005)
def test_check_grad_ingore_x(self):
self.check_grad(
['Y'], 'Out', max_relative_error=0.005, no_grad_set=set("X"))
def test_check_grad_ingore_y(self):
self.check_grad(
['X'], 'Out', max_relative_error=0.005, no_grad_set=set('Y'))
class TestElementwiseMaxOp_Vector(TestElementwiseOp):
def setUp(self):
self.op_type = "elementwise_min"
x = np.random.random((32, )).astype("float32")
sgn = np.random.choice([-1, 1], (32, )).astype("float32")
y = x + sgn * np.random.uniform(0.1, 1, (32, )).astype("float32")
self.inputs = {'X': x, 'Y': y}
self.outputs = {'Out': np.minimum(self.inputs['X'], self.inputs['Y'])}
class TestElementwiseMaxOp_broadcast_0(TestElementwiseOp):
def setUp(self):
self.op_type = "elementwise_min"
x = np.random.uniform(0.5, 1, (2, 3, 4)).astype(np.float32)
sgn = np.random.choice([-1, 1], (2, )).astype(np.float32)
y = x[:, 0, 0] + sgn * \
np.random.uniform(1, 2, (2, )).astype(np.float32)
self.inputs = {'X': x, 'Y': y}
self.attrs = {'axis': 0}
self.outputs = {
'Out':
np.minimum(self.inputs['X'], self.inputs['Y'].reshape(2, 1, 1))
}
class TestElementwiseMaxOp_broadcast_1(TestElementwiseOp):
def setUp(self):
self.op_type = "elementwise_min"
x = np.random.uniform(0.5, 1, (2, 3, 4)).astype(np.float32)
sgn = np.random.choice([-1, 1], (3, )).astype(np.float32)
y = x[0, :, 0] + sgn * \
np.random.uniform(1, 2, (3, )).astype(np.float32)
self.inputs = {'X': x, 'Y': y}
self.attrs = {'axis': 1}
self.outputs = {
'Out':
np.minimum(self.inputs['X'], self.inputs['Y'].reshape(1, 3, 1))
}
class TestElementwiseMaxOp_broadcast_2(TestElementwiseOp):
def setUp(self):
self.op_type = "elementwise_min"
x = np.random.uniform(0.5, 1, (2, 3, 4)).astype(np.float32)
sgn = np.random.choice([-1, 1], (4, )).astype(np.float32)
y = x[0, 0, :] + sgn * \
np.random.uniform(1, 2, (4, )).astype(np.float32)
self.inputs = {'X': x, 'Y': y}
self.outputs = {
'Out':
np.minimum(self.inputs['X'], self.inputs['Y'].reshape(1, 1, 4))
}
class TestElementwiseMaxOp_broadcast_3(TestElementwiseOp):
def setUp(self):
self.op_type = "elementwise_min"
x = np.random.uniform(0.5, 1, (2, 3, 4, 5)).astype(np.float32)
sgn = np.random.choice([-1, 1], (3, 4)).astype(np.float32)
y = x[0, :, :, 0] + sgn * \
np.random.uniform(1, 2, (3, 4)).astype(np.float32)
self.inputs = {'X': x, 'Y': y}
self.attrs = {'axis': 1}
self.outputs = {
'Out':
np.minimum(self.inputs['X'], self.inputs['Y'].reshape(1, 3, 4, 1))
}
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册