Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
35dec3d7
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
35dec3d7
编写于
1月 30, 2018
作者:
D
dangqingqing
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Fix bug in unit test.
上级
2731fd96
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
82 addition
and
63 deletion
+82
-63
paddle/operators/multiclass_nms_op.cc
paddle/operators/multiclass_nms_op.cc
+50
-34
python/paddle/v2/fluid/tests/test_multiclass_nms_op.py
python/paddle/v2/fluid/tests/test_multiclass_nms_op.py
+32
-29
未找到文件。
paddle/operators/multiclass_nms_op.cc
浏览文件 @
35dec3d7
...
...
@@ -41,13 +41,22 @@ class MulticlassNMSOp : public framework::OperatorWithKernel {
"The rank of Input(Bboxes) must be 3."
);
PADDLE_ENFORCE_EQ
(
score_dims
.
size
(),
3
,
"The rank of Input(Scores) must be 3."
);
PADDLE_ENFORCE_EQ
(
box_dims
[
2
],
4
);
PADDLE_ENFORCE_EQ
(
box_dims
[
1
],
4
);
PADDLE_ENFORCE_EQ
(
box_dims
[
0
],
score_dims
[
2
]);
// Here the box_dims[0] is not the real dimension of output.
// It will be rewritten in the computing kernel.
ctx
->
SetOutputDim
(
"Out"
,
{
box_dims
[
0
],
6
});
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
ctx
.
Input
<
framework
::
LoDTensor
>
(
"Scores"
)
->
type
()),
ctx
.
device_context
());
}
};
template
<
class
T
>
...
...
@@ -158,12 +167,12 @@ class MulticlassNMSKernel : public framework::OpKernel<T> {
const
Tensor
&
scores
,
const
Tensor
&
bboxes
,
std
::
map
<
int
,
std
::
vector
<
int
>>*
indices
,
int
*
num_nmsed_out
)
const
{
int64_t
background_label
=
ctx
.
Attr
<
int
64_t
>
(
"background_label"
);
int64_t
nms_top_k
=
ctx
.
Attr
<
int
64_t
>
(
"nms_top_k"
);
int64_t
keep_top_k
=
ctx
.
Attr
<
int
64_t
>
(
"keep_top_k"
);
int64_t
background_label
=
ctx
.
Attr
<
int
>
(
"background_label"
);
int64_t
nms_top_k
=
ctx
.
Attr
<
int
>
(
"nms_top_k"
);
int64_t
keep_top_k
=
ctx
.
Attr
<
int
>
(
"keep_top_k"
);
T
nms_threshold
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"nms_threshold"
));
T
nms_eta
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"nms_eta"
));
T
score_threshold
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"
confidenc
e_threshold"
));
T
score_threshold
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"
scor
e_threshold"
));
int64_t
class_num
=
scores
.
dims
()[
0
];
int64_t
predict_dim
=
scores
.
dims
()[
1
];
...
...
@@ -173,7 +182,7 @@ class MulticlassNMSKernel : public framework::OpKernel<T> {
Tensor
score
=
scores
.
Slice
(
c
,
c
+
1
);
NMSFast
(
bboxes
,
score
,
score_threshold
,
nms_threshold
,
nms_eta
,
nms_top_k
,
&
((
*
indices
)[
c
]));
num_det
+=
indices
[
c
].
size
();
num_det
+=
(
*
indices
)
[
c
].
size
();
}
*
num_nmsed_out
=
num_det
;
...
...
@@ -230,20 +239,19 @@ class MulticlassNMSKernel : public framework::OpKernel<T> {
odata
[
count
*
kOutputDim
+
3
]
=
bdata
[
1
];
// ymin
odata
[
count
*
kOutputDim
+
4
]
=
bdata
[
2
];
// xmax
odata
[
count
*
kOutputDim
+
5
]
=
bdata
[
3
];
// ymax
}
count
++
;
}
}
}
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
boxes
=
ctx
.
Input
<
Tensor
>
(
"Bboxes"
);
auto
*
scores
=
ctx
.
Input
<
Tensor
>
(
"Scores"
);
auto
*
outs
=
ctx
.
Output
<
LoDTensor
>
(
"Out"
);
auto
box_dims
=
boxes
->
dims
();
auto
score_dims
=
scores
->
dims
();
int64_t
batch_size
=
box
_dims
[
0
];
int64_t
batch_size
=
score
_dims
[
0
];
int64_t
class_num
=
score_dims
[
1
];
int64_t
predict_dim
=
score_dims
[
2
];
...
...
@@ -291,35 +299,37 @@ class MulticlassNMSOpMaker : public framework::OpProtoAndCheckerMaker {
"(Tensor) A 2-D Tensor with shape [M, 4] represents the location "
"predictions with M bboxes. 4 is the number of "
"each location coordinates."
);
Add
Out
put
(
"Scores"
,
Add
In
put
(
"Scores"
,
"(Tensor) A 3-D Tensor with shape [N, C, M] represents the "
"confidence predictions. N is the batch size, C is the class "
"number, M is number of predictions for each class, which is "
"the same with Bboxes."
);
AddAttr
<
int
64_t
>
(
AddAttr
<
int
>
(
"background_label"
,
"(int64_t, defalut: 0) "
"The index of background label, the background label will be ignored."
)
.
SetDefault
(
0
);
AddAttr
<
float
>
(
"score_threshold"
,
"(float) "
"Only consider detections whose confidences are larger than "
"a threshold. If not provided, consider all boxes."
);
AddAttr
<
int
>
(
"nms_top_k"
,
"(int64_t) "
"Maximum number of detections to be kept according to the "
"confidences aftern the filtering detections based on "
"score_threshold"
);
AddAttr
<
float
>
(
"nms_threshold"
,
"(float, defalut: 0.3) "
"The threshold to be used in
nms
."
)
"The threshold to be used in
NMS
."
)
.
SetDefault
(
0.3
);
AddAttr
<
int64_t
>
(
"nms_top_k"
,
"(int64_t) "
"Maximum number of results to be kept."
);
AddAttr
<
float
>
(
"nms_eta"
,
"(float) "
"The parameter for adaptive
nms
."
)
"The parameter for adaptive
NMS
."
)
.
SetDefault
(
1.0
);
AddAttr
<
int
64_t
>
(
"keep_top_k"
,
AddAttr
<
int
>
(
"keep_top_k"
,
"(int64_t) "
"Number of total bboxes to be kept per image after nms "
"step. -1 means keeping all bboxes after nms step."
);
AddAttr
<
float
>
(
"confidence_threshold"
,
"(float) "
"Only consider detections whose confidences are larger than "
"a threshold. If not provided, consider all boxes."
);
"Number of total bboxes to be kept per image after NMS "
"step. -1 means keeping all bboxes after NMS step."
);
AddOutput
(
"Out"
,
"(LoDTensor) A 2-D LoDTensor with shape [No, 6] represents the "
"detections. Each row has 6 values: "
...
...
@@ -329,15 +339,21 @@ class MulticlassNMSOpMaker : public framework::OpProtoAndCheckerMaker {
"offset is N + 1, if LoD[i + 1] - LoD[i] == 0, means there is "
"no detected bbox."
);
AddComment
(
R"DOC(
This operator
s
is to do multi-class non maximum suppression (NMS) on a batched
This operator is to do multi-class non maximum suppression (NMS) on a batched
of boxes and scores.
This op greedily selects a subset of detection bounding boxes, pruning
away boxes that have high IOU (intersection over union) overlap (> thresh)
with already selected boxes. It operates independently for each class for
which scores are provided, pruning boxes with score less than a provided
threshold prior to applying NMS.
In the NMS step, this operator greedily selects a subset of detection bounding
boxes that have high scores larger than score_threshold, if providing this
threshold, then selects the largest nms_top_k confidences scores if nms_top_k
is larger than -1. Then this operator pruns away boxes that have high IOU
(intersection over union) overlap with already selected boxes by adaptive
threshold NMS based on parameters of nms_threshold and nms_eta.
Aftern NMS step, only at most keep_top_k number of total bboxes are to be kept
per image if keep_top_k is larger than -1.
This operator support multi-class and batched inputs. It applying NMS
independently for each class.
)DOC"
);
}
};
...
...
python/paddle/v2/fluid/tests/test_multiclass_nms_op.py
浏览文件 @
35dec3d7
...
...
@@ -69,7 +69,7 @@ def nms(boxes, scores, score_threshold, nms_threshold, top_k=200, eta=1.0):
sorted_indices
=
np
.
argsort
(
-
all_scores
,
axis
=
0
)
sorted_scores
=
all_scores
[
sorted_indices
]
if
top_k
<
-
1
and
top_k
<
sorted_indices
.
shape
[
0
]:
if
top_k
>
-
1
and
top_k
<
sorted_indices
.
shape
[
0
]:
sorted_indices
=
sorted_indices
[:
top_k
]
sorted_scores
=
sorted_scores
[:
top_k
]
...
...
@@ -82,7 +82,7 @@ def nms(boxes, scores, score_threshold, nms_threshold, top_k=200, eta=1.0):
if
keep
:
kept_idx
=
selected_indices
[
k
]
overlap
=
iou
(
boxes
[
idx
],
boxes
[
kept_idx
])
keep
=
overlap
<=
adaptive_threshold
keep
=
True
if
overlap
<=
adaptive_threshold
else
False
else
:
break
if
keep
:
...
...
@@ -103,13 +103,13 @@ def multiclass_nms(boxes, scores, background, score_threshold, nms_threshold,
if
c
==
background
:
continue
indices
=
nms
(
boxes
,
scores
[
c
],
score_threshold
,
nms_threshold
,
nms_top_k
)
selected_indices
.
append
((
c
,
indices
))
for
idx
in
indices
:
selected_indices
.
append
((
c
,
idx
))
num_det
+=
len
(
indices
)
if
keep_top_k
>
-
1
and
num_det
>
keep_top_k
:
score_index
=
[]
for
c
,
indices
in
selected_indices
:
for
idx
in
indices
:
for
c
,
idx
in
selected_indices
:
score_index
.
append
((
scores
[
c
][
idx
],
c
,
idx
))
sorted_score_index
=
sorted
(
...
...
@@ -134,19 +134,16 @@ def batched_multiclass_nms(boxes, scores, background, score_threshold,
keep_top_k
)
lod
.
append
(
lod
[
-
1
]
+
len
(
nmsed_outs
))
if
len
(
nmsed_outs
)
==
0
:
continue
for
c
,
indices
in
nmsed_outs
:
for
idx
in
indices
:
for
c
,
idx
in
nmsed_outs
:
xmin
,
ymin
,
xmax
,
ymax
=
boxes
[
idx
][:]
det_outs
.
append
(
(
c
,
scores
[
n
][
c
][
idx
],
c
,
xmin
,
ymin
,
xmax
,
ymax
))
det_outs
.
append
([
c
,
scores
[
n
][
c
][
idx
],
xmin
,
ymin
,
xmax
,
ymax
])
return
det_outs
,
lod
class
TestMulticlassNMSOp
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
'multiclass_nms'
N
=
7
M
=
12
3
0
M
=
12
4
0
C
=
21
BOX_SIZE
=
4
background
=
0
...
...
@@ -155,7 +152,17 @@ class TestMulticlassNMSOp(OpTest):
keep_top_k
=
200
score_threshold
=
0.01
scores
=
np
.
random
.
random
((
N
,
C
,
M
)).
astype
(
'float32'
)
scores
=
np
.
random
.
random
((
N
*
M
,
C
)).
astype
(
'float32'
)
def
softmax
(
x
):
shiftx
=
x
-
np
.
max
(
x
).
clip
(
-
64.
)
exps
=
np
.
exp
(
shiftx
)
return
exps
/
np
.
sum
(
exps
)
scores
=
np
.
apply_along_axis
(
softmax
,
1
,
scores
)
scores
=
np
.
reshape
(
scores
,
(
N
,
M
,
C
))
scores
=
np
.
transpose
(
scores
,
(
0
,
2
,
1
))
boxes
=
np
.
random
.
random
((
M
,
BOX_SIZE
)).
astype
(
'float32'
)
boxes
[:,
0
:
2
]
=
boxes
[:,
0
:
2
]
*
0.5
boxes
[:,
2
:
4
]
=
boxes
[:,
0
:
2
]
*
0.5
+
0.5
...
...
@@ -163,8 +170,19 @@ class TestMulticlassNMSOp(OpTest):
nmsed_outs
,
lod
=
batched_multiclass_nms
(
boxes
,
scores
,
background
,
score_threshold
,
nms_threshold
,
nms_top_k
,
keep_top_k
)
nmsed_outs
=
np
.
array
(
nmsed_outs
).
astype
(
'float32'
)
self
.
op_type
=
'multiclass_nms'
self
.
inputs
=
{
'Bboxes'
:
boxes
,
'Scores'
:
scores
}
self
.
outputs
=
{
'Out'
:
(
nmsed_outs
,
[
lod
])}
self
.
attrs
=
{
'background_label'
:
0
,
'nms_threshold'
:
nms_threshold
,
'nms_top_k'
:
nms_top_k
,
'keep_top_k'
:
keep_top_k
,
'score_threshold'
:
score_threshold
,
'nms_eta'
:
1.0
,
}
def
test_check_output
(
self
):
self
.
check_output
()
...
...
@@ -182,18 +200,3 @@ class TestIOU(unittest.TestCase):
if
__name__
==
'__main__'
:
unittest
.
main
()
# N = 7
# M = 8
# C = 5
# BOX_SIZE = 4
# background = 0
# nms_threshold = 0.3
# nms_top_k = 400
# keep_top_k = 200
# score_threshold = 0.5
# scores = np.random.random((N, C, M)).astype('float32')
# boxes = np.random.random((M, BOX_SIZE)).astype('float32')
# boxes[:, 0 : 2] = boxes[:, 0 : 2] * 0.5
# boxes[:, 2 : 4] = boxes[:, 0 : 2] * 0.5 + 0.5
# print nmsed_outs, lod
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录