未验证 提交 3529e38f 编写于 作者: F Feng Ni 提交者: GitHub

[SSOD] Add DenseTeacher FCOS base codes (#7423)

* add ssod denseteacher fcos codes and refine baseline doc

* fix docs

* fix deploy and ColorJitter float32

* fix docs

* fix docs, test=document_fix
上级 b0e3ce94
......@@ -5,12 +5,25 @@
## 内容
- [简介](#简介)
- [模型库](#模型库)
- [数据集准备](#数据集准备)
- [Baseline](#Baseline)
- [DenseTeacher](#DenseTeacher)
- [半监督数据集准备](#半监督数据集准备)
- [半监督检测配置](#半监督检测配置)
- [训练集配置](#训练集配置)
- [预训练配置](#预训练配置)
- [全局配置](#全局配置)
- [模型配置](#模型配置)
- [数据增强配置](#数据增强配置)
- [其他配置](#其他配置)
- [使用说明](#使用说明)
- [训练](#训练)
- [评估](#评估)
- [预测](#预测)
- [部署](#部署)
- [引用](#引用)
## 简介
半监督目标检测(SSOD)是**同时使用有标注数据和无标注数据**进行训练的目标检测,既可以极大地节省标注成本,也可以充分利用无标注数据进一步提高检测精度。
半监督目标检测(SSOD)是**同时使用有标注数据和无标注数据**进行训练的目标检测,既可以极大地节省标注成本,也可以充分利用无标注数据进一步提高检测精度。PaddleDetection团队复现了[DenseTeacher](denseteacher)半监督检测算法,用户可以下载使用。
## 模型库
......@@ -19,8 +32,17 @@
**纯监督数据**模型的训练和模型库,请参照[Baseline](baseline)
### [DenseTeacher](denseteacher)
| 模型 | 基础检测器 | 监督数据比例 | Sup mAP<sup>val<br>0.5:0.95 | Semi mAP<sup>val<br>0.5:0.95 | Semi Epochs (Iters) | 模型下载 | 配置文件 |
| :------------: | :---------------------: | :-----------: | :-------------------------: |:---------------------------: |:--------------------: | :-------: |:---------: |
| DenseTeacher | [FCOS ResNet50-FPN](./baseline/fcos_r50_fpn_2x_coco_sup005.yml) | 5% | 21.3 | 30.6 | 240 (87120) | [download](https://paddledet.bj.bcebos.com/models/denseteacher_fcos_r50_fpn_coco_semi005.pdparams) | [config](denseteacher/denseteacher_fcos_r50_fpn_coco_semi005.yml) |
| DenseTeacher | [FCOS ResNet50-FPN](./baseline/fcos_r50_fpn_2x_coco_sup010.yml) | 10%| 26.3 | 35.1 | 240 (174240)| [download](https://paddledet.bj.bcebos.com/models/denseteacher_fcos_r50_fpn_coco_semi010.pdparams) | [config](denseteacher/denseteacher_fcos_r50_fpn_coco_semi010.yml) |
| DenseTeacher(LSJ)| [FCOS ResNet50-FPN](./baseline/fcos_r50_fpn_2x_coco_sup010.yml) |10%| 26.3 | 37.1 | 240 (174240)| [download](https://paddledet.bj.bcebos.com/models/denseteacher_fcos_r50_fpn_coco_semi010_lsj.pdparams) | [config](denseteacher/denseteacher_fcos_r50_fpn_coco_semi010_lsj.yml) |
| DenseTeacher | [FCOS ResNet50-FPN](./../fcos/fcos_r50_fpn_iou_multiscale_2x_coco.ymll) |full| 42.6 | - | 36 (263844)| [download](https://paddledet.bj.bcebos.com/models/denseteacher_fcos_r50_fpn_coco_full.pdparams) | [config](denseteacher/denseteacher_fcos_r50_fpn_coco_full.yml) |
## 数据集准备
## 半监督数据集准备
半监督目标检测**同时需要有标注数据和无标注数据**,且无标注数据量一般**远多于有标注数据量**
对于COCO数据集一般有两种常规设置:
......@@ -81,7 +103,7 @@ with open(path, 'w') as f:
</details>
<details>
<details open>
<summary> 解压后的数据集目录如下:</summary>
```
......@@ -107,3 +129,272 @@ PaddleDetection
```
</details>
## 半监督检测配置
配置半监督检测,需要基于选用的**基础检测器**的配置文件,如:
```python
_BASE_: [
'../../fcos/fcos_r50_fpn_iou_multiscale_2x_coco.yml',
'../_base_/coco_detection_percent_10.yml',
]
log_iter: 50
snapshot_epoch: 5
epochs: &epochs 240
weights: output/denseteacher_fcos_r50_fpn_coco_semi010/model_final
```
并依次做出如下几点改动:
### 训练集配置
首先可以直接引用已经配置好的半监督训练集,如:
```python
_BASE_: [
'../_base_/coco_detection_percent_10.yml',
]
```
具体来看,构建半监督数据集,需要同时配置监督数据集`TrainDataset`和无监督数据集`UnsupTrainDataset`的路径,**注意必须选用`SemiCOCODataSet`类而不是`COCODataSet`类**,如以下所示:
**COCO-train2017部分比例数据集**
```python
# partial labeled COCO, use `SemiCOCODataSet` rather than `COCODataSet`
TrainDataset:
!SemiCOCODataSet
image_dir: train2017
anno_path: semi_annotations/instances_train2017.1@1.json
dataset_dir: dataset/coco
data_fields: ['image', 'gt_bbox', 'gt_class', 'is_crowd']
# partial unlabeled COCO, use `SemiCOCODataSet` rather than `COCODataSet`
UnsupTrainDataset:
!SemiCOCODataSet
image_dir: train2017
anno_path: semi_annotations/instances_train2017.1@1-unlabeled.json
dataset_dir: dataset/coco
data_fields: ['image']
supervised: False
```
或者 **COCO-train2017 full全量数据集**
```python
# full labeled COCO, use `SemiCOCODataSet` rather than `COCODataSet`
TrainDataset:
!SemiCOCODataSet
image_dir: train2017
anno_path: annotations/instances_train2017.json
dataset_dir: dataset/coco
data_fields: ['image', 'gt_bbox', 'gt_class', 'is_crowd']
# full unlabeled COCO, use `SemiCOCODataSet` rather than `COCODataSet`
UnsupTrainDataset:
!SemiCOCODataSet
image_dir: unlabeled2017
anno_path: annotations/instances_unlabeled2017.json
dataset_dir: dataset/coco
data_fields: ['image']
supervised: False
```
验证集`EvalDataset`和测试集`TestDataset`的配置**不需要更改**,且还是采用`COCODataSet`类。
### 预训练配置
```python
### pretrain and warmup config, choose one and coment another
pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/ResNet50_cos_pretrained.pdparams
semi_start_iters: 5000
ema_start_iters: 3000
use_warmup: &use_warmup True
```
### 全局配置
需要在配置文件中添加如下全局配置:
```python
### global config
use_simple_ema: True
ema_decay: 0.9996
ssod_method: DenseTeacher
DenseTeacher:
train_cfg:
sup_weight: 1.0
unsup_weight: 1.0
loss_weight: {distill_loss_cls: 4.0, distill_loss_box: 1.0, distill_loss_quality: 1.0}
concat_sup_data: True
suppress: linear
ratio: 0.01
gamma: 2.0
test_cfg:
inference_on: teacher
```
### 模型配置
如果没有特殊改动,则直接继承自基础检测器里的模型配置。
`DenseTeacher` 为例,选择 `fcos_r50_fpn_iou_multiscale_2x_coco.yml` 作为**基础检测器**进行半监督训练,**teacher网络的结构和student网络的结构均为基础检测器的结构,且结构相同**
```python
_BASE_: [
'../../fcos/fcos_r50_fpn_iou_multiscale_2x_coco.yml',
]
```
### 数据增强配置
构建半监督训练集的Reader,需要在原先`TrainReader`的基础上,新增加`weak_aug`,`strong_aug`,`sup_batch_transforms``unsup_batch_transforms`,并且需要注意:
- **如果有`NormalizeImage`,需要单独从`sample_transforms`中抽出来放在`weak_aug``strong_aug`中;
- `sample_transforms`**公用的基础数据增强**
- 完整的弱数据增强为``sample_transforms + weak_aug`,完整的强数据增强为`sample_transforms + strong_aug`;
如以下所示:
原纯监督模型的`TrainReader`:
```python
TrainReader:
sample_transforms:
- Decode: {}
- RandomResize: {target_size: [[640, 1333], [672, 1333], [704, 1333], [736, 1333], [768, 1333], [800, 1333]], keep_ratio: True, interp: 1}
- RandomFlip: {}
- NormalizeImage: {mean: [0.485, 0.456, 0.406], std: [0.229, 0.224, 0.225], is_scale: True}
batch_transforms:
- Permute: {}
- PadBatch: {pad_to_stride: 32}
- Gt2FCOSTarget:
object_sizes_boundary: [64, 128, 256, 512]
center_sampling_radius: 1.5
downsample_ratios: [8, 16, 32, 64, 128]
norm_reg_targets: True
batch_size: 2
shuffle: True
drop_last: True
```
更改后的半监督TrainReader:
```python
### reader config
SemiTrainReader:
sample_transforms:
- Decode: {}
- RandomResize: {target_size: [[640, 1333], [672, 1333], [704, 1333], [736, 1333], [768, 1333], [800, 1333]], keep_ratio: True, interp: 1}
- RandomFlip: {}
weak_aug:
- NormalizeImage: {mean: [0.485, 0.456, 0.406], std: [0.229, 0.224, 0.225], is_scale: true}
strong_aug:
- StrongAugImage: {transforms: [
RandomColorJitter: {prob: 0.8, brightness: 0.4, contrast: 0.4, saturation: 0.4, hue: 0.1},
RandomErasingCrop: {},
RandomGaussianBlur: {prob: 0.5, sigma: [0.1, 2.0]},
RandomGrayscale: {prob: 0.2},
]}
- NormalizeImage: {mean: [0.485, 0.456, 0.406], std: [0.229, 0.224, 0.225], is_scale: true}
sup_batch_transforms:
- Permute: {}
- PadBatch: {pad_to_stride: 32}
- Gt2FCOSTarget:
object_sizes_boundary: [64, 128, 256, 512]
center_sampling_radius: 1.5
downsample_ratios: [8, 16, 32, 64, 128]
num_shift: 0.5
multiply_strides_reg_targets: False
norm_reg_targets: True
unsup_batch_transforms:
- Permute: {}
- PadBatch: {pad_to_stride: 32}
sup_batch_size: 2
unsup_batch_size: 2
shuffle: True
drop_last: True
```
### 其他配置
训练epoch数需要和全量数据训练时换算总iter数保持一致,如全量训练24 epoch(换算约为180k个iter),则10%监督数据的半监督训练,总epoch数需要为240 epoch左右(换算约为180k个iter)。示例如下:
```python
### other config
epoch: 240
LearningRate:
base_lr: 0.01
schedulers:
- !PiecewiseDecay
gamma: 0.1
milestones: 240
use_warmup: True
- !LinearWarmup
start_factor: 0.001
steps: 1000
OptimizerBuilder:
optimizer:
momentum: 0.9
type: Momentum
regularizer:
factor: 0.0001
type: L2
clip_grad_by_value: 1.0
```
## 使用说明
仅训练时必须使用半监督检测的配置文件去训练,评估、预测、部署也可以按基础检测器的配置文件去执行。
### 训练
```bash
# 单卡训练 (不推荐,需按线性比例相应地调整学习率)
CUDA_VISIBLE_DEVICES=0 python tools/train.py -c ssod/denseteacher/denseteacher_fcos_r50_fpn_coco_semi010.yml --eval
# 多卡训练
python -m paddle.distributed.launch --log_dir=denseteacher_fcos_semi010/ --gpus 0,1,2,3,4,5,6,7 tools/train.py -c ssod/denseteacher/denseteacher_fcos_r50_fpn_coco_semi010.yml --eval
```
### 评估
```bash
CUDA_VISIBLE_DEVICES=0 python tools/eval.py -c ssod/denseteacher/denseteacher_fcos_r50_fpn_coco_semi010.yml -o weights=output/denseteacher_fcos_r50_fpn_coco_semi010/model_final.pdparams
```
### 预测
```bash
CUDA_VISIBLE_DEVICES=0 python tools/infer.py -c ssod/denseteacher/denseteacher_fcos_r50_fpn_coco_semi010.yml -o weights=output/denseteacher_fcos_r50_fpn_coco_semi010/model_final.pdparams --infer_img=demo/000000014439.jpg
```
### 部署
部署可以使用半监督检测配置文件,也可以使用基础检测器的配置文件去部署和使用。
```bash
# 导出模型
CUDA_VISIBLE_DEVICES=0 python tools/export_model.py -c ssod/denseteacher/denseteacher_fcos_r50_fpn_coco_semi010.yml -o weights=https://paddledet.bj.bcebos.com/models/denseteacher_fcos_r50_fpn_coco_semi010.pdparams
# 导出权重预测
CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output_inference/denseteacher_fcos_r50_fpn_coco_semi010 --image_file=demo/000000014439_640x640.jpg --device=GPU
# 部署测速
CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output_inference/denseteacher_fcos_r50_fpn_coco_semi010 --image_file=demo/000000014439_640x640.jpg --device=GPU --run_benchmark=True # --run_mode=trt_fp16
# 导出ONNX
paddle2onnx --model_dir output_inference/denseteacher_fcos_r50_fpn_coco_semi010/ --model_filename model.pdmodel --params_filename model.pdiparams --opset_version 12 --save_file denseteacher_fcos_r50_fpn_coco_semi010.onnx
```
## 引用
```
@article{denseteacher2022,
title={Dense Teacher: Dense Pseudo-Labels for Semi-supervised Object Detection},
author={Hongyu Zhou, Zheng Ge, Songtao Liu, Weixin Mao, Zeming Li, Haiyan Yu, Jian Sun},
journal={arXiv preprint arXiv:2207.02541},
year={2022}
}
```
metric: COCO
num_classes: 80
# full labeled COCO, use `SemiCOCODataSet` rather than `COCODataSet`
TrainDataset:
!SemiCOCODataSet
image_dir: train2017
anno_path: annotations/instances_train2017.json
dataset_dir: dataset/coco
data_fields: ['image', 'gt_bbox', 'gt_class', 'is_crowd']
# full unlabeled COCO, use `SemiCOCODataSet` rather than `COCODataSet`
UnsupTrainDataset:
!SemiCOCODataSet
image_dir: unlabeled2017
anno_path: annotations/instances_unlabeled2017.json
dataset_dir: dataset/coco
data_fields: ['image']
supervised: False
EvalDataset:
!COCODataSet
image_dir: val2017
anno_path: annotations/instances_val2017.json
dataset_dir: dataset/coco
allow_empty: true
TestDataset:
!ImageFolder
anno_path: annotations/instances_val2017.json # also support txt (like VOC's label_list.txt)
dataset_dir: dataset/coco # if set, anno_path will be 'dataset_dir/anno_path'
metric: COCO
num_classes: 80
# partial labeled COCO, use `SemiCOCODataSet` rather than `COCODataSet`
TrainDataset:
!SemiCOCODataSet
image_dir: train2017
anno_path: semi_annotations/instances_train2017.1@1.json
dataset_dir: dataset/coco
data_fields: ['image', 'gt_bbox', 'gt_class', 'is_crowd']
# partial unlabeled COCO, use `SemiCOCODataSet` rather than `COCODataSet`
UnsupTrainDataset:
!SemiCOCODataSet
image_dir: train2017
anno_path: semi_annotations/instances_train2017.1@1-unlabeled.json
dataset_dir: dataset/coco
data_fields: ['image']
supervised: False
EvalDataset:
!COCODataSet
image_dir: val2017
anno_path: annotations/instances_val2017.json
dataset_dir: dataset/coco
allow_empty: true
TestDataset:
!ImageFolder
anno_path: annotations/instances_val2017.json # also support txt (like VOC's label_list.txt)
dataset_dir: dataset/coco # if set, anno_path will be 'dataset_dir/anno_path'
metric: COCO
num_classes: 80
# partial labeled COCO, use `SemiCOCODataSet` rather than `COCODataSet`
TrainDataset:
!SemiCOCODataSet
image_dir: train2017
anno_path: semi_annotations/instances_train2017.1@10.json
dataset_dir: dataset/coco
data_fields: ['image', 'gt_bbox', 'gt_class', 'is_crowd']
# partial unlabeled COCO, use `SemiCOCODataSet` rather than `COCODataSet`
UnsupTrainDataset:
!SemiCOCODataSet
image_dir: train2017
anno_path: semi_annotations/instances_train2017.1@10-unlabeled.json
dataset_dir: dataset/coco
data_fields: ['image']
supervised: False
EvalDataset:
!COCODataSet
image_dir: val2017
anno_path: annotations/instances_val2017.json
dataset_dir: dataset/coco
allow_empty: true
TestDataset:
!ImageFolder
anno_path: annotations/instances_val2017.json # also support txt (like VOC's label_list.txt)
dataset_dir: dataset/coco # if set, anno_path will be 'dataset_dir/anno_path'
metric: COCO
num_classes: 80
# partial labeled COCO, use `SemiCOCODataSet` rather than `COCODataSet`
TrainDataset:
!SemiCOCODataSet
image_dir: train2017
anno_path: semi_annotations/instances_train2017.1@5.json
dataset_dir: dataset/coco
data_fields: ['image', 'gt_bbox', 'gt_class', 'is_crowd']
# partial unlabeled COCO, use `SemiCOCODataSet` rather than `COCODataSet`
UnsupTrainDataset:
!SemiCOCODataSet
image_dir: train2017
anno_path: semi_annotations/instances_train2017.1@5-unlabeled.json
dataset_dir: dataset/coco
data_fields: ['image']
supervised: False
EvalDataset:
!COCODataSet
image_dir: val2017
anno_path: annotations/instances_val2017.json
dataset_dir: dataset/coco
allow_empty: true
TestDataset:
!ImageFolder
anno_path: annotations/instances_val2017.json # also support txt (like VOC's label_list.txt)
dataset_dir: dataset/coco # if set, anno_path will be 'dataset_dir/anno_path'
......@@ -4,43 +4,57 @@
### [FCOS](../../fcos)
| 基础模型 | 监督数据比例 | mAP<sup>val<br>0.5:0.95 | 模型下载 | 配置文件 |
| :---------------: | :-------------: | :---------------------: |:--------: | :---------: |
| FCOS ResNet50-FPN | 5% | 21.3 | [download](https://paddledet.bj.bcebos.com/models/fcos_r50_fpn_2x_coco_sup005.pdparams) | [config](fcos_r50_fpn_2x_coco_sup005.yml) |
| FCOS ResNet50-FPN | 10% | 26.3 | [download](https://paddledet.bj.bcebos.com/models/fcos_r50_fpn_2x_coco_sup010.pdparams) | [config](fcos_r50_fpn_2x_coco_sup010.yml) |
| FCOS ResNet50-FPN | full | 42.6 | [download](https://paddledet.bj.bcebos.com/models/fcos_r50_fpn_iou_multiscale_2x_coco.pdparams) | [config](../../fcos/fcos_r50_fpn_iou_multiscale_2x_coco.yml) |
| 基础模型 | 监督数据比例 | Epochs (Iters) | mAP<sup>val<br>0.5:0.95 | 模型下载 | 配置文件 |
| :---------------: | :-------------: | :---------------: |:---------------------: |:--------: | :---------: |
| FCOS ResNet50-FPN | 5% | 24 (8712) | 21.3 | [download](https://paddledet.bj.bcebos.com/models/fcos_r50_fpn_2x_coco_sup005.pdparams) | [config](fcos_r50_fpn_2x_coco_sup005.yml) |
| FCOS ResNet50-FPN | 10% | 24 (17424) | 26.3 | [download](https://paddledet.bj.bcebos.com/models/fcos_r50_fpn_2x_coco_sup010.pdparams) | [config](fcos_r50_fpn_2x_coco_sup010.yml) |
| FCOS ResNet50-FPN | full | 24 (175896) | 42.6 | [download](https://paddledet.bj.bcebos.com/models/fcos_r50_fpn_iou_multiscale_2x_coco.pdparams) | [config](../../fcos/fcos_r50_fpn_iou_multiscale_2x_coco.yml) |
**注意:**
- 以上模型训练默认使用8 GPUs,总batch_size默认为16,默认初始学习率为0.01。如果改动了总batch_size,请按线性比例相应地调整学习率。
### [PP-YOLOE+](../../ppyoloe)
| 基础模型 | 监督数据比例 | mAP<sup>val<br>0.5:0.95 | 模型下载 | 配置文件 |
| :---------------: | :-------------: | :---------------------: |:--------: | :---------: |
| PP-YOLOE+_s | 5% | 32.8 | [download](https://paddledet.bj.bcebos.com/models/ppyoloe_plus_crn_s_80e_coco_sup005.pdparams) | [config](ppyoloe_plus_crn_s_80e_coco_sup005.yml) |
| PP-YOLOE+_s | 10% | 35.3 | [download](https://paddledet.bj.bcebos.com/models/ppyoloe_plus_crn_s_80e_coco_sup010.pdparams) | [config](ppyoloe_plus_crn_s_80e_coco_sup010.yml) |
| PP-YOLOE+_s | full | 43.7 | [download](https://paddledet.bj.bcebos.com/models/ppyoloe_plus_crn_s_80e_coco.pdparams) | [config](../../ppyoloe/ppyoloe_plus_crn_s_80e_coco.yml) |
| 基础模型 | 监督数据比例 | Epochs (Iters) | mAP<sup>val<br>0.5:0.95 | 模型下载 | 配置文件 |
| :---------------: | :-------------: | :---------------: | :---------------------: |:--------: | :---------: |
| PP-YOLOE+_s | 5% | 80 (7200) | 32.8 | [download](https://paddledet.bj.bcebos.com/models/ppyoloe_plus_crn_s_80e_coco_sup005.pdparams) | [config](ppyoloe_plus_crn_s_80e_coco_sup005.yml) |
| PP-YOLOE+_s | 10% | 80 (14480) | 35.3 | [download](https://paddledet.bj.bcebos.com/models/ppyoloe_plus_crn_s_80e_coco_sup010.pdparams) | [config](ppyoloe_plus_crn_s_80e_coco_sup010.yml) |
| PP-YOLOE+_s | full | 80 (146560) | 43.7 | [download](https://paddledet.bj.bcebos.com/models/ppyoloe_plus_crn_s_80e_coco.pdparams) | [config](../../ppyoloe/ppyoloe_plus_crn_s_80e_coco.yml) |
**注意:**
- 以上模型训练默认使用8 GPUs,总batch_size默认为64,默认初始学习率为0.001。如果改动了总batch_size,请按线性比例相应地调整学习率。
### [Faster R-CNN](../../faster_rcnn)
| 基础模型 | 监督数据比例 | mAP<sup>val<br>0.5:0.95 | 模型下载 | 配置文件 |
| :---------------: | :-------------: | :---------------------: |:--------: | :---------: |
| Faster R-CNN ResNet50-FPN | 10% | 25.6 | [download](https://paddledet.bj.bcebos.com/models/faster_rcnn_r50_fpn_2x_coco_sup010.pdparams) | [config](faster_rcnn_r50_fpn_2x_coco_sup010.yml) |
| Faster R-CNN ResNet50-FPN | full | 40.0 | [download](https://paddledet.bj.bcebos.com/models/faster_rcnn_r50_fpn_2x_coco.pdparams) | [config](../../configs/faster_rcnn/faster_rcnn_r50_fpn_2x_coco.yml) |
| 基础模型 | 监督数据比例 | Epochs (Iters) | mAP<sup>val<br>0.5:0.95 | 模型下载 | 配置文件 |
| :---------------: | :-------------: | :---------------: | :---------------------: |:--------: | :---------: |
| Faster R-CNN ResNet50-FPN | 5% | 24 (8712) | 20.7 | [download](https://paddledet.bj.bcebos.com/models/faster_rcnn_r50_fpn_2x_coco_sup005.pdparams) | [config](faster_rcnn_r50_fpn_2x_coco_sup005.yml) |
| Faster R-CNN ResNet50-FPN | 10% | 24 (17424) | 25.6 | [download](https://paddledet.bj.bcebos.com/models/faster_rcnn_r50_fpn_2x_coco_sup010.pdparams) | [config](faster_rcnn_r50_fpn_2x_coco_sup010.yml) |
| Faster R-CNN ResNet50-FPN | full | 24 (175896) | 40.0 | [download](https://paddledet.bj.bcebos.com/models/faster_rcnn_r50_fpn_2x_coco.pdparams) | [config](../../configs/faster_rcnn/faster_rcnn_r50_fpn_2x_coco.yml) |
**注意:**
- 以上模型训练默认使用8 GPUs,总batch_size默认为16,默认初始学习率为0.02。如果改动了总batch_size,请按线性比例相应地调整学习率。
### [RetinaNet](../../retinanet)
| 基础模型 | 监督数据比例 | mAP<sup>val<br>0.5:0.95 | 模型下载 | 配置文件 |
| :---------------: | :-------------: | :---------------------: |:--------: | :---------: |
| RetinaNet ResNet50-FPN | 10% | 23.6 | [download](https://paddledet.bj.bcebos.com/models/retinanet_r50_fpn_2x_coco_sup010.pdparams) | [config](retinanet_r50_fpn_2x_coco_sup010.yml) |
| RetinaNet ResNet50-FPN | full | 37.5(1x) | [download](https://paddledet.bj.bcebos.com/models/retinanet_r50_fpn_1x_coco.pdparams) | [config](../../configs/retinanet/retinanet_r50_fpn_1x_coco.yml) |
### [RetinaNet](../../retinanet)
| 基础模型 | 监督数据比例 | Epochs (Iters) | mAP<sup>val<br>0.5:0.95 | 模型下载 | 配置文件 |
| :---------------: | :-------------: | :---------------: | :---------------------: |:--------: | :---------: |
| RetinaNet ResNet50-FPN | 5% | 24 (8712) | 13.9 | [download](https://paddledet.bj.bcebos.com/models/retinanet_r50_fpn_2x_coco_sup005.pdparams) | [config](retinanet_r50_fpn_2x_coco_sup005.yml) |
| RetinaNet ResNet50-FPN | 10% | 24 (17424) | 23.6 | [download](https://paddledet.bj.bcebos.com/models/retinanet_r50_fpn_2x_coco_sup010.pdparams) | [config](retinanet_r50_fpn_2x_coco_sup010.yml) |
| RetinaNet ResNet50-FPN | full | 24 (175896) | 39.1 | [download](https://paddledet.bj.bcebos.com/models/retinanet_r50_fpn_2x_coco.pdparams) | [config](../../configs/retinanet/retinanet_r50_fpn_2x_coco.yml) |
**注意:**
- 以上模型训练默认使用8 GPUs,总batch_size默认为16,默认初始学习率为0.01。如果改动了总batch_size,请按线性比例相应地调整学习率。
### 注意事项
- COCO部分监督数据集请参照 [数据集准备](../README.md) 去下载和准备,各个比例的训练集均为**从train2017中抽取部分百分比的子集**,默认使用`fold`号为1的划分子集,`sup010`表示抽取10%的监督数据训练,`sup005`表示抽取5%,`full`表示全部train2017,验证集均为val2017全量;
- 抽取部分百分比的监督数据的抽法不同,或使用的`fold`号不同,精度都会因此而有约0.5 mAP之多的差异;
- PP-YOLOE+ 使用Objects365预训练,其余模型均使用ImageNet预训练;
- PP-YOLOE+ 训练80 epoch,其余模型均训练24 epoch,;
- 线型比例相应调整学习率,参照公式: **lr<sub>new</sub> = lr<sub>default</sub> * (batch_size<sub>new</sub> * GPU_number<sub>new</sub>) / (batch_size<sub>default</sub> * GPU_number<sub>default</sub>)**
## 使用教程
......@@ -57,7 +71,7 @@ weights=output/${job_name}/model_final.pdparams
# 1.training
# CUDA_VISIBLE_DEVICES=0 python tools/train.py -c ${config}
python -m paddle.distributed.launch --log_dir=${log_dir} --gpus 0,1,2,3,4,5,6,7 tools/train.py -c ${config} --eval
python -m paddle.distributed.launch --log_dir=${log_dir} --gpus 0,1,2,3,4,5,6,7 tools/train.py -c ${config} --eval --amp
# 2.eval
CUDA_VISIBLE_DEVICES=0 python tools/eval.py -c ${config} -o weights=${weights}
......
_BASE_: [
'../../faster_rcnn/faster_rcnn_r50_fpn_2x_coco.yml',
]
log_iter: 50
snapshot_epoch: 2
weights: output/faster_rcnn_r50_fpn_2x_coco_sup005/model_final
TrainDataset:
!COCODataSet
image_dir: train2017
anno_path: semi_annotations/instances_train2017.1@5.json
dataset_dir: dataset/coco
data_fields: ['image', 'gt_bbox', 'gt_class']
worker_num: 2
TrainReader:
sample_transforms:
- Decode: {}
- RandomResize: {target_size: [[640, 1333], [672, 1333], [704, 1333], [736, 1333], [768, 1333], [800, 1333]], interp: 2, keep_ratio: True}
- RandomFlip: {}
- NormalizeImage: {is_scale: true, mean: [0.485,0.456,0.406], std: [0.229, 0.224,0.225]}
- Permute: {}
batch_transforms:
- PadBatch: {pad_to_stride: 32}
batch_size: 2
shuffle: true
drop_last: true
collate_batch: false
epoch: 24
LearningRate:
base_lr: 0.01
schedulers:
- !PiecewiseDecay
gamma: 0.1
milestones: [16, 22]
- !LinearWarmup
start_factor: 0.1
epochs: 1
......@@ -14,13 +14,29 @@ TrainDataset:
data_fields: ['image', 'gt_bbox', 'gt_class']
worker_num: 2
TrainReader:
sample_transforms:
- Decode: {}
- RandomResize: {target_size: [[640, 1333], [672, 1333], [704, 1333], [736, 1333], [768, 1333], [800, 1333]], interp: 2, keep_ratio: True}
- RandomFlip: {}
- NormalizeImage: {is_scale: true, mean: [0.485,0.456,0.406], std: [0.229, 0.224,0.225]}
- Permute: {}
batch_transforms:
- PadBatch: {pad_to_stride: 32}
batch_size: 2
shuffle: true
drop_last: true
collate_batch: false
epoch: 24
LearningRate:
base_lr: 0.01
base_lr: 0.02
schedulers:
- !PiecewiseDecay
gamma: 0.1
milestones: [16, 22]
- !LinearWarmup
start_factor: 0.1
steps: 500
epochs: 1
......@@ -23,4 +23,4 @@ LearningRate:
milestones: [16, 22]
- !LinearWarmup
start_factor: 0.001
steps: 1000
epochs: 1
......@@ -23,4 +23,4 @@ LearningRate:
milestones: [16, 22]
- !LinearWarmup
start_factor: 0.001
steps: 1000
epochs: 1
_BASE_: [
'../../retinanet/retinanet_r50_fpn_2x_coco.yml',
]
log_iter: 50
snapshot_epoch: 2
weights: output/retinanet_r50_fpn_2x_coco_sup005/model_final
TrainDataset:
!COCODataSet
image_dir: train2017
anno_path: semi_annotations/instances_train2017.1@5.json
dataset_dir: dataset/coco
data_fields: ['image', 'gt_bbox', 'gt_class']
epoch: 24
LearningRate:
base_lr: 0.01
schedulers:
- !PiecewiseDecay
gamma: 0.1
milestones: [16, 22]
- !LinearWarmup
start_factor: 0.001
epochs: 1
_BASE_: [
'../../retinanet/retinanet_r50_fpn_1x_coco.yml',
'../../retinanet/retinanet_r50_fpn_2x_coco.yml',
]
log_iter: 50
snapshot_epoch: 2
......@@ -23,4 +23,4 @@ LearningRate:
milestones: [16, 22]
- !LinearWarmup
start_factor: 0.001
steps: 500
epochs: 1
简体中文 | [English](README_en.md)
# DenseTeacher (Dense Teacher: Dense Pseudo-Labels for Semi-supervised Object Detection)
## 模型库
| 模型 | 基础检测器 | 监督数据比例 | Sup mAP<sup>val<br>0.5:0.95 | Semi mAP<sup>val<br>0.5:0.95 | Semi Epochs (Iters) | 模型下载 | 配置文件 |
| :------------: | :---------------------: | :-----------: | :-------------------------: |:---------------------------: |:--------------------: | :-------: |:---------: |
| DenseTeacher | [FCOS R50-FPN](../baseline/fcos_r50_fpn_2x_coco_sup005.yml) | 5% | 21.3 | 30.6 | 240 (87120) | [download](https://paddledet.bj.bcebos.com/models/denseteacher_fcos_r50_fpn_coco_semi005.pdparams) | [config](./denseteacher_fcos_r50_fpn_coco_semi005.yml) |
| DenseTeacher | [FCOS R50-FPN](../baseline/fcos_r50_fpn_2x_coco_sup010.yml) | 10%| 26.3 | 35.1 | 240 (174240)| [download](https://paddledet.bj.bcebos.com/models/denseteacher_fcos_r50_fpn_coco_semi010.pdparams) | [config](./denseteacher_fcos_r50_fpn_coco_semi010.yml) |
| DenseTeacher(LSJ)| [FCOS R50-FPN](../baseline/fcos_r50_fpn_2x_coco_sup010.yml)| 10%| 26.3 | 37.1 | 240 (174240)| [download](https://paddledet.bj.bcebos.com/models/denseteacher_fcos_r50_fpn_coco_semi010_lsj.pdparams) | [config](./denseteacher_fcos_r50_fpn_coco_semi010_lsj.yml) |
| DenseTeacher | [FCOS R50-FPN](../../fcos/fcos_r50_fpn_iou_multiscale_2x_coco.ymll) |full| 42.6 | - | 36 (263844)| [download](https://paddledet.bj.bcebos.com/models/denseteacher_fcos_r50_fpn_coco_full.pdparams) | [config](./denseteacher_fcos_r50_fpn_coco_full.yml) |
**注意:**
- 以上模型训练默认使用8 GPUs,监督数据总batch_size默认为16,无监督数据总batch_size默认也为16,默认初始学习率为0.01。如果改动了总batch_size,请按线性比例相应地调整学习率;
- `Semi Epochs (Iters)`表示**半监督训练**的模型的 Epochs (Iters),如果使用**自定义数据集**,需自行根据Iters换算到对应的Epochs调整,最好保证总Iters 和COCO数据集的设置较为接近;
- `Sup mAP`**只使用有监督数据训练**的模型的精度,请参照**基础检测器的配置文件**[baseline](../baseline)
- `Semi mAP`**半监督训练**的模型的精度,模型下载和配置文件的链接均为**半监督模型**
- `LSJ`表示 large-scale jittering,表示更大范围的多尺度训练,可进一步提升精度,但训练速度也会变慢;
- 半监督检测的配置和使用,请参照[文档](../README.md/#半监督检测配置)
## 使用说明
仅训练时必须使用半监督检测的配置文件去训练,评估、预测、部署也可以按基础检测器的配置文件去执行。
### 训练
```bash
# 单卡训练 (不推荐,需按线性比例相应地调整学习率)
CUDA_VISIBLE_DEVICES=0 python tools/train.py -c ssod/denseteacher/denseteacher_fcos_r50_fpn_coco_semi010.yml --eval
# 多卡训练
python -m paddle.distributed.launch --log_dir=denseteacher_fcos_semi010/ --gpus 0,1,2,3,4,5,6,7 tools/train.py -c ssod/denseteacher/denseteacher_fcos_r50_fpn_coco_semi010.yml --eval
```
### 评估
```bash
CUDA_VISIBLE_DEVICES=0 python tools/eval.py -c ssod/denseteacher/denseteacher_fcos_r50_fpn_coco_semi010.yml -o weights=output/denseteacher_fcos_r50_fpn_coco_semi010/model_final.pdparams
```
### 预测
```bash
CUDA_VISIBLE_DEVICES=0 python tools/infer.py -c ssod/denseteacher/denseteacher_fcos_r50_fpn_coco_semi010.yml -o weights=output/denseteacher_fcos_r50_fpn_coco_semi010/model_final.pdparams --infer_img=demo/000000014439.jpg
```
### 部署
部署可以使用半监督检测配置文件,也可以使用基础检测器的配置文件去部署和使用。
```bash
# 导出模型
CUDA_VISIBLE_DEVICES=0 python tools/export_model.py -c ssod/denseteacher/denseteacher_fcos_r50_fpn_coco_semi010.yml -o weights=https://paddledet.bj.bcebos.com/models/denseteacher_fcos_r50_fpn_coco_semi010.pdparams
# 导出权重预测
CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output_inference/denseteacher_fcos_r50_fpn_coco_semi010 --image_file=demo/000000014439_640x640.jpg --device=GPU
# 部署测速
CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output_inference/denseteacher_fcos_r50_fpn_coco_semi010 --image_file=demo/000000014439_640x640.jpg --device=GPU --run_benchmark=True # --run_mode=trt_fp16
# 导出ONNX
paddle2onnx --model_dir output_inference/denseteacher_fcos_r50_fpn_coco_semi010/ --model_filename model.pdmodel --params_filename model.pdiparams --opset_version 12 --save_file denseteacher_fcos_r50_fpn_coco_semi010.onnx
```
## 引用
```
@article{denseteacher2022,
title={Dense Teacher: Dense Pseudo-Labels for Semi-supervised Object Detection},
author={Hongyu Zhou, Zheng Ge, Songtao Liu, Weixin Mao, Zeming Li, Haiyan Yu, Jian Sun},
journal={arXiv preprint arXiv:2207.02541},
year={2022}
}
```
_BASE_: [
'../../fcos/fcos_r50_fpn_iou_multiscale_2x_coco.yml',
'../_base_/coco_detection_percent_5.yml',
]
log_iter: 20
snapshot_epoch: 5
epochs: &epochs 240 # 480 will be better
weights: output/denseteacher_fcos_r50_fpn_coco_semi005/model_final
### pretrain and warmup config, choose one and coment another
pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/ResNet50_cos_pretrained.pdparams
semi_start_iters: 5000
ema_start_iters: 3000
use_warmup: &use_warmup True
### global config
use_simple_ema: True
ema_decay: 0.9996
ssod_method: DenseTeacher
DenseTeacher:
train_cfg:
sup_weight: 1.0
unsup_weight: 1.0
loss_weight: {distill_loss_cls: 4.0, distill_loss_box: 1.0, distill_loss_quality: 1.0}
concat_sup_data: True
suppress: linear
ratio: 0.01
gamma: 2.0
test_cfg:
inference_on: teacher
### reader config
worker_num: 2
SemiTrainReader:
sample_transforms:
- Decode: {}
- RandomResize: {target_size: [[640, 1333], [672, 1333], [704, 1333], [736, 1333], [768, 1333], [800, 1333]], keep_ratio: True, interp: 1}
- RandomFlip: {}
weak_aug:
- NormalizeImage: {mean: [0.485, 0.456, 0.406], std: [0.229, 0.224, 0.225], is_scale: true}
strong_aug:
- StrongAugImage: {transforms: [
RandomColorJitter: {prob: 0.8, brightness: 0.4, contrast: 0.4, saturation: 0.4, hue: 0.1},
RandomErasingCrop: {},
RandomGaussianBlur: {prob: 0.5, sigma: [0.1, 2.0]},
RandomGrayscale: {prob: 0.2},
]}
- NormalizeImage: {mean: [0.485, 0.456, 0.406], std: [0.229, 0.224, 0.225], is_scale: true}
sup_batch_transforms:
- Permute: {}
- PadBatch: {pad_to_stride: 32}
- Gt2FCOSTarget:
object_sizes_boundary: [64, 128, 256, 512]
center_sampling_radius: 1.5
downsample_ratios: [8, 16, 32, 64, 128]
norm_reg_targets: True
unsup_batch_transforms:
- Permute: {}
- PadBatch: {pad_to_stride: 32}
sup_batch_size: 2
unsup_batch_size: 2
shuffle: True
drop_last: True
EvalReader:
sample_transforms:
- Decode: {}
- Resize: {target_size: [800, 1333], keep_ratio: True, interp: 1}
- NormalizeImage: {mean: [0.485, 0.456, 0.406], std: [0.229, 0.224, 0.225], is_scale: True}
- Permute: {}
batch_transforms:
- PadBatch: {pad_to_stride: 32}
batch_size: 1
TestReader:
sample_transforms:
- Decode: {}
- Resize: {target_size: [800, 1333], keep_ratio: True, interp: 1}
- NormalizeImage: {mean: [0.485, 0.456, 0.406], std: [0.229, 0.224, 0.225], is_scale: True}
- Permute: {}
batch_transforms:
- PadBatch: {pad_to_stride: 32}
batch_size: 1
fuse_normalize: True
### model config
architecture: FCOS
FCOS:
backbone: ResNet
neck: FPN
fcos_head: FCOSHead
ResNet:
depth: 50
variant: 'b'
norm_type: bn
freeze_at: 0 # res2
return_idx: [1, 2, 3]
num_stages: 4
FPN:
out_channel: 256
spatial_scales: [0.125, 0.0625, 0.03125]
extra_stage: 2
has_extra_convs: True
use_c5: False
FCOSHead:
fcos_feat:
name: FCOSFeat
feat_in: 256
feat_out: 256
num_convs: 4
norm_type: "gn"
use_dcn: False
fpn_stride: [8, 16, 32, 64, 128]
prior_prob: 0.01
norm_reg_targets: True
centerness_on_reg: True
fcos_loss:
name: FCOSLoss
loss_alpha: 0.25
loss_gamma: 2.0
iou_loss_type: "giou"
reg_weights: 1.0
quality: "iou"
nms:
name: MultiClassNMS
nms_top_k: 1000
keep_top_k: 100
score_threshold: 0.05
nms_threshold: 0.6
### other config
epoch: *epochs
LearningRate:
base_lr: 0.01
schedulers:
- !PiecewiseDecay
gamma: 0.1
milestones: [*epochs]
use_warmup: *use_warmup
- !LinearWarmup
start_factor: 0.001
steps: 1000
OptimizerBuilder:
optimizer:
momentum: 0.9
type: Momentum
regularizer:
factor: 0.0001
type: L2
clip_grad_by_value: 1.0
_BASE_: [
'../../fcos/fcos_r50_fpn_iou_multiscale_2x_coco.yml',
'../_base_/coco_detection_percent_10.yml',
]
log_iter: 50
snapshot_epoch: 5
epochs: &epochs 240
weights: output/denseteacher_fcos_r50_fpn_coco_semi010/model_final
### pretrain and warmup config, choose one and coment another
pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/ResNet50_cos_pretrained.pdparams
semi_start_iters: 5000
ema_start_iters: 3000
use_warmup: &use_warmup True
### global config
use_simple_ema: True
ema_decay: 0.9996
ssod_method: DenseTeacher
DenseTeacher:
train_cfg:
sup_weight: 1.0
unsup_weight: 1.0
loss_weight: {distill_loss_cls: 4.0, distill_loss_box: 1.0, distill_loss_quality: 1.0}
concat_sup_data: True
suppress: linear
ratio: 0.01
gamma: 2.0
test_cfg:
inference_on: teacher
### reader config
worker_num: 2
SemiTrainReader:
sample_transforms:
- Decode: {}
- RandomResize: {target_size: [[640, 1333], [672, 1333], [704, 1333], [736, 1333], [768, 1333], [800, 1333]], keep_ratio: True, interp: 1}
- RandomFlip: {}
weak_aug:
- NormalizeImage: {mean: [0.485, 0.456, 0.406], std: [0.229, 0.224, 0.225], is_scale: true}
strong_aug:
- StrongAugImage: {transforms: [
RandomColorJitter: {prob: 0.8, brightness: 0.4, contrast: 0.4, saturation: 0.4, hue: 0.1},
RandomErasingCrop: {},
RandomGaussianBlur: {prob: 0.5, sigma: [0.1, 2.0]},
RandomGrayscale: {prob: 0.2},
]}
- NormalizeImage: {mean: [0.485, 0.456, 0.406], std: [0.229, 0.224, 0.225], is_scale: true}
sup_batch_transforms:
- Permute: {}
- PadBatch: {pad_to_stride: 32}
- Gt2FCOSTarget:
object_sizes_boundary: [64, 128, 256, 512]
center_sampling_radius: 1.5
downsample_ratios: [8, 16, 32, 64, 128]
num_shift: 0. # default 0.5
multiply_strides_reg_targets: False
norm_reg_targets: True
unsup_batch_transforms:
- Permute: {}
- PadBatch: {pad_to_stride: 32}
sup_batch_size: 2
unsup_batch_size: 2
shuffle: True
drop_last: True
EvalReader:
sample_transforms:
- Decode: {}
- Resize: {target_size: [800, 1333], keep_ratio: True, interp: 1}
- NormalizeImage: {mean: [0.485, 0.456, 0.406], std: [0.229, 0.224, 0.225], is_scale: True}
- Permute: {}
batch_transforms:
- PadBatch: {pad_to_stride: 32}
batch_size: 1
TestReader:
sample_transforms:
- Decode: {}
- Resize: {target_size: [800, 1333], keep_ratio: True, interp: 1}
- NormalizeImage: {mean: [0.485, 0.456, 0.406], std: [0.229, 0.224, 0.225], is_scale: True}
- Permute: {}
batch_transforms:
- PadBatch: {pad_to_stride: 32}
batch_size: 1
fuse_normalize: True
### model config
architecture: FCOS
FCOS:
backbone: ResNet
neck: FPN
fcos_head: FCOSHead
ResNet:
depth: 50
variant: 'b'
norm_type: bn
freeze_at: 0 # res2
return_idx: [1, 2, 3]
num_stages: 4
FPN:
out_channel: 256
spatial_scales: [0.125, 0.0625, 0.03125]
extra_stage: 2
has_extra_convs: True
use_c5: False
FCOSHead:
fcos_feat:
name: FCOSFeat
feat_in: 256
feat_out: 256
num_convs: 4
norm_type: "gn"
use_dcn: False
fpn_stride: [8, 16, 32, 64, 128]
prior_prob: 0.01
norm_reg_targets: True
centerness_on_reg: True
num_shift: 0. # default 0.5
multiply_strides_reg_targets: False
sqrt_score: False
fcos_loss:
name: FCOSLoss
loss_alpha: 0.25
loss_gamma: 2.0
iou_loss_type: "giou"
reg_weights: 1.0
quality: "iou"
nms:
name: MultiClassNMS
nms_top_k: 1000
keep_top_k: 100
score_threshold: 0.05
nms_threshold: 0.6
### other config
epoch: *epochs
LearningRate:
base_lr: 0.01
schedulers:
- !PiecewiseDecay
gamma: 0.1
milestones: [*epochs]
use_warmup: *use_warmup
- !LinearWarmup
start_factor: 0.001
steps: 1000
OptimizerBuilder:
optimizer:
momentum: 0.9
type: Momentum
regularizer:
factor: 0.0001
type: L2
clip_grad_by_value: 1.0
_BASE_: [
'denseteacher_fcos_r50_fpn_coco_semi010.yml',
]
log_iter: 50
snapshot_epoch: 5
epochs: &epochs 240
weights: output/denseteacher_fcos_r50_fpn_coco_semi010_lsj/model_final
### reader config
worker_num: 2
SemiTrainReader:
sample_transforms:
- Decode: {}
# large-scale jittering
- RandomResize: {target_size: [[400, 1333], [1200, 1333]], keep_ratio: True, interp: 1, random_range: True}
- RandomFlip: {}
weak_aug:
- NormalizeImage: {mean: [0.485, 0.456, 0.406], std: [0.229, 0.224, 0.225], is_scale: true}
strong_aug:
- StrongAugImage: {transforms: [
RandomColorJitter: {prob: 0.8, brightness: 0.4, contrast: 0.4, saturation: 0.4, hue: 0.1},
RandomErasingCrop: {},
RandomGaussianBlur: {prob: 0.5, sigma: [0.1, 2.0]},
RandomGrayscale: {prob: 0.2},
]}
- NormalizeImage: {mean: [0.485, 0.456, 0.406], std: [0.229, 0.224, 0.225], is_scale: true}
sup_batch_transforms:
- Permute: {}
- PadBatch: {pad_to_stride: 32}
- Gt2FCOSTarget:
object_sizes_boundary: [64, 128, 256, 512]
center_sampling_radius: 1.5
downsample_ratios: [8, 16, 32, 64, 128]
num_shift: 0. # default 0.5
multiply_strides_reg_targets: False
norm_reg_targets: True
unsup_batch_transforms:
- Permute: {}
- PadBatch: {pad_to_stride: 32}
sup_batch_size: 2
unsup_batch_size: 2
shuffle: True
drop_last: True
......@@ -12,6 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import os
import traceback
import six
......@@ -21,6 +22,10 @@ if sys.version_info >= (3, 0):
else:
pass
import numpy as np
import paddle
import paddle.nn.functional as F
from copy import deepcopy
from paddle.io import DataLoader, DistributedBatchSampler
from .utils import default_collate_fn
......@@ -300,3 +305,307 @@ class TestMOTReader(BaseDataLoader):
super(TestMOTReader, self).__init__(sample_transforms, batch_transforms,
batch_size, shuffle, drop_last,
num_classes, **kwargs)
# For Semi-Supervised Object Detection (SSOD)
class Compose_SSOD(object):
def __init__(self, base_transforms, weak_aug, strong_aug, num_classes=80):
self.base_transforms = base_transforms
self.base_transforms_cls = []
for t in self.base_transforms:
for k, v in t.items():
op_cls = getattr(transform, k)
f = op_cls(**v)
if hasattr(f, 'num_classes'):
f.num_classes = num_classes
self.base_transforms_cls.append(f)
self.weak_augs = weak_aug
self.weak_augs_cls = []
for t in self.weak_augs:
for k, v in t.items():
op_cls = getattr(transform, k)
f = op_cls(**v)
if hasattr(f, 'num_classes'):
f.num_classes = num_classes
self.weak_augs_cls.append(f)
self.strong_augs = strong_aug
self.strong_augs_cls = []
for t in self.strong_augs:
for k, v in t.items():
op_cls = getattr(transform, k)
f = op_cls(**v)
if hasattr(f, 'num_classes'):
f.num_classes = num_classes
self.strong_augs_cls.append(f)
def __call__(self, data):
for f in self.base_transforms_cls:
try:
data = f(data)
except Exception as e:
stack_info = traceback.format_exc()
logger.warning("fail to map sample transform [{}] "
"with error: {} and stack:\n{}".format(
f, e, str(stack_info)))
raise e
weak_data = deepcopy(data)
strong_data = deepcopy(data)
for f in self.weak_augs_cls:
try:
weak_data = f(weak_data)
except Exception as e:
stack_info = traceback.format_exc()
logger.warning("fail to map weak aug [{}] "
"with error: {} and stack:\n{}".format(
f, e, str(stack_info)))
raise e
for f in self.strong_augs_cls:
try:
strong_data = f(strong_data)
except Exception as e:
stack_info = traceback.format_exc()
logger.warning("fail to map strong aug [{}] "
"with error: {} and stack:\n{}".format(
f, e, str(stack_info)))
raise e
weak_data['strong_aug'] = strong_data
return weak_data
class BatchCompose_SSOD(Compose):
def __init__(self, transforms, num_classes=80, collate_batch=True):
super(BatchCompose_SSOD, self).__init__(transforms, num_classes)
self.collate_batch = collate_batch
def __call__(self, data):
# split strong_data from data(weak_data)
strong_data = []
for sample in data:
strong_data.append(sample['strong_aug'])
sample.pop('strong_aug')
for f in self.transforms_cls:
try:
data = f(data)
strong_data = f(strong_data)
except Exception as e:
stack_info = traceback.format_exc()
logger.warning("fail to map batch transform [{}] "
"with error: {} and stack:\n{}".format(
f, e, str(stack_info)))
raise e
# remove keys which is not needed by model
extra_key = ['h', 'w', 'flipped']
for k in extra_key:
for sample in data:
if k in sample:
sample.pop(k)
for sample in strong_data:
if k in sample:
sample.pop(k)
# batch data, if user-define batch function needed
# use user-defined here
if self.collate_batch:
batch_data = default_collate_fn(data)
strong_batch_data = default_collate_fn(strong_data)
return batch_data, strong_batch_data
else:
batch_data = {}
for k in data[0].keys():
tmp_data = []
for i in range(len(data)):
tmp_data.append(data[i][k])
if not 'gt_' in k and not 'is_crowd' in k and not 'difficult' in k:
tmp_data = np.stack(tmp_data, axis=0)
batch_data[k] = tmp_data
strong_batch_data = {}
for k in strong_data[0].keys():
tmp_data = []
for i in range(len(strong_data)):
tmp_data.append(strong_data[i][k])
if not 'gt_' in k and not 'is_crowd' in k and not 'difficult' in k:
tmp_data = np.stack(tmp_data, axis=0)
strong_batch_data[k] = tmp_data
return batch_data, strong_batch_data
class CombineSSODLoader(object):
def __init__(self, label_loader, unlabel_loader):
self.label_loader = label_loader
self.unlabel_loader = unlabel_loader
def __iter__(self):
while True:
try:
label_samples = next(self.label_loader_iter)
except:
self.label_loader_iter = iter(self.label_loader)
label_samples = next(self.label_loader_iter)
try:
unlabel_samples = next(self.unlabel_loader_iter)
except:
self.unlabel_loader_iter = iter(self.unlabel_loader)
unlabel_samples = next(self.unlabel_loader_iter)
yield (
label_samples[0], # sup weak
label_samples[1], # sup strong
unlabel_samples[0], # unsup weak
unlabel_samples[1] # unsup strong
)
def __call__(self):
return self.__iter__()
class BaseSemiDataLoader(object):
def __init__(self,
sample_transforms=[],
weak_aug=[],
strong_aug=[],
sup_batch_transforms=[],
unsup_batch_transforms=[],
sup_batch_size=1,
unsup_batch_size=1,
shuffle=True,
drop_last=True,
num_classes=80,
collate_batch=True,
use_shared_memory=False,
**kwargs):
# sup transforms
self._sample_transforms_label = Compose_SSOD(
sample_transforms, weak_aug, strong_aug, num_classes=num_classes)
self._batch_transforms_label = BatchCompose_SSOD(
sup_batch_transforms, num_classes, collate_batch)
self.batch_size_label = sup_batch_size
# unsup transforms
self._sample_transforms_unlabel = Compose_SSOD(
sample_transforms, weak_aug, strong_aug, num_classes=num_classes)
self._batch_transforms_unlabel = BatchCompose_SSOD(
unsup_batch_transforms, num_classes, collate_batch)
self.batch_size_unlabel = unsup_batch_size
# common
self.shuffle = shuffle
self.drop_last = drop_last
self.use_shared_memory = use_shared_memory
self.kwargs = kwargs
def __call__(self,
dataset_label,
dataset_unlabel,
worker_num,
batch_sampler_label=None,
batch_sampler_unlabel=None,
return_list=False):
# sup dataset
self.dataset_label = dataset_label
self.dataset_label.check_or_download_dataset()
self.dataset_label.parse_dataset()
self.dataset_label.set_transform(self._sample_transforms_label)
self.dataset_label.set_kwargs(**self.kwargs)
if batch_sampler_label is None:
self._batch_sampler_label = DistributedBatchSampler(
self.dataset_label,
batch_size=self.batch_size_label,
shuffle=self.shuffle,
drop_last=self.drop_last)
else:
self._batch_sampler_label = batch_sampler_label
# unsup dataset
self.dataset_unlabel = dataset_unlabel
self.dataset_unlabel.length = self.dataset_label.__len__()
self.dataset_unlabel.check_or_download_dataset()
self.dataset_unlabel.parse_dataset()
self.dataset_unlabel.set_transform(self._sample_transforms_unlabel)
self.dataset_unlabel.set_kwargs(**self.kwargs)
if batch_sampler_unlabel is None:
self._batch_sampler_unlabel = DistributedBatchSampler(
self.dataset_unlabel,
batch_size=self.batch_size_unlabel,
shuffle=self.shuffle,
drop_last=self.drop_last)
else:
self._batch_sampler_unlabel = batch_sampler_unlabel
# DataLoader do not start sub-process in Windows and Mac
# system, do not need to use shared memory
use_shared_memory = self.use_shared_memory and \
sys.platform not in ['win32', 'darwin']
# check whether shared memory size is bigger than 1G(1024M)
if use_shared_memory:
shm_size = _get_shared_memory_size_in_M()
if shm_size is not None and shm_size < 1024.:
logger.warning("Shared memory size is less than 1G, "
"disable shared_memory in DataLoader")
use_shared_memory = False
self.dataloader_label = DataLoader(
dataset=self.dataset_label,
batch_sampler=self._batch_sampler_label,
collate_fn=self._batch_transforms_label,
num_workers=worker_num,
return_list=return_list,
use_shared_memory=use_shared_memory)
self.dataloader_unlabel = DataLoader(
dataset=self.dataset_unlabel,
batch_sampler=self._batch_sampler_unlabel,
collate_fn=self._batch_transforms_unlabel,
num_workers=worker_num,
return_list=return_list,
use_shared_memory=use_shared_memory)
self.dataloader = CombineSSODLoader(self.dataloader_label,
self.dataloader_unlabel)
self.loader = iter(self.dataloader)
return self
def __len__(self):
return len(self._batch_sampler_label)
def __iter__(self):
return self
def __next__(self):
return next(self.loader)
def next(self):
# python2 compatibility
return self.__next__()
@register
class SemiTrainReader(BaseSemiDataLoader):
__shared__ = ['num_classes']
def __init__(self,
sample_transforms=[],
weak_aug=[],
strong_aug=[],
sup_batch_transforms=[],
unsup_batch_transforms=[],
sup_batch_size=1,
unsup_batch_size=1,
shuffle=True,
drop_last=True,
num_classes=80,
collate_batch=True,
**kwargs):
super(SemiTrainReader, self).__init__(
sample_transforms, weak_aug, strong_aug, sup_batch_transforms,
unsup_batch_transforms, sup_batch_size, unsup_batch_size, shuffle,
drop_last, num_classes, collate_batch, **kwargs)
......@@ -13,6 +13,11 @@
# limitations under the License.
import os
import copy
try:
from collections.abc import Sequence
except Exception:
from collections import Sequence
import numpy as np
from ppdet.core.workspace import register, serializable
from .dataset import DetDataset
......@@ -20,6 +25,8 @@ from .dataset import DetDataset
from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)
__all__ = ['COCODataSet', 'SlicedCOCODataSet', 'SemiCOCODataSet']
@register
@serializable
......@@ -223,7 +230,8 @@ class COCODataSet(DetDataset):
if self.sample_num > 0 and ct >= self.sample_num:
break
assert ct > 0, 'not found any coco record in %s' % (anno_path)
logger.debug('{} samples in file {}'.format(ct, anno_path))
logger.info('Load [{} samples valid, {} samples invalid] in file {}.'.
format(ct, len(img_ids) - ct, anno_path))
if self.allow_empty and len(empty_records) > 0:
empty_records = self._sample_empty(empty_records, len(records))
records += empty_records
......@@ -351,3 +359,220 @@ class SlicedCOCODataSet(COCODataSet):
empty_records = self._sample_empty(empty_records, len(records))
records += empty_records
self.roidbs = records
@register
@serializable
class SemiCOCODataSet(COCODataSet):
"""Semi-COCODataSet used for supervised and unsupervised dataSet"""
def __init__(self,
dataset_dir=None,
image_dir=None,
anno_path=None,
data_fields=['image'],
sample_num=-1,
load_crowd=False,
allow_empty=False,
empty_ratio=1.,
repeat=1,
supervised=True):
super(SemiCOCODataSet, self).__init__(
dataset_dir, image_dir, anno_path, data_fields, sample_num,
load_crowd, allow_empty, empty_ratio, repeat)
self.supervised = supervised
self.length = -1 # defalut -1 means all
def parse_dataset(self):
anno_path = os.path.join(self.dataset_dir, self.anno_path)
image_dir = os.path.join(self.dataset_dir, self.image_dir)
assert anno_path.endswith('.json'), \
'invalid coco annotation file: ' + anno_path
from pycocotools.coco import COCO
coco = COCO(anno_path)
img_ids = coco.getImgIds()
img_ids.sort()
cat_ids = coco.getCatIds()
records = []
empty_records = []
ct = 0
self.catid2clsid = dict({catid: i for i, catid in enumerate(cat_ids)})
self.cname2cid = dict({
coco.loadCats(catid)[0]['name']: clsid
for catid, clsid in self.catid2clsid.items()
})
if 'annotations' not in coco.dataset or self.supervised == False:
self.load_image_only = True
logger.warning('Annotation file: {} does not contains ground truth '
'and load image information only.'.format(anno_path))
for img_id in img_ids:
img_anno = coco.loadImgs([img_id])[0]
im_fname = img_anno['file_name']
im_w = float(img_anno['width'])
im_h = float(img_anno['height'])
im_path = os.path.join(image_dir,
im_fname) if image_dir else im_fname
is_empty = False
if not os.path.exists(im_path):
logger.warning('Illegal image file: {}, and it will be '
'ignored'.format(im_path))
continue
if im_w < 0 or im_h < 0:
logger.warning('Illegal width: {} or height: {} in annotation, '
'and im_id: {} will be ignored'.format(
im_w, im_h, img_id))
continue
coco_rec = {
'im_file': im_path,
'im_id': np.array([img_id]),
'h': im_h,
'w': im_w,
} if 'image' in self.data_fields else {}
if not self.load_image_only:
ins_anno_ids = coco.getAnnIds(
imgIds=[img_id], iscrowd=None if self.load_crowd else False)
instances = coco.loadAnns(ins_anno_ids)
bboxes = []
is_rbox_anno = False
for inst in instances:
# check gt bbox
if inst.get('ignore', False):
continue
if 'bbox' not in inst.keys():
continue
else:
if not any(np.array(inst['bbox'])):
continue
x1, y1, box_w, box_h = inst['bbox']
x2 = x1 + box_w
y2 = y1 + box_h
eps = 1e-5
if inst['area'] > 0 and x2 - x1 > eps and y2 - y1 > eps:
inst['clean_bbox'] = [
round(float(x), 3) for x in [x1, y1, x2, y2]
]
bboxes.append(inst)
else:
logger.warning(
'Found an invalid bbox in annotations: im_id: {}, '
'area: {} x1: {}, y1: {}, x2: {}, y2: {}.'.format(
img_id, float(inst['area']), x1, y1, x2, y2))
num_bbox = len(bboxes)
if num_bbox <= 0 and not self.allow_empty:
continue
elif num_bbox <= 0:
is_empty = True
gt_bbox = np.zeros((num_bbox, 4), dtype=np.float32)
gt_class = np.zeros((num_bbox, 1), dtype=np.int32)
is_crowd = np.zeros((num_bbox, 1), dtype=np.int32)
gt_poly = [None] * num_bbox
has_segmentation = False
for i, box in enumerate(bboxes):
catid = box['category_id']
gt_class[i][0] = self.catid2clsid[catid]
gt_bbox[i, :] = box['clean_bbox']
is_crowd[i][0] = box['iscrowd']
# check RLE format
if 'segmentation' in box and box['iscrowd'] == 1:
gt_poly[i] = [[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]]
elif 'segmentation' in box and box['segmentation']:
if not np.array(box['segmentation']
).size > 0 and not self.allow_empty:
bboxes.pop(i)
gt_poly.pop(i)
np.delete(is_crowd, i)
np.delete(gt_class, i)
np.delete(gt_bbox, i)
else:
gt_poly[i] = box['segmentation']
has_segmentation = True
if has_segmentation and not any(
gt_poly) and not self.allow_empty:
continue
gt_rec = {
'is_crowd': is_crowd,
'gt_class': gt_class,
'gt_bbox': gt_bbox,
'gt_poly': gt_poly,
}
for k, v in gt_rec.items():
if k in self.data_fields:
coco_rec[k] = v
# TODO: remove load_semantic
if self.load_semantic and 'semantic' in self.data_fields:
seg_path = os.path.join(self.dataset_dir, 'stuffthingmaps',
'train2017', im_fname[:-3] + 'png')
coco_rec.update({'semantic': seg_path})
logger.debug('Load file: {}, im_id: {}, h: {}, w: {}.'.format(
im_path, img_id, im_h, im_w))
if is_empty:
empty_records.append(coco_rec)
else:
records.append(coco_rec)
ct += 1
if self.sample_num > 0 and ct >= self.sample_num:
break
assert ct > 0, 'not found any coco record in %s' % (anno_path)
logger.info('Load [{} samples valid, {} samples invalid] in file {}.'.
format(ct, len(img_ids) - ct, anno_path))
if self.allow_empty and len(empty_records) > 0:
empty_records = self._sample_empty(empty_records, len(records))
records += empty_records
self.roidbs = records
if self.supervised:
logger.info(f'Use {len(self.roidbs)} sup_samples data as LABELED')
else:
if self.length > 0: # unsup length will be decide by sup length
all_roidbs = self.roidbs.copy()
selected_idxs = [
np.random.choice(len(all_roidbs))
for _ in range(self.length)
]
self.roidbs = [all_roidbs[i] for i in selected_idxs]
logger.info(
f'Use {len(self.roidbs)} unsup_samples data as UNLABELED')
def __getitem__(self, idx):
n = len(self.roidbs)
if self.repeat > 1:
idx %= n
# data batch
roidb = copy.deepcopy(self.roidbs[idx])
if self.mixup_epoch == 0 or self._epoch < self.mixup_epoch:
idx = np.random.randint(n)
roidb = [roidb, copy.deepcopy(self.roidbs[idx])]
elif self.cutmix_epoch == 0 or self._epoch < self.cutmix_epoch:
idx = np.random.randint(n)
roidb = [roidb, copy.deepcopy(self.roidbs[idx])]
elif self.mosaic_epoch == 0 or self._epoch < self.mosaic_epoch:
roidb = [roidb, ] + [
copy.deepcopy(self.roidbs[np.random.randint(n)])
for _ in range(4)
]
if isinstance(roidb, Sequence):
for r in roidb:
r['curr_iter'] = self._curr_iter
else:
roidb['curr_iter'] = self._curr_iter
self._curr_iter += 1
return self.transform(roidb)
......@@ -292,7 +292,9 @@ class Gt2FCOSTarget(BaseOperator):
object_sizes_boundary,
center_sampling_radius,
downsample_ratios,
norm_reg_targets=False):
num_shift=0.5,
multiply_strides_reg_targets=False,
norm_reg_targets=True):
super(Gt2FCOSTarget, self).__init__()
self.center_sampling_radius = center_sampling_radius
self.downsample_ratios = downsample_ratios
......@@ -304,6 +306,8 @@ class Gt2FCOSTarget(BaseOperator):
self.object_sizes_boundary[i], self.object_sizes_boundary[i + 1]
])
self.object_sizes_of_interest = object_sizes_of_interest
self.num_shift = num_shift
self.multiply_strides_reg_targets = multiply_strides_reg_targets
self.norm_reg_targets = norm_reg_targets
def _compute_points(self, w, h):
......@@ -320,7 +324,8 @@ class Gt2FCOSTarget(BaseOperator):
shift_x, shift_y = np.meshgrid(shift_x, shift_y)
shift_x = shift_x.flatten()
shift_y = shift_y.flatten()
location = np.stack([shift_x, shift_y], axis=1) + stride // 2
location = np.stack(
[shift_x, shift_y], axis=1) + stride * self.num_shift
locations.append(location)
num_points_each_level = [len(location) for location in locations]
locations = np.concatenate(locations, axis=0)
......@@ -459,11 +464,16 @@ class Gt2FCOSTarget(BaseOperator):
grid_w = int(np.ceil(w / self.downsample_ratios[lvl]))
grid_h = int(np.ceil(h / self.downsample_ratios[lvl]))
if self.norm_reg_targets:
sample['reg_target{}'.format(lvl)] = \
np.reshape(
reg_targets_by_level[lvl] / \
self.downsample_ratios[lvl],
if self.multiply_strides_reg_targets:
sample['reg_target{}'.format(lvl)] = np.reshape(
reg_targets_by_level[lvl],
newshape=[grid_h, grid_w, 4])
else:
sample['reg_target{}'.format(lvl)] = \
np.reshape(
reg_targets_by_level[lvl] / \
self.downsample_ratios[lvl],
newshape=[grid_h, grid_w, 4])
else:
sample['reg_target{}'.format(lvl)] = np.reshape(
reg_targets_by_level[lvl],
......@@ -575,9 +585,9 @@ class Gt2GFLTarget(BaseOperator):
gt_bboxes, gt_bboxes_ignore,
gt_labels)
vlr_region = self.assigner.get_vlr_region(grid_cells, num_level_cells,
gt_bboxes, gt_bboxes_ignore,
gt_labels)
vlr_region = self.assigner.get_vlr_region(
grid_cells, num_level_cells, gt_bboxes, gt_bboxes_ignore,
gt_labels)
pos_inds, neg_inds, pos_gt_bboxes, pos_assigned_gt_inds = self.get_sample(
assign_gt_inds, gt_bboxes)
......
......@@ -40,6 +40,7 @@ import pickle
import threading
MUTEX = threading.Lock()
import paddle
from ppdet.core.workspace import serializable
from ..reader import Compose
......@@ -926,6 +927,7 @@ class RandomResize(BaseOperator):
target_size,
keep_ratio=True,
interp=cv2.INTER_LINEAR,
random_range=False,
random_size=True,
random_interp=False):
"""
......@@ -934,6 +936,8 @@ class RandomResize(BaseOperator):
target_size (int, list, tuple): image target size, if random size is True, must be list or tuple
keep_ratio (bool): whether keep_raio or not, default true
interp (int): the interpolation method
random_range (bool): whether random select target size of image, the target_size must be
a [[min_short_edge, long_edge], [max_short_edge, long_edge]]
random_size (bool): whether random select target size of image
random_interp (bool): whether random select interpolation method
"""
......@@ -949,21 +953,33 @@ class RandomResize(BaseOperator):
]
assert isinstance(target_size, (
Integral, Sequence)), "target_size must be Integer, List or Tuple"
if random_size and not isinstance(target_size, Sequence):
if (random_range or random_size) and not isinstance(target_size,
Sequence):
raise TypeError(
"Type of target_size is invalid when random_size is True. Must be List or Tuple, now is {}".
"Type of target_size is invalid when random_size or random_range is True. Must be List or Tuple, now is {}".
format(type(target_size)))
if random_range and not len(target_size) == 2:
raise TypeError(
"target_size must be two list as [[min_short_edge, long_edge], [max_short_edge, long_edge]] when random_range is True."
)
self.target_size = target_size
self.random_range = random_range
self.random_size = random_size
self.random_interp = random_interp
def apply(self, sample, context=None):
""" Resize the image numpy.
"""
if self.random_size:
target_size = random.choice(self.target_size)
if self.random_range:
short_edge = np.random.randint(self.target_size[0][0],
self.target_size[1][0] + 1)
long_edge = max(self.target_size[0][1], self.target_size[1][1] + 1)
target_size = [short_edge, long_edge]
else:
target_size = self.target_size
if self.random_size:
target_size = random.choice(self.target_size)
else:
target_size = self.target_size
if self.random_interp:
interp = random.choice(self.interps)
......@@ -3457,3 +3473,165 @@ class RandomShift(BaseOperator):
sample['gt_bbox'] = gt_bbox
sample['gt_class'] = gt_class
return sample
@register_op
class StrongAugImage(BaseOperator):
def __init__(self, transforms):
super(StrongAugImage, self).__init__()
self.transforms = Compose(transforms)
def apply(self, sample, context=None):
im = sample
im['image'] = sample['image'].astype('uint8')
results = self.transforms(im)
sample['image'] = results['image'].astype('uint8')
return sample
@register_op
class RandomColorJitter(BaseOperator):
def __init__(self,
prob=0.8,
brightness=0.4,
contrast=0.4,
saturation=0.4,
hue=0.1):
super(RandomColorJitter, self).__init__()
self.prob = prob
self.brightness = brightness
self.contrast = contrast
self.saturation = saturation
self.hue = hue
def apply(self, sample, context=None):
if np.random.uniform(0, 1) < self.prob:
from paddle.vision.transforms import ColorJitter
transform = ColorJitter(self.brightness, self.contrast,
self.saturation, self.hue)
sample['image'] = transform(sample['image'].astype(np.uint8))
sample['image'] = sample['image'].astype(np.float32)
return sample
@register_op
class RandomGrayscale(BaseOperator):
def __init__(self, prob=0.2):
super(RandomGrayscale, self).__init__()
self.prob = prob
def apply(self, sample, context=None):
if np.random.uniform(0, 1) < self.prob:
from paddle.vision.transforms import Grayscale
transform = Grayscale(num_output_channels=3)
sample['image'] = transform(sample['image'])
return sample
@register_op
class RandomGaussianBlur(BaseOperator):
def __init__(self, prob=0.5, sigma=[0.1, 2.0]):
super(RandomGaussianBlur, self).__init__()
self.prob = prob
self.sigma = sigma
def apply(self, sample, context=None):
if np.random.uniform(0, 1) < self.prob:
sigma = np.random.uniform(self.sigma[0], self.sigma[1])
im = cv2.GaussianBlur(sample['image'], (23, 23), sigma)
sample['image'] = im
return sample
@register_op
class RandomErasing(BaseOperator):
def __init__(self,
prob=0.5,
scale=(0.02, 0.33),
ratio=(0.3, 3.3),
value=0,
inplace=False):
super(RandomErasing, self).__init__()
assert isinstance(scale,
(tuple, list)), "scale should be a tuple or list"
assert (scale[0] >= 0 and scale[1] <= 1 and scale[0] <= scale[1]
), "scale should be of kind (min, max) and in range [0, 1]"
assert isinstance(ratio,
(tuple, list)), "ratio should be a tuple or list"
assert (ratio[0] >= 0 and
ratio[0] <= ratio[1]), "ratio should be of kind (min, max)"
assert isinstance(
value, (Number, str, tuple,
list)), "value should be a number, tuple, list or str"
if isinstance(value, str) and value != "random":
raise ValueError("value must be 'random' when type is str")
self.prob = prob
self.scale = scale
self.ratio = ratio
self.value = value
self.inplace = inplace
def _erase(self, img, i, j, h, w, v, inplace=False):
if not inplace:
img = img.copy()
img[i:i + h, j:j + w, ...] = v
return img
def _get_param(self, img, scale, ratio, value):
shape = np.asarray(img).astype(np.uint8).shape
h, w, c = shape[-3], shape[-2], shape[-1]
img_area = h * w
log_ratio = np.log(ratio)
for _ in range(1):
erase_area = np.random.uniform(*scale) * img_area
aspect_ratio = np.exp(np.random.uniform(*log_ratio))
erase_h = int(round(np.sqrt(erase_area * aspect_ratio)))
erase_w = int(round(np.sqrt(erase_area / aspect_ratio)))
if erase_h >= h or erase_w >= w:
continue
if value is None:
v = np.random.normal(size=[erase_h, erase_w, c]) * 255
else:
v = np.array(value)[None, None, :]
top = np.random.randint(0, h - erase_h + 1)
left = np.random.randint(0, w - erase_w + 1)
return top, left, erase_h, erase_w, v
return 0, 0, h, w, img
def apply(self, sample, context=None):
if random.random() < self.prob:
if isinstance(self.value, Number):
value = [self.value]
elif isinstance(self.value, str):
value = None
else:
value = self.value
if value is not None and not (len(value) == 1 or len(value) == 3):
raise ValueError(
"Value should be a single number or a sequence with length equals to image's channel."
)
im = sample['image']
top, left, erase_h, erase_w, v = self._get_param(im, self.scale,
self.ratio, value)
im = self._erase(im, top, left, erase_h, erase_w, v, self.inplace)
sample['image'] = im
return sample
@register_op
class RandomErasingCrop(BaseOperator):
def __init__(self):
super(RandomErasingCrop, self).__init__()
self.transform1 = RandomErasing(
prob=0.7, scale=(0.05, 0.2), ratio=(0.3, 3.3), value="random")
self.transform2 = RandomErasing(
prob=0.5, scale=(0.05, 0.2), ratio=(0.1, 6), value="random")
self.transform3 = RandomErasing(
prob=0.3, scale=(0.05, 0.2), ratio=(0.05, 8), value="random")
def apply(self, sample, context=None):
sample = self.transform1(sample)
sample = self.transform2(sample)
sample = self.transform3(sample)
return sample
......@@ -28,3 +28,7 @@ __all__ = trainer.__all__ \
from . import tracker
from .tracker import *
__all__ = __all__ + tracker.__all__
from . import trainer_ssod
from .trainer_ssod import *
__all__ = __all__ + trainer_ssod.__all__
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
import copy
import time
import typing
import math
import numpy as np
import paddle
import paddle.nn as nn
import paddle.distributed as dist
from paddle.distributed import fleet
from ppdet.optimizer import ModelEMA, SimpleModelEMA
from ppdet.core.workspace import create
from ppdet.utils.checkpoint import load_weight, load_pretrain_weight
import ppdet.utils.stats as stats
from ppdet.utils import profiler
from ppdet.modeling.ssod_utils import align_weak_strong_shape
from .trainer import Trainer
from ppdet.utils.logger import setup_logger
logger = setup_logger('ppdet.engine')
__all__ = ['Trainer_DenseTeacher']
class Trainer_DenseTeacher(Trainer):
def __init__(self, cfg, mode='train'):
self.cfg = cfg
assert mode.lower() in ['train', 'eval', 'test'], \
"mode should be 'train', 'eval' or 'test'"
self.mode = mode.lower()
self.optimizer = None
self.is_loaded_weights = False
self.use_amp = self.cfg.get('amp', False)
self.amp_level = self.cfg.get('amp_level', 'O1')
self.custom_white_list = self.cfg.get('custom_white_list', None)
self.custom_black_list = self.cfg.get('custom_black_list', None)
# build data loader
capital_mode = self.mode.capitalize()
self.dataset = self.cfg['{}Dataset'.format(capital_mode)] = create(
'{}Dataset'.format(capital_mode))()
if self.mode == 'train':
self.dataset_unlabel = self.cfg['UnsupTrainDataset'] = create(
'UnsupTrainDataset')
self.loader = create('SemiTrainReader')(
self.dataset, self.dataset_unlabel, cfg.worker_num)
# build model
if 'model' not in self.cfg:
self.model = create(cfg.architecture)
else:
self.model = self.cfg.model
self.is_loaded_weights = True
# EvalDataset build with BatchSampler to evaluate in single device
# TODO: multi-device evaluate
if self.mode == 'eval':
self._eval_batch_sampler = paddle.io.BatchSampler(
self.dataset, batch_size=self.cfg.EvalReader['batch_size'])
# If metric is VOC, need to be set collate_batch=False.
if cfg.metric == 'VOC':
cfg['EvalReader']['collate_batch'] = False
self.loader = create('EvalReader')(self.dataset, cfg.worker_num,
self._eval_batch_sampler)
# TestDataset build after user set images, skip loader creation here
# build optimizer in train mode
if self.mode == 'train':
steps_per_epoch = len(self.loader)
if steps_per_epoch < 1:
logger.warning(
"Samples in dataset are less than batch_size, please set smaller batch_size in TrainReader."
)
self.lr = create('LearningRate')(steps_per_epoch)
self.optimizer = create('OptimizerBuilder')(self.lr, self.model)
# Unstructured pruner is only enabled in the train mode.
if self.cfg.get('unstructured_prune'):
self.pruner = create('UnstructuredPruner')(self.model,
steps_per_epoch)
if self.use_amp and self.amp_level == 'O2':
self.model, self.optimizer = paddle.amp.decorate(
models=self.model,
optimizers=self.optimizer,
level=self.amp_level)
self.use_ema = ('use_ema' in cfg and cfg['use_ema'])
if self.use_ema:
ema_decay = self.cfg.get('ema_decay', 0.9998)
ema_decay_type = self.cfg.get('ema_decay_type', 'threshold')
cycle_epoch = self.cfg.get('cycle_epoch', -1)
ema_black_list = self.cfg.get('ema_black_list', None)
self.ema = ModelEMA(
self.model,
decay=ema_decay,
ema_decay_type=ema_decay_type,
cycle_epoch=cycle_epoch,
ema_black_list=ema_black_list)
self.ema_start_iters = self.cfg.get('ema_start_iters', 0)
# simple_ema for SSOD
self.use_simple_ema = ('use_simple_ema' in cfg and
cfg['use_simple_ema'])
if self.use_simple_ema:
self.use_ema = True
ema_decay = self.cfg.get('ema_decay', 0.9996)
self.ema = SimpleModelEMA(self.model, decay=ema_decay)
self.ema_start_iters = self.cfg.get('ema_start_iters', 0)
self._nranks = dist.get_world_size()
self._local_rank = dist.get_rank()
self.status = {}
self.start_epoch = 0
self.end_epoch = 0 if 'epoch' not in cfg else cfg.epoch
# initial default callbacks
self._init_callbacks()
# initial default metrics
self._init_metrics()
self._reset_metrics()
def load_weights(self, weights):
if self.is_loaded_weights:
return
self.start_epoch = 0
load_pretrain_weight(self.model, weights)
load_pretrain_weight(self.ema.model, weights)
logger.info("Load weights {} to start training for teacher and student".
format(weights))
def resume_weights(self, weights, exchange=True):
# support Distill resume weights
if hasattr(self.model, 'student_model'):
self.start_epoch = load_weight(self.model.student_model, weights,
self.optimizer, exchange)
else:
self.start_epoch = load_weight(self.model, weights, self.optimizer,
self.ema
if self.use_ema else None, exchange)
logger.debug("Resume weights of epoch {}".format(self.start_epoch))
def train(self, validate=False):
self.semi_start_iters = self.cfg.get('semi_start_iters', 5000)
Init_mark = False
if validate:
self.cfg['EvalDataset'] = self.cfg.EvalDataset = create(
"EvalDataset")()
sync_bn = (getattr(self.cfg, 'norm_type', None) == 'sync_bn' and
self.cfg.use_gpu and self._nranks > 1)
if sync_bn:
self.model = paddle.nn.SyncBatchNorm.convert_sync_batchnorm(
self.model)
if self.cfg.get('fleet', False):
self.model = fleet.distributed_model(self.model)
self.optimizer = fleet.distributed_optimizer(self.optimizer)
elif self._nranks > 1:
find_unused_parameters = self.cfg[
'find_unused_parameters'] if 'find_unused_parameters' in self.cfg else False
self.model = paddle.DataParallel(
self.model, find_unused_parameters=find_unused_parameters)
self.ema.model = paddle.DataParallel(
self.ema.model, find_unused_parameters=find_unused_parameters)
self.status.update({
'epoch_id': self.start_epoch,
'step_id': 0,
'steps_per_epoch': len(self.loader)
})
self.status['batch_time'] = stats.SmoothedValue(
self.cfg.log_iter, fmt='{avg:.4f}')
self.status['data_time'] = stats.SmoothedValue(
self.cfg.log_iter, fmt='{avg:.4f}')
self.status['training_staus'] = stats.TrainingStats(self.cfg.log_iter)
if self.cfg.get('print_flops', False):
flops_loader = create('{}Reader'.format(self.mode.capitalize()))(
self.dataset, self.cfg.worker_num)
self._flops(flops_loader)
profiler_options = self.cfg.get('profiler_options', None)
self._compose_callback.on_train_begin(self.status)
train_cfg = self.cfg.DenseTeacher['train_cfg']
concat_sup_data = train_cfg.get('concat_sup_data', True)
for param in self.ema.model.parameters():
param.stop_gradient = True
for epoch_id in range(self.start_epoch, self.cfg.epoch):
self.status['mode'] = 'train'
self.status['epoch_id'] = epoch_id
self._compose_callback.on_epoch_begin(self.status)
self.loader.dataset_label.set_epoch(epoch_id)
self.loader.dataset_unlabel.set_epoch(epoch_id)
iter_tic = time.time()
loss_dict = {
'loss': paddle.to_tensor([0]),
'loss_sup_sum': paddle.to_tensor([0]),
'loss_unsup_sum': paddle.to_tensor([0]),
'fg_sum': paddle.to_tensor([0]),
}
if self._nranks > 1:
for k in self.model._layers.get_loss_keys():
loss_dict.update({k: paddle.to_tensor([0.])})
for k in self.model._layers.get_loss_keys():
loss_dict.update({'distill_' + k: paddle.to_tensor([0.])})
else:
for k in self.model.get_loss_keys():
loss_dict.update({k: paddle.to_tensor([0.])})
for k in self.model.get_loss_keys():
loss_dict.update({'distill_' + k: paddle.to_tensor([0.])})
# Note: for step_id, data in enumerate(self.loader): # enumerate bug
for step_id in range(len(self.loader)):
data = next(self.loader)
self.model.train()
self.ema.model.eval()
data_sup_w, data_sup_s, data_unsup_w, data_unsup_s = data
self.status['data_time'].update(time.time() - iter_tic)
self.status['step_id'] = step_id
profiler.add_profiler_step(profiler_options)
self._compose_callback.on_step_begin(self.status)
if data_sup_w['image'].shape != data_sup_s['image'].shape:
data_sup_w, data_sup_s = align_weak_strong_shape(data_sup_w,
data_sup_s)
if concat_sup_data:
for k, v in data_sup_s.items():
data_sup_s[k] = paddle.concat([v, data_sup_w[k]])
loss_dict_sup = self.model(data_sup_s)
else:
loss_dict_sup_w = self.model(data_sup_w)
loss_dict_sup = self.model(data_sup_s)
for k, v in loss_dict_sup_w.items():
loss_dict_sup[k] = (loss_dict_sup[k] + v) * 0.5
data_sup_w['epoch_id'] = epoch_id
data_sup_s['epoch_id'] = epoch_id
losses_sup = loss_dict_sup['loss'] * train_cfg['sup_weight']
losses_sup.backward()
losses = losses_sup.detach()
loss_dict.update(loss_dict_sup)
loss_dict.update({'loss_sup_sum': loss_dict['loss']})
curr_iter = len(self.loader) * epoch_id + step_id
st_iter = self.semi_start_iters
if curr_iter == st_iter:
logger.info("***" * 30)
logger.info('Semi starting ...')
logger.info("***" * 30)
if curr_iter > st_iter:
unsup_weight = train_cfg['unsup_weight']
if train_cfg['suppress'] == 'linear':
tar_iter = st_iter * 2
if curr_iter <= tar_iter:
unsup_weight *= (curr_iter - st_iter) / st_iter
elif train_cfg['suppress'] == 'exp':
tar_iter = st_iter + 2000
if curr_iter <= tar_iter:
scale = np.exp((curr_iter - tar_iter) / 1000)
unsup_weight *= scale
elif train_cfg['suppress'] == 'step':
tar_iter = st_iter * 2
if curr_iter <= tar_iter:
unsup_weight *= 0.25
else:
raise ValueError
if data_unsup_w['image'].shape != data_unsup_s[
'image'].shape:
data_unsup_w, data_unsup_s = align_weak_strong_shape(
data_unsup_w, data_unsup_s)
data_unsup_w['epoch_id'] = epoch_id
data_unsup_s['epoch_id'] = epoch_id
data_unsup_s['get_data'] = True
student_preds = self.model(data_unsup_s)
with paddle.no_grad():
data_unsup_w['is_teacher'] = True
teacher_preds = self.ema.model(data_unsup_w)
if self._nranks > 1:
loss_dict_unsup = self.model._layers.get_distill_loss(
student_preds,
teacher_preds,
ratio=train_cfg['ratio'])
else:
loss_dict_unsup = self.model.get_distill_loss(
student_preds,
teacher_preds,
ratio=train_cfg['ratio'])
fg_num = loss_dict_unsup["fg_sum"]
del loss_dict_unsup["fg_sum"]
distill_weights = train_cfg['loss_weight']
loss_dict_unsup = {
k: v * distill_weights[k]
for k, v in loss_dict_unsup.items()
}
losses_unsup = sum([
metrics_value
for metrics_value in loss_dict_unsup.values()
]) * unsup_weight
losses_unsup.backward()
loss_dict.update(loss_dict_unsup)
loss_dict.update({'loss_unsup_sum': losses_unsup})
losses += losses_unsup.detach()
loss_dict.update({"fg_sum": fg_num})
loss_dict['loss'] = losses
self.optimizer.step()
curr_lr = self.optimizer.get_lr()
self.lr.step()
self.optimizer.clear_grad()
self.status['learning_rate'] = curr_lr
if self._nranks < 2 or self._local_rank == 0:
self.status['training_staus'].update(loss_dict)
self.status['batch_time'].update(time.time() - iter_tic)
self._compose_callback.on_step_end(self.status)
# Note: ema_start_iters
if self.use_ema and curr_iter == self.ema_start_iters:
logger.info("***" * 30)
logger.info('EMA starting ...')
logger.info("***" * 30)
self.ema.update(self.model, decay=0)
elif self.use_ema and curr_iter > self.ema_start_iters:
self.ema.update(self.model)
iter_tic = time.time()
is_snapshot = (self._nranks < 2 or self._local_rank == 0) \
and ((epoch_id + 1) % self.cfg.snapshot_epoch == 0 or epoch_id == self.end_epoch - 1)
if is_snapshot and self.use_ema:
# apply ema weight on model
weight = copy.deepcopy(self.ema.model.state_dict())
for k, v in weight.items():
if paddle.is_floating_point(v):
weight[k].stop_gradient = True
self.status['weight'] = weight
self._compose_callback.on_epoch_end(self.status)
if validate and is_snapshot:
if not hasattr(self, '_eval_loader'):
# build evaluation dataset and loader
self._eval_dataset = self.cfg.EvalDataset
self._eval_batch_sampler = \
paddle.io.BatchSampler(
self._eval_dataset,
batch_size=self.cfg.EvalReader['batch_size'])
# If metric is VOC, need to be set collate_batch=False.
if self.cfg.metric == 'VOC':
self.cfg['EvalReader']['collate_batch'] = False
self._eval_loader = create('EvalReader')(
self._eval_dataset,
self.cfg.worker_num,
batch_sampler=self._eval_batch_sampler)
# if validation in training is enabled, metrics should be re-init
# Init_mark makes sure this code will only execute once
if validate and Init_mark == False:
Init_mark = True
self._init_metrics(validate=validate)
self._reset_metrics()
with paddle.no_grad():
self.status['save_best_model'] = True
self._eval_with_loader(self._eval_loader)
if is_snapshot and self.use_ema:
self.status.pop('weight')
self._compose_callback.on_train_end(self.status)
def evaluate(self):
# get distributed model
if self.cfg.get('fleet', False):
self.model = fleet.distributed_model(self.model)
self.optimizer = fleet.distributed_optimizer(self.optimizer)
elif self._nranks > 1:
find_unused_parameters = self.cfg[
'find_unused_parameters'] if 'find_unused_parameters' in self.cfg else False
self.model = paddle.DataParallel(
self.model, find_unused_parameters=find_unused_parameters)
with paddle.no_grad():
self._eval_with_loader(self.loader)
def _eval_with_loader(self, loader):
sample_num = 0
tic = time.time()
self._compose_callback.on_epoch_begin(self.status)
self.status['mode'] = 'eval'
test_cfg = self.cfg.DenseTeacher['test_cfg']
if test_cfg['inference_on'] == 'teacher':
logger.info("***** teacher model evaluating *****")
eval_model = self.ema.model
else:
logger.info("***** student model evaluating *****")
eval_model = self.model
eval_model.eval()
if self.cfg.get('print_flops', False):
flops_loader = create('{}Reader'.format(self.mode.capitalize()))(
self.dataset, self.cfg.worker_num, self._eval_batch_sampler)
self._flops(flops_loader)
for step_id, data in enumerate(loader):
self.status['step_id'] = step_id
self._compose_callback.on_step_begin(self.status)
# forward
if self.use_amp:
with paddle.amp.auto_cast(
enable=self.cfg.use_gpu or self.cfg.use_mlu,
custom_white_list=self.custom_white_list,
custom_black_list=self.custom_black_list,
level=self.amp_level):
outs = eval_model(data)
else:
outs = eval_model(data)
# update metrics
for metric in self._metrics:
metric.update(data, outs)
# multi-scale inputs: all inputs have same im_id
if isinstance(data, typing.Sequence):
sample_num += data[0]['im_id'].numpy().shape[0]
else:
sample_num += data['im_id'].numpy().shape[0]
self._compose_callback.on_step_end(self.status)
self.status['sample_num'] = sample_num
self.status['cost_time'] = time.time() - tic
# accumulate metric to log out
for metric in self._metrics:
metric.accumulate()
metric.log()
self._compose_callback.on_epoch_end(self.status)
# reset metric states for metric may performed multiple times
self._reset_metrics()
......@@ -30,6 +30,7 @@ from . import mot
from . import transformers
from . import assigners
from . import rbox_utils
from . import ssod_utils
from .ops import *
from .backbones import *
......@@ -45,3 +46,4 @@ from .mot import *
from .transformers import *
from .assigners import *
from .rbox_utils import *
from .ssod_utils import *
......@@ -17,8 +17,11 @@ from __future__ import division
from __future__ import print_function
import paddle
import paddle.nn.functional as F
from ppdet.core.workspace import register, create
from .meta_arch import BaseArch
from ..ssod_utils import permute_to_N_HWA_K, QFLv2
from ..losses import GIoULoss
__all__ = ['FCOS']
......@@ -41,6 +44,7 @@ class FCOS(BaseArch):
self.backbone = backbone
self.neck = neck
self.fcos_head = fcos_head
self.is_teacher = False
@classmethod
def from_config(cls, cfg, *args, **kwargs):
......@@ -62,7 +66,8 @@ class FCOS(BaseArch):
body_feats = self.backbone(self.inputs)
fpn_feats = self.neck(body_feats)
if self.training:
self.is_teacher = self.inputs.get('is_teacher', False)
if self.training or self.is_teacher:
losses = self.fcos_head(fpn_feats, self.inputs)
return losses
else:
......@@ -76,3 +81,95 @@ class FCOS(BaseArch):
def get_pred(self):
return self._forward()
def get_loss_keys(self):
return ['loss_cls', 'loss_box', 'loss_quality']
def get_distill_loss(self,
fcos_head_outs,
teacher_fcos_head_outs,
ratio=0.01):
student_logits, student_deltas, student_quality = fcos_head_outs
teacher_logits, teacher_deltas, teacher_quality = teacher_fcos_head_outs
nc = student_logits[0].shape[1]
student_logits = paddle.concat(
[
_.transpose([0, 2, 3, 1]).reshape([-1, nc])
for _ in student_logits
],
axis=0)
teacher_logits = paddle.concat(
[
_.transpose([0, 2, 3, 1]).reshape([-1, nc])
for _ in teacher_logits
],
axis=0)
student_deltas = paddle.concat(
[
_.transpose([0, 2, 3, 1]).reshape([-1, 4])
for _ in student_deltas
],
axis=0)
teacher_deltas = paddle.concat(
[
_.transpose([0, 2, 3, 1]).reshape([-1, 4])
for _ in teacher_deltas
],
axis=0)
student_quality = paddle.concat(
[
_.transpose([0, 2, 3, 1]).reshape([-1, 1])
for _ in student_quality
],
axis=0)
teacher_quality = paddle.concat(
[
_.transpose([0, 2, 3, 1]).reshape([-1, 1])
for _ in teacher_quality
],
axis=0)
with paddle.no_grad():
# Region Selection
count_num = int(teacher_logits.shape[0] * ratio)
teacher_probs = F.sigmoid(teacher_logits)
max_vals = paddle.max(teacher_probs, 1)
sorted_vals, sorted_inds = paddle.topk(max_vals,
teacher_logits.shape[0])
mask = paddle.zeros_like(max_vals)
mask[sorted_inds[:count_num]] = 1.
fg_num = sorted_vals[:count_num].sum()
b_mask = mask > 0
# distill_loss_cls
loss_logits = QFLv2(
F.sigmoid(student_logits),
teacher_probs,
weight=mask,
reduction="sum") / fg_num
# distill_loss_box
inputs = paddle.concat(
(-student_deltas[b_mask][..., :2], student_deltas[b_mask][..., 2:]),
axis=-1)
targets = paddle.concat(
(-teacher_deltas[b_mask][..., :2], teacher_deltas[b_mask][..., 2:]),
axis=-1)
iou_loss = GIoULoss(reduction='mean')
loss_deltas = iou_loss(inputs, targets)
# distill_loss_quality
loss_quality = F.binary_cross_entropy(
F.sigmoid(student_quality[b_mask]),
F.sigmoid(teacher_quality[b_mask]),
reduction='mean')
return {
"distill_loss_cls": loss_logits,
"distill_loss_box": loss_deltas,
"distill_loss_quality": loss_quality,
"fg_sum": fg_num,
}
......@@ -136,6 +136,7 @@ class FCOSHead(nn.Layer):
fcos_feat='FCOSFeat',
fpn_stride=[8, 16, 32, 64, 128],
prior_prob=0.01,
multiply_strides_reg_targets=False,
norm_reg_targets=True,
centerness_on_reg=True,
num_shift=0.5,
......@@ -151,11 +152,13 @@ class FCOSHead(nn.Layer):
self.fcos_loss = fcos_loss
self.norm_reg_targets = norm_reg_targets
self.centerness_on_reg = centerness_on_reg
self.multiply_strides_reg_targets = multiply_strides_reg_targets
self.num_shift = num_shift
self.nms = nms
if isinstance(self.nms, MultiClassNMS) and trt:
self.nms.trt = trt
self.sqrt_score = sqrt_score
self.is_teacher = False
conv_cls_name = "fcos_head_cls"
bias_init_value = -math.log((1 - self.prior_prob) / self.prior_prob)
......@@ -246,16 +249,29 @@ class FCOSHead(nn.Layer):
centerness = self.fcos_head_centerness(fcos_cls_feat)
if self.norm_reg_targets:
bbox_reg = F.relu(bbox_reg)
if not self.training:
# eval or infer
if self.multiply_strides_reg_targets:
bbox_reg = bbox_reg * fpn_stride
else:
if not self.training or targets.get(
'get_data',
False) or targets.get('is_teacher', False):
bbox_reg = bbox_reg * fpn_stride
else:
bbox_reg = paddle.exp(bbox_reg)
cls_logits_list.append(cls_logits)
bboxes_reg_list.append(bbox_reg)
centerness_list.append(centerness)
if self.training:
if targets is not None:
self.is_teacher = targets.get('is_teacher', False)
if self.is_teacher:
return [cls_logits_list, bboxes_reg_list, centerness_list]
if self.training and targets is not None:
get_data = targets.get('get_data', False)
if get_data:
return [cls_logits_list, bboxes_reg_list, centerness_list]
losses = {}
fcos_head_outs = [cls_logits_list, bboxes_reg_list, centerness_list]
losses_fcos = self.get_loss(fcos_head_outs, targets)
......
......@@ -217,12 +217,11 @@ class FCOSLoss(nn.Layer):
mask_positive_float = paddle.squeeze(mask_positive_float, axis=-1)
tag_center_flatten = paddle.squeeze(tag_center_flatten, axis=-1)
reg_loss = self.__iou_loss(
bboxes_reg_flatten, # [61570, 4]
bboxes_reg_flatten,
tag_bboxes_flatten,
mask_positive_float, # [61570] sum 57
weights=tag_center_flatten
) # [61570] tag_center_flatten.sum()=34.43262482
reg_loss = reg_loss * mask_positive_float / normalize_sum # 34.43262482
mask_positive_float,
weights=tag_center_flatten)
reg_loss = reg_loss * mask_positive_float / normalize_sum
# 3. centerness: sigmoid_cross_entropy_with_logits_loss
centerness_flatten = paddle.squeeze(centerness_flatten, axis=-1)
......
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn.functional as F
def align_weak_strong_shape(data_weak, data_strong):
max_shape_x = max(data_strong['image'].shape[2],
data_weak['image'].shape[2])
max_shape_y = max(data_strong['image'].shape[3],
data_weak['image'].shape[3])
scale_x_s = max_shape_x / data_strong['image'].shape[2]
scale_y_s = max_shape_y / data_strong['image'].shape[3]
scale_x_w = max_shape_x / data_weak['image'].shape[2]
scale_y_w = max_shape_y / data_weak['image'].shape[3]
target_size = [max_shape_x, max_shape_y]
if scale_x_s != 1 or scale_y_s != 1:
data_strong['image'] = F.interpolate(
data_strong['image'],
size=target_size,
mode='bilinear',
align_corners=False)
if 'gt_bbox' in data_strong:
gt_bboxes = data_strong['gt_bbox']
for i in range(len(gt_bboxes)):
if len(gt_bboxes[i]) > 0:
gt_bboxes[i][:, 0::2] = gt_bboxes[i][:, 0::2] * scale_x_s
gt_bboxes[i][:, 1::2] = gt_bboxes[i][:, 1::2] * scale_y_s
data_strong['gt_bbox'] = gt_bboxes
if scale_x_w != 1 or scale_y_w != 1:
data_weak['image'] = F.interpolate(
data_weak['image'],
size=target_size,
mode='bilinear',
align_corners=False)
if 'gt_bbox' in data_weak:
gt_bboxes = data_weak['gt_bbox']
for i in range(len(gt_bboxes)):
if len(gt_bboxes[i]) > 0:
gt_bboxes[i][:, 0::2] = gt_bboxes[i][:, 0::2] * scale_x_w
gt_bboxes[i][:, 1::2] = gt_bboxes[i][:, 1::2] * scale_y_w
data_weak['gt_bbox'] = gt_bboxes
return data_weak, data_strong
def permute_to_N_HWA_K(tensor, K):
"""
Transpose/reshape a tensor from (N, (A x K), H, W) to (N, (HxWxA), K)
"""
assert tensor.dim() == 4, tensor.shape
N, _, H, W = tensor.shape
tensor = tensor.reshape([N, -1, K, H, W]).transpose([0, 3, 4, 1, 2])
tensor = tensor.reshape([N, -1, K])
return tensor
def QFLv2(pred_sigmoid,
teacher_sigmoid,
weight=None,
beta=2.0,
reduction='mean'):
pt = pred_sigmoid
zerolabel = paddle.zeros_like(pt)
loss = F.binary_cross_entropy(
pred_sigmoid, zerolabel, reduction='none') * pt.pow(beta)
pos = weight > 0
pt = teacher_sigmoid[pos] - pred_sigmoid[pos]
loss[pos] = F.binary_cross_entropy(
pred_sigmoid[pos], teacher_sigmoid[pos],
reduction='none') * pt.pow(beta)
valid = weight >= 0
if reduction == "mean":
loss = loss[valid].mean()
elif reduction == "sum":
loss = loss[valid].sum()
return loss
......@@ -12,5 +12,8 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from . import optimizer
from . import ema
from .optimizer import *
from .ema import ModelEMA
from .ema import *
......@@ -19,6 +19,9 @@ from __future__ import print_function
import math
import paddle
import weakref
from copy import deepcopy
__all__ = ['ModelEMA', 'SimpleModelEMA']
class ModelEMA(object):
......@@ -134,3 +137,48 @@ class ModelEMA(object):
if key in name:
out_list.add(name)
return out_list
class SimpleModelEMA(object):
"""
Model Exponential Moving Average from https://github.com/rwightman/pytorch-image-models
Keep a moving average of everything in the model state_dict (parameters and buffers).
This is intended to allow functionality like
https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage
A smoothed version of the weights is necessary for some training schemes to perform well.
This class is sensitive where it is initialized in the sequence of model init,
GPU assignment and distributed training wrappers.
"""
def __init__(self, model=None, decay=0.9996):
"""
Args:
model (nn.Module): model to apply EMA.
decay (float): ema decay reate.
"""
self.model = deepcopy(model)
self.decay = decay
def update(self, model, decay=None):
if decay is None:
decay = self.decay
with paddle.no_grad():
state = {}
msd = model.state_dict()
for k, v in self.model.state_dict().items():
if paddle.is_floating_point(v):
v *= decay
v += (1.0 - decay) * msd[k].detach()
state[k] = v
self.model.set_state_dict(state)
def resume(self, state_dict, step=0):
state = {}
msd = state_dict
for k, v in self.model.state_dict().items():
if paddle.is_floating_point(v):
v = msd[k].detach()
state[k] = v
self.model.set_state_dict(state)
self.step = step
......@@ -274,11 +274,13 @@ class OptimizerBuilder():
def __init__(self,
clip_grad_by_norm=None,
clip_grad_by_value=None,
regularizer={'type': 'L2',
'factor': .0001},
optimizer={'type': 'Momentum',
'momentum': .9}):
self.clip_grad_by_norm = clip_grad_by_norm
self.clip_grad_by_value = clip_grad_by_value
self.regularizer = regularizer
self.optimizer = optimizer
......@@ -286,6 +288,9 @@ class OptimizerBuilder():
if self.clip_grad_by_norm is not None:
grad_clip = nn.ClipGradByGlobalNorm(
clip_norm=self.clip_grad_by_norm)
elif self.clip_grad_by_value is not None:
var = abs(self.clip_grad_by_value)
grad_clip = nn.ClipGradByValue(min=-var, max=var)
else:
grad_clip = None
if self.regularizer and self.regularizer != 'None':
......
......@@ -62,7 +62,7 @@ def _strip_postfix(path):
return path
def load_weight(model, weight, optimizer=None, ema=None):
def load_weight(model, weight, optimizer=None, ema=None, exchange=True):
if is_url(weight):
weight = get_weights_path(weight)
......@@ -73,9 +73,21 @@ def load_weight(model, weight, optimizer=None, ema=None):
"exists.".format(pdparam_path))
if ema is not None and os.path.exists(path + '.pdema'):
# Exchange model and ema_model to load
ema_state_dict = paddle.load(pdparam_path)
param_state_dict = paddle.load(path + '.pdema')
if exchange:
# Exchange model and ema_model to load
logger.info('Exchange model and ema_model to load:')
ema_state_dict = paddle.load(pdparam_path)
logger.info('Loading ema_model weights from {}'.format(path +
'.pdparams'))
param_state_dict = paddle.load(path + '.pdema')
logger.info('Loading model weights from {}'.format(path + '.pdema'))
else:
ema_state_dict = paddle.load(path + '.pdema')
logger.info('Loading ema_model weights from {}'.format(path +
'.pdema'))
param_state_dict = paddle.load(pdparam_path)
logger.info('Loading model weights from {}'.format(path +
'.pdparams'))
else:
ema_state_dict = None
param_state_dict = paddle.load(pdparam_path)
......
......@@ -31,6 +31,7 @@ import paddle
from ppdet.core.workspace import load_config, merge_config
from ppdet.engine import Trainer, init_parallel_env, set_random_seed, init_fleet_env
from ppdet.engine.trainer_ssod import Trainer_DenseTeacher
from ppdet.slim import build_slim_model
from ppdet.utils.cli import ArgsParser, merge_args
......@@ -124,8 +125,17 @@ def run(FLAGS, cfg):
if FLAGS.enable_ce:
set_random_seed(0)
# build trainer
trainer = Trainer(cfg, mode='train')
ssod_method = cfg.get('ssod_method', None)
if ssod_method is not None:
if ssod_method == 'DenseTeacher':
trainer = Trainer_DenseTeacher(cfg, mode='train')
else:
raise ValueError(
"Semi-Supervised Object Detection only support DenseTeacher now."
)
else:
# build trainer
trainer = Trainer(cfg, mode='train')
# load weights
if FLAGS.resume is not None:
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册