Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
320c6eea
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
320c6eea
编写于
7月 20, 2021
作者:
S
shangliang Xu
提交者:
GitHub
7月 20, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[transformer] add readme and deformable configs (#3720)
上级
e8aeb802
变更
7
显示空白变更内容
内联
并排
Showing
7 changed file
with
185 addition
and
1 deletion
+185
-1
configs/deformable_detr/README.md
configs/deformable_detr/README.md
+30
-0
configs/deformable_detr/_base_/deformable_detr_r50.yml
configs/deformable_detr/_base_/deformable_detr_r50.yml
+48
-0
configs/deformable_detr/_base_/deformable_detr_reader.yml
configs/deformable_detr/_base_/deformable_detr_reader.yml
+49
-0
configs/deformable_detr/_base_/deformable_optimizer_1x.yml
configs/deformable_detr/_base_/deformable_optimizer_1x.yml
+16
-0
configs/deformable_detr/deformable_detr_r50_1x_coco.yml
configs/deformable_detr/deformable_detr_r50_1x_coco.yml
+8
-0
configs/detr/README.md
configs/detr/README.md
+33
-0
configs/detr/_base_/detr_r50.yml
configs/detr/_base_/detr_r50.yml
+1
-1
未找到文件。
configs/deformable_detr/README.md
0 → 100644
浏览文件 @
320c6eea
# Deformable DETR
## Introduction
Deformable DETR is an object detection model based on DETR. We reproduced the model of the paper.
## Model Zoo
| Backbone | Model | Images/GPU | Inf time (fps) | Box AP | Config | Download |
|:------:|:--------:|:--------:|:--------------:|:------:|:------:|:--------:|
| R-50 | Deformable DETR | 2 | --- | 44.1 |
[
config
](
https://github.com/PaddlePaddle/PaddleDetection/blob/develop/configs/deformable_detr/deformable_detr_r50_1x_coco.yml
)
|
[
model
](
https://paddledet.bj.bcebos.com/models/deformable_detr_r50_1x_coco.pdparams
)
|
**Notes:**
-
Deformable DETR is trained on COCO train2017 dataset and evaluated on val2017 results of
`mAP(IoU=0.5:0.95)`
.
-
Deformable DETR uses 8GPU to train 50 epochs.
## Citations
```
@inproceedings{
zhu2021deformable,
title={Deformable DETR: Deformable Transformers for End-to-End Object Detection},
author={Xizhou Zhu and Weijie Su and Lewei Lu and Bin Li and Xiaogang Wang and Jifeng Dai},
booktitle={International Conference on Learning Representations},
year={2021},
url={https://openreview.net/forum?id=gZ9hCDWe6ke}
}
```
configs/deformable_detr/_base_/deformable_detr_r50.yml
0 → 100644
浏览文件 @
320c6eea
architecture
:
DETR
pretrain_weights
:
https://paddledet.bj.bcebos.com/models/pretrained/ResNet50_vb_normal_pretrained.pdparams
hidden_dim
:
256
use_focal_loss
:
True
DETR
:
backbone
:
ResNet
transformer
:
DeformableTransformer
detr_head
:
DeformableDETRHead
post_process
:
DETRBBoxPostProcess
ResNet
:
# index 0 stands for res2
depth
:
50
norm_type
:
bn
freeze_at
:
0
return_idx
:
[
1
,
2
,
3
]
lr_mult_list
:
[
0.0
,
0.1
,
0.1
,
0.1
]
num_stages
:
4
DeformableTransformer
:
num_queries
:
300
position_embed_type
:
sine
nhead
:
8
num_encoder_layers
:
6
num_decoder_layers
:
6
dim_feedforward
:
1024
dropout
:
0.1
activation
:
relu
num_feature_levels
:
4
num_encoder_points
:
4
num_decoder_points
:
4
DeformableDETRHead
:
num_mlp_layers
:
3
DETRLoss
:
loss_coeff
:
{
class
:
2
,
bbox
:
5
,
giou
:
2
,
mask
:
1
,
dice
:
1
}
aux_loss
:
True
HungarianMatcher
:
matcher_coeff
:
{
class
:
2
,
bbox
:
5
,
giou
:
2
}
configs/deformable_detr/_base_/deformable_detr_reader.yml
0 → 100644
浏览文件 @
320c6eea
worker_num
:
0
TrainReader
:
sample_transforms
:
-
Decode
:
{}
-
RandomFlip
:
{
prob
:
0.5
}
-
RandomSelect
:
{
transforms1
:
[
RandomShortSideResize
:
{
short_side_sizes
:
[
480
,
512
,
544
,
576
,
608
,
640
,
672
,
704
,
736
,
768
,
800
],
max_size
:
1333
}
],
transforms2
:
[
RandomShortSideResize
:
{
short_side_sizes
:
[
400
,
500
,
600
]
},
RandomSizeCrop
:
{
min_size
:
384
,
max_size
:
600
},
RandomShortSideResize
:
{
short_side_sizes
:
[
480
,
512
,
544
,
576
,
608
,
640
,
672
,
704
,
736
,
768
,
800
],
max_size
:
1333
}
]
}
-
NormalizeImage
:
{
is_scale
:
true
,
mean
:
[
0.485
,
0.456
,
0.406
],
std
:
[
0.229
,
0.224
,
0.225
]}
-
NormalizeBox
:
{}
-
BboxXYXY2XYWH
:
{}
-
Permute
:
{}
batch_transforms
:
-
PadMaskBatch
:
{
pad_to_stride
:
-1
,
return_pad_mask
:
true
}
batch_size
:
2
shuffle
:
true
drop_last
:
true
collate_batch
:
false
use_shared_memory
:
false
EvalReader
:
sample_transforms
:
-
Decode
:
{}
-
Resize
:
{
target_size
:
[
800
,
1333
],
keep_ratio
:
True
}
-
NormalizeImage
:
{
is_scale
:
true
,
mean
:
[
0.485
,
0.456
,
0.406
],
std
:
[
0.229
,
0.224
,
0.225
]}
-
Permute
:
{}
batch_transforms
:
-
PadMaskBatch
:
{
pad_to_stride
:
-1
,
return_pad_mask
:
true
}
batch_size
:
1
shuffle
:
false
drop_last
:
false
drop_empty
:
false
TestReader
:
sample_transforms
:
-
Decode
:
{}
-
Resize
:
{
target_size
:
[
800
,
1333
],
keep_ratio
:
True
}
-
NormalizeImage
:
{
is_scale
:
true
,
mean
:
[
0.485
,
0.456
,
0.406
],
std
:
[
0.229
,
0.224
,
0.225
]}
-
Permute
:
{}
batch_transforms
:
-
PadMaskBatch
:
{
pad_to_stride
:
-1
,
return_pad_mask
:
true
}
batch_size
:
1
shuffle
:
false
drop_last
:
false
configs/deformable_detr/_base_/deformable_optimizer_1x.yml
0 → 100644
浏览文件 @
320c6eea
epoch
:
50
LearningRate
:
base_lr
:
0.0002
schedulers
:
-
!PiecewiseDecay
gamma
:
0.1
milestones
:
[
40
]
use_warmup
:
false
OptimizerBuilder
:
clip_grad_by_norm
:
0.1
regularizer
:
false
optimizer
:
type
:
AdamW
weight_decay
:
0.0001
configs/deformable_detr/deformable_detr_r50_1x_coco.yml
0 → 100644
浏览文件 @
320c6eea
_BASE_
:
[
'
../datasets/coco_detection.yml'
,
'
../runtime.yml'
,
'
_base_/deformable_optimizer_1x.yml'
,
'
_base_/deformable_detr_r50.yml'
,
'
_base_/deformable_detr_reader.yml'
,
]
weights
:
output/deformable_detr_r50_1x_coco/model_final
configs/detr/README.md
0 → 100644
浏览文件 @
320c6eea
# DETR
## Introduction
DETR is an object detection model based on transformer. We reproduced the model of the paper.
## Model Zoo
| Backbone | Model | Images/GPU | Inf time (fps) | Box AP | Config | Download |
|:------:|:--------:|:--------:|:--------------:|:------:|:------:|:--------:|
| R-50 | DETR | 4 | --- | 42.3 |
[
config
](
https://github.com/PaddlePaddle/PaddleDetection/blob/develop/configs/detr/detr_r50_1x_coco.yml
)
|
[
model
](
https://paddledet.bj.bcebos.com/models/detr_r50_1x_coco.pdparams
)
|
**Notes:**
-
DETR is trained on COCO train2017 dataset and evaluated on val2017 results of
`mAP(IoU=0.5:0.95)`
.
-
DETR uses 8GPU to train 500 epochs.
## Citations
```
@inproceedings{detr,
author = {Nicolas Carion and
Francisco Massa and
Gabriel Synnaeve and
Nicolas Usunier and
Alexander Kirillov and
Sergey Zagoruyko},
title = {End-to-End Object Detection with Transformers},
booktitle = {ECCV},
year = {2020}
}
```
configs/detr/_base_/detr_r50.yml
浏览文件 @
320c6eea
architecture
:
DETR
architecture
:
DETR
pretrain_weights
:
https://paddledet.bj.bcebos.com/models/pretrained/ResNet50_
cos
_pretrained.pdparams
pretrain_weights
:
https://paddledet.bj.bcebos.com/models/pretrained/ResNet50_
vb_normal
_pretrained.pdparams
hidden_dim
:
256
hidden_dim
:
256
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录