未验证 提交 29b68392 编写于 作者: C Cao Ying 提交者: GitHub

Merge pull request #7928 from guoshengCS/add-weight-normalization

Add weight normalization wrapper.
......@@ -13,7 +13,6 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/reduce_op.h"
#include "paddle/operators/net_op.h"
namespace paddle {
namespace operators {
......@@ -38,10 +37,14 @@ class ReduceOp : public framework::OperatorWithKernel {
dim, x_rank,
"The dim should be in the range [-rank(input), rank(input)).");
bool reduce_all = ctx->Attrs().Get<bool>("reduce_all");
bool keep_dim = ctx->Attrs().Get<bool>("keep_dim");
if (reduce_all) {
if (keep_dim)
ctx->SetOutputDim(
"Out", framework::make_ddim(std::vector<int64_t>(x_rank, 1)));
else
ctx->SetOutputDim("Out", {1});
} else {
bool keep_dim = ctx->Attrs().Get<bool>("keep_dim");
auto dims_vector = vectorize(x_dims);
if (keep_dim || x_rank == 1) {
dims_vector[dim] = 1;
......
......@@ -18,7 +18,7 @@ import itertools
from framework import Variable, Parameter, default_main_program, default_startup_program, \
unique_name, dtype_is_floating
from paddle.v2.fluid.initializer import Constant, Xavier
from param_attr import ParamAttr
from param_attr import ParamAttr, WeightNormParamAttr
class LayerHelper(object):
......@@ -104,6 +104,177 @@ class LayerHelper(object):
(dtype, each.dtype))
return dtype
def _create_weight_normalize(self, attr, shape, dtype):
from .layers import elementwise_mul, elementwise_div, reshape
# Remove these ops when LayerHelper and layers support indicating
# program and block.
def __norm_op(x,
out=None,
p=2,
dim=None,
keep_dim=False,
block=self.startup_program.global_block()):
if out is None:
out = block.create_var(
name=unique_name(".".join([self.name, 'weight_norm_norm'])),
dtype=dtype,
persistable=False)
abs_out = block.create_var(
name=unique_name(".".join([self.name, 'weight_norm_abs'])),
dtype=dtype,
persistable=False)
block.append_op(
type='abs', inputs={'X': x}, outputs={'Out': abs_out})
pow_out = block.create_var(
name=unique_name(".".join([self.name, 'weight_norm_pow'])),
dtype=dtype,
persistable=False)
block.append_op(
type='pow',
inputs={'X': abs_out},
outputs={'Out': pow_out},
attrs={'factor': float(p)})
sum_out = block.create_var(
name=unique_name(".".join([self.name, 'weight_norm_sum'])),
dtype=dtype,
persistable=False)
block.append_op(
type='reduce_sum',
inputs={'X': pow_out},
outputs={'Out': sum_out},
attrs={
'dim': dim,
'keep_dim': keep_dim,
'reduce_all': True if dim is None else False
})
block.append_op(
type='pow',
inputs={'X': sum_out},
outputs={'Out': out},
attrs={'factor': 1. / p})
return out
def __reshape_op(x,
shape,
out=None,
block=self.startup_program.global_block()):
if out is None:
out = block.create_var(
name=unique_name(".".join(
[self.name, 'weight_norm_reshape'])),
dtype=dtype,
persistable=False)
block.append_op(
type='reshape',
inputs={'X': x},
outputs={'Out': out},
attrs={'shape': shape})
return out
def __transpose_op(x,
axis,
out=None,
block=self.startup_program.global_block()):
if out is None:
out = block.create_var(
name=unique_name(".".join(
[self.name, 'weight_norm_transpose'])),
dtype=dtype,
persistable=False)
block.append_op(
type='transpose',
inputs={'X': x},
outputs={'Out': out},
attrs={'axis': axis})
return out
def __norm_except_dim(x,
out=None,
dim=None,
block=self.startup_program.global_block()):
"""Computes the norm over all dimensions except dim"""
if out is None:
out = block.create_var(
name=unique_name(".".join([self.name, 'weight_norm_norm'])),
dtype=dtype,
persistable=False)
if dim is None:
__norm_op(x, out, dim=dim, block=block)
elif dim == 0:
out_shape = [x.shape[0]] + [1] * (len(x.shape) - 1)
reshape = __reshape_op(x, shape=[x.shape[0], -1], block=block)
norm = __norm_op(reshape, dim=1, block=block)
__reshape_op(norm, out=out, shape=out_shape, block=block)
elif dim == len(x.shape) - 1:
out_shape = [1] * (len(x.shape) - 1) + [x.shape[-1]]
reshape = __reshape_op(x, shape=[-1, x.shape[-1]], block=block)
norm = __norm_op(reshape, dim=0, block=block)
__reshape_op(norm, out=out, shape=out_shape, block=block)
else:
perm = range(len(x.shape))
perm[0], perm[dim] = dim, 0
transpose = __transpose_op(x, perm, block=block)
norm = __norm_op(transpose, dim=0, block=block)
__transpose_op(norm, perm, out=out, block=block)
return out
def __weight_normalize(g, v, dim):
"""Calculations for weight normalization"""
norm = __norm_except_dim(
v, dim=dim, block=self.main_program.current_block())
scale = elementwise_div(
x=g, y=norm) # The shapes of g and norm are the same.
# Currently, elementwise_mul only support broadcast when the shape
# of y is a subset of the shape of x. Thus, we reshape y to squeeze
# to achive the subset.
w = elementwise_mul(
x=v,
y=scale if dim is None else reshape(
x=scale, shape=[v.shape[dim]]),
axis=-1 if dim is None else dim)
# To serialize the original parameter for inference, maybe a
# parameter rather than a variable should be returned.
return w
g_param_attr = copy.deepcopy(attr)
g_param_attr.name = attr.name + '_g'
g_param_shape = [1] * len(shape)
if attr.dim is not None:
g_param_shape[attr.dim] = shape[attr.dim]
v_param_attr = copy.deepcopy(attr)
v_param_attr.name = attr.name + '_v'
v_param_shape = shape
# Add to startup_program to initialize g and v.
# Try to reconstruct the initializer of w by initializing g and v.
# Set the initializers of g and v as below, then the distribution
# of w is the same as initializing w with the given initializer.
# For Data-Dependent Initialization, please compute the init-values
# of g and v in external and then feed the values to g and v by
# executing an extra program.
g_param = self.startup_program.global_block().create_parameter(
dtype=dtype,
shape=g_param_shape,
**g_param_attr.to_kwargs(with_initializer=False))
v_param = self.startup_program.global_block().create_parameter(
dtype=dtype,
shape=v_param_shape,
**v_param_attr.to_kwargs(with_initializer=True))
__norm_except_dim(
x=v_param,
out=g_param,
dim=attr.dim,
block=self.startup_program.global_block())
# Add weight normalization to main_program
g_param = self.main_program.global_block().create_parameter(
dtype=dtype, shape=g_param_shape, **g_param_attr.to_kwargs())
v_param = self.main_program.global_block().create_parameter(
dtype=dtype, shape=v_param_shape, **v_param_attr.to_kwargs())
w_param = __weight_normalize(g_param, v_param, dim=attr.dim)
return w_param
def create_parameter(self,
attr,
shape,
......@@ -114,16 +285,23 @@ class LayerHelper(object):
attr = copy.deepcopy(attr)
assert isinstance(attr, ParamAttr)
suffix = 'b' if is_bias else 'w'
if attr.name is None:
attr.name = unique_name(".".join([self.name, suffix]))
if default_initializer is None:
if default_initializer is None and attr.initializer is None:
if is_bias:
attr.set_default_bias_initializer()
else:
attr.set_default_param_initializer()
else:
attr.set_default_initializer(default_initializer)
if attr.name is None:
attr.name = unique_name(".".join([self.name, suffix]))
# If weight normalization is set, insert extra parameters and ops.
# Refer to https://arxiv.org/pdf/1602.07868.pdf
if isinstance(attr, WeightNormParamAttr):
param = self._create_weight_normalize(attr, shape, dtype)
WeightNormParamAttr.params_with_weight_norm.append(param)
return param
self.startup_program.global_block().create_parameter(
dtype=dtype, shape=shape, **attr.to_kwargs(with_initializer=True))
......
......@@ -15,7 +15,10 @@
from initializer import Initializer, Xavier, Constant
from regularizer import WeightDecayRegularizer
__all__ = ['ParamAttr']
__all__ = [
'ParamAttr',
'WeightNormParamAttr',
]
class ParamAttr(object):
......@@ -82,3 +85,20 @@ class ParamAttr(object):
if with_initializer:
kwargs['initializer'] = self.initializer
return kwargs
class WeightNormParamAttr(ParamAttr):
"""
Used for weight normalization. Any field in ParamAttr can also be set here.
Besides, an extra field dim can be set to indicate the dimension except
which to normalize.
"""
# List to record the parameters reparameterized by weight normalization.
# If these parameters are treated as Variable rather than Parameter,
# it can be used to discriminate these parameters and help to serialize
# these paramters for inference.
params_with_weight_norm = []
def __init__(self, dim=None, **kwargs):
super(WeightNormParamAttr, self).__init__(**kwargs)
self.dim = dim
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy
import collections
import paddle.v2.fluid as fluid
import paddle.v2.fluid.core as core
from paddle.v2.fluid.initializer import ConstantInitializer
from paddle.v2.fluid.param_attr import WeightNormParamAttr
class TestWeightNormalization(unittest.TestCase):
batch_size = 3
hidden_size = 5
data_desc = (['x', [10], 0], )
@classmethod
def setUpClass(cls):
cls.set_program()
@classmethod
def set_program(cls):
data = fluid.layers.data(
name=cls.data_desc[0][0], shape=cls.data_desc[0][1])
out = fluid.layers.fc(input=data,
size=cls.hidden_size,
param_attr=WeightNormParamAttr(
dim=None,
name='weight_norm_param',
initializer=ConstantInitializer(1.0)),
bias_attr=False,
act=None)
loss = fluid.layers.reduce_sum(out)
fluid.backward.append_backward(loss=loss)
cls.fetch_list = [
'weight_norm_param_g', 'weight_norm_param_v',
'weight_norm_param_g@GRAD'
]
def run_program(self):
outputs = []
places = [core.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(core.CUDAPlace(0))
for place in places:
self.set_inputs(place)
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
output = exe.run(fluid.default_main_program(),
feed=self.inputs,
fetch_list=self.fetch_list,
return_numpy=False)
outputs.append(output)
self.actual_outputs = outputs
def set_data(self):
self.data = collections.OrderedDict()
for desc in self.data_desc:
data_name = desc[0]
data_shape = desc[1]
data_lod_level = desc[2]
data_lod = []
for i in range(data_lod_level):
lod_level_i = numpy.random.randint(
low=1,
high=5,
size=self.batch_size if i == 0 else lod_level_i[-1])
lod_level_i = [0] + numpy.cumsum(lod_level_i).tolist()
data_lod.append(lod_level_i)
data_value = numpy.random.random(
size=[data_lod[-1][-1] if data_lod else self.batch_size
] + data_shape).astype('float32')
self.data[data_name] = (data_value, data_lod)
def set_inputs(self, place):
self.inputs = {}
for desc in self.data_desc:
tensor = fluid.Tensor()
tensor.set(self.data[desc[0]][0], place)
if self.data[desc[0]][1]:
tensor.set_lod(self.data[desc[0]][1])
self.inputs[desc[0]] = tensor
def weight_normalize(self):
v = numpy.ones((self.data[self.data_desc[0][0]][0].shape[-1],
self.hidden_size))
g = numpy.linalg.norm(v, axis=None, keepdims=True)
w = g * v / numpy.linalg.norm(v, axis=None, keepdims=True)
x = self.data[self.data_desc[0][0]][0]
out = numpy.dot(x, w)
g_grad = (numpy.dot(x.T, numpy.ones_like(out)) * (v / numpy.linalg.norm(
v, axis=None, keepdims=True))).sum(axis=None, keepdims=True)
return g, v, g_grad
def test_weight_normalization(self):
self.set_data()
self.run_program()
expect_output = self.weight_normalize()
for actual_output in self.actual_outputs:
[
self.assertTrue(
numpy.allclose(
numpy.array(actual), expect, atol=0.001))
for expect, actual in zip(expect_output, actual_output)
]
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册