Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
297f06c6
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
297f06c6
编写于
1月 17, 2017
作者:
H
hedaoyuan
提交者:
GitHub
1月 17, 2017
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #1132 from hedaoyuan/FunctionTest
New FunctionTest
上级
010dd20a
1c5a7c43
变更
10
显示空白变更内容
内联
并排
Showing
10 changed file
with
399 addition
and
136 deletion
+399
-136
paddle/function/BufferArg.h
paddle/function/BufferArg.h
+32
-3
paddle/function/BufferArgTest.cpp
paddle/function/BufferArgTest.cpp
+0
-53
paddle/function/CMakeLists.txt
paddle/function/CMakeLists.txt
+1
-1
paddle/function/ContextProjectionOp.cpp
paddle/function/ContextProjectionOp.cpp
+13
-14
paddle/function/CrossMapNormalOp.cpp
paddle/function/CrossMapNormalOp.cpp
+7
-2
paddle/function/CrossMapNormalOpTest.cpp
paddle/function/CrossMapNormalOpTest.cpp
+26
-21
paddle/function/Function.cpp
paddle/function/Function.cpp
+8
-4
paddle/function/Function.h
paddle/function/Function.h
+42
-4
paddle/function/FunctionTest.cpp
paddle/function/FunctionTest.cpp
+107
-0
paddle/function/FunctionTest.h
paddle/function/FunctionTest.h
+163
-34
未找到文件。
paddle/function/BufferArg.h
浏览文件 @
297f06c6
...
...
@@ -40,7 +40,6 @@ enum SparseDataFormat { SPARSE_CSR_FORMAT = 0, SPARSE_CSC_FORMAT = 1 };
class
BufferArg
;
class
SequenceArg
;
class
SparseMatrixArg
;
typedef
std
::
shared_ptr
<
BufferArg
>
BufferArgPtr
;
/**
* \brief BufferArg used as the argument type of Function.
...
...
@@ -51,6 +50,11 @@ typedef std::shared_ptr<BufferArg> BufferArgPtr;
* 3. SequenceArg for a Buffer of sequence data.
* 4. SparseMatrixArg for a Buffer of sparse matrix.
*
* Buffer shape
* For most buffers, the first dimension `shape()[0]` represents
* the size of the mini-batch.
*
* Buffer argType
* There is an ArgType property for the BufferArg used as Function Output.
* Whether the result of the Function calculation is assigned to the
* output Buffer or added to the output Buffer is determined by the
...
...
@@ -72,6 +76,14 @@ public:
ArgType
getArgType
()
const
{
return
argType_
;
}
public:
BufferArg
(
ValueType
valueType
,
const
TensorShape
&
shape
,
ArgType
argType
=
UNSPECIFIED
)
:
buf_
(
nullptr
),
valueType_
(
valueType
),
shape_
(
shape
),
argType_
(
argType
)
{}
BufferArg
(
void
*
buf
,
ValueType
valueType
,
const
TensorShape
&
shape
,
...
...
@@ -177,6 +189,13 @@ protected:
// if a < b then value_.buf_[a] < value_.buf_[b]
class
SequenceIdArg
:
public
BufferArg
{
public:
SequenceIdArg
(
const
TensorShape
&
shape
,
ArgType
argType
=
UNSPECIFIED
)
:
BufferArg
(
VALUE_TYPE_INT32
,
shape
,
argType
)
{
CHECK_EQ
(
shape_
.
ndims
(),
(
size_t
)
1
);
CHECK_GT
(
shape_
[
0
],
1
);
numSeqs_
=
shape_
[
0
]
-
1
;
}
SequenceIdArg
(
void
*
buf
,
const
TensorShape
&
shape
,
ArgType
argType
=
UNSPECIFIED
)
...
...
@@ -199,9 +218,18 @@ private:
size_t
numSeqs_
;
};
// sequence data {seqId(vec), buf(matrix)}
// sequences data
// For mini-batch calculate,
// one batch can contain more than one sequence of data.
// SequenceArg can be used to represent sequences that contain multiple
// unequal lengths.
class
SequenceArg
:
public
BufferArg
{
public:
SequenceArg
(
ValueType
valueType
,
const
TensorShape
&
shape
,
ArgType
argType
=
UNSPECIFIED
)
:
BufferArg
(
valueType
,
shape
,
argType
),
startPositions_
(
TensorShape
())
{}
SequenceArg
(
void
*
buf
,
ValueType
valueType
,
const
TensorShape
&
shape
,
...
...
@@ -223,7 +251,8 @@ public:
void
*
getIdBuf
()
const
{
return
startPositions_
.
data
();
}
size_t
numSeqs
()
const
{
return
startPositions_
.
numSeqs
();
}
const
SequenceIdArg
&
getSequenceIds
()
const
{
return
startPositions_
;
}
SequenceIdArg
&
getSequenceId
()
{
return
startPositions_
;
}
const
SequenceIdArg
&
getSequenceId
()
const
{
return
startPositions_
;
}
private:
SequenceIdArg
startPositions_
;
...
...
paddle/function/BufferArgTest.cpp
浏览文件 @
297f06c6
...
...
@@ -14,9 +14,7 @@ limitations under the License. */
#include "BufferArg.h"
#include <gtest/gtest.h>
#include "Function.h"
#include "paddle/math/MemoryHandle.h"
#include "paddle/math/SparseMatrix.h"
namespace
paddle
{
...
...
@@ -37,55 +35,4 @@ TEST(BufferTest, SequenceIdArg) {
EXPECT_EQ
(
buffer
.
numSeqs
(),
9
);
}
TEST
(
BufferTest
,
asArgument
)
{
MatrixPtr
matrix
=
Matrix
::
create
(
100
,
200
);
VectorPtr
vector
=
Vector
::
create
(
100
,
false
);
CpuSparseMatrix
sparse
(
200
,
300
,
50
);
// prepare arguments
BufferArgs
argments
;
argments
.
addArg
(
*
matrix
);
argments
.
addArg
(
*
vector
);
argments
.
addArg
(
sparse
);
// function
auto
function
=
[
=
](
const
BufferArgs
&
inputs
)
{
EXPECT_EQ
(
inputs
.
size
(),
3
);
// check inputs[0]
EXPECT_EQ
(
inputs
[
0
].
shape
().
ndims
(),
2
);
EXPECT_EQ
(
inputs
[
0
].
shape
()[
0
],
100
);
EXPECT_EQ
(
inputs
[
0
].
shape
()[
1
],
200
);
EXPECT_EQ
(
inputs
[
0
].
data
(),
matrix
->
getData
());
EXPECT_EQ
(
inputs
[
0
].
matrix
<
DEVICE_TYPE_CPU
>
().
getHeight
(),
matrix
->
getHeight
());
EXPECT_EQ
(
inputs
[
0
].
matrix
<
DEVICE_TYPE_CPU
>
().
getWidth
(),
matrix
->
getWidth
());
EXPECT_EQ
(
inputs
[
0
].
matrix
<
DEVICE_TYPE_CPU
>
().
getData
(),
matrix
->
getData
());
// check inputs[1]
EXPECT_EQ
(
inputs
[
1
].
shape
().
ndims
(),
1
);
EXPECT_EQ
(
inputs
[
1
].
shape
()[
0
],
100
);
EXPECT_EQ
(
inputs
[
1
].
data
(),
vector
->
getData
());
CpuVector
inVector
=
inputs
[
1
].
vector
<
real
,
DEVICE_TYPE_CPU
>
();
EXPECT_EQ
(
inVector
.
getSize
(),
vector
->
getSize
());
EXPECT_EQ
(
inVector
.
getData
(),
vector
->
getData
());
// check inputs[2]
EXPECT_EQ
(
inputs
[
2
].
shape
().
ndims
(),
2
);
EXPECT_EQ
(
inputs
[
2
].
shape
()[
0
],
200
);
EXPECT_EQ
(
inputs
[
2
].
shape
()[
1
],
300
);
EXPECT_EQ
(
inputs
[
2
].
data
(),
sparse
.
getData
());
// CHECK_EQ(inputs[2].sparse().nnz(), 50);
// CHECK_EQ(inputs[2].sparse().dataFormat(), SPARSE_CSR_FORMAT);
// CHECK_EQ(inputs[2].sparse().dataType(), SPARSE_FLOAT_VALUE);
EXPECT_EQ
(
inputs
[
2
].
sparse
().
getRowBuf
(),
sparse
.
getRows
());
EXPECT_EQ
(
inputs
[
2
].
sparse
().
getColBuf
(),
sparse
.
getCols
());
};
// call function
function
(
argments
);
}
}
// namespace paddle
paddle/function/CMakeLists.txt
浏览文件 @
297f06c6
...
...
@@ -19,7 +19,7 @@ if(WITH_TESTING)
# TODO:
# file(GLOB test_files . *OpTest.cpp)
# add_executable(${test_bin} EXCLUDE_FROM_ALL ${test_files})
#
add_simple_unittest(CrossMapNormalOpTest)
add_simple_unittest
(
CrossMapNormalOpTest
)
add_simple_unittest
(
TensorShapeTest
)
add_simple_unittest
(
TensorTypeTest
)
add_simple_unittest
(
BufferArgTest
)
...
...
paddle/function/ContextProjectionOp.cpp
浏览文件 @
297f06c6
...
...
@@ -115,11 +115,10 @@ public:
const
auto
val_seqs
=
dynamic_cast
<
const
SequenceArg
&>
(
inputs
[
0
]);
auto
out_seq
=
dynamic_cast
<
const
SequenceArg
&>
(
outputs
[
0
]);
CHECK
(
out_seq
.
data
()
&&
val_seqs
.
data
()
&&
val_seqs
.
getSequenceIds
().
data
());
CHECK
(
out_seq
.
data
()
&&
val_seqs
.
data
()
&&
val_seqs
.
getSequenceId
().
data
());
CHECK_EQ
(
out_seq
.
shape
().
ndims
(),
(
size_t
)
2
);
CHECK_EQ
(
val_seqs
.
shape
().
ndims
(),
(
size_t
)
2
);
CHECK_EQ
(
val_seqs
.
getSequenceId
s
().
shape
().
ndims
(),
(
size_t
)
1
);
CHECK_EQ
(
val_seqs
.
getSequenceId
().
shape
().
ndims
(),
(
size_t
)
1
);
if
(
2
==
inputs
.
size
())
{
CHECK_EQ
(
inputs
[
1
].
shape
().
ndims
(),
(
size_t
)
2
);
}
...
...
@@ -139,7 +138,7 @@ public:
(
2
==
inputs
.
size
())
?
inputs
[
1
].
matrix
<
Device
>
()
:
typename
Tensor
<
real
,
Device
>::
Matrix
(
nullptr
,
0
,
0
);
const
auto
seq_vec
=
val_seqs
.
getSequenceId
s
().
vector
<
int
,
Device
>
();
const
auto
seq_vec
=
val_seqs
.
getSequenceId
().
vector
<
int
,
Device
>
();
ContextProjectionForward
<
Device
>
(
out_mat
,
in_mat
,
w_mat
,
...
...
@@ -242,11 +241,11 @@ public:
<<
"SequenceArg required here"
;
const
auto
in_seq
=
dynamic_cast
<
const
SequenceArg
&>
(
inputs
[
0
]);
auto
out_seq
=
dynamic_cast
<
const
SequenceArg
&>
(
outputs
[
0
]);
CHECK
(
in_seq
.
data
()
&&
in_seq
.
getSequenceId
s
().
data
());
CHECK
(
in_seq
.
data
()
&&
in_seq
.
getSequenceId
().
data
());
CHECK_EQ
(
in_seq
.
shape
().
ndims
(),
(
size_t
)
2
);
CHECK_EQ
(
in_seq
.
getSequenceId
s
().
shape
().
ndims
(),
(
size_t
)
1
);
CHECK_EQ
(
in_seq
.
getSequenceId
().
shape
().
ndims
(),
(
size_t
)
1
);
CHECK_EQ
(
out_seq
.
shape
().
ndims
(),
(
size_t
)
2
);
CHECK_EQ
(
out_seq
.
getSequenceId
s
().
shape
().
ndims
(),
(
size_t
)
1
);
CHECK_EQ
(
out_seq
.
getSequenceId
().
shape
().
ndims
(),
(
size_t
)
1
);
CHECK_EQ
(
outputs
[
1
].
shape
().
ndims
(),
(
size_t
)
2
);
/// dim of input grad == dim of weight
...
...
@@ -258,7 +257,7 @@ public:
CHECK_EQ
(
out_seq
.
getArgType
(),
ADD_TO
);
CHECK_EQ
(
outputs
[
1
].
getArgType
(),
ADD_TO
);
const
auto
seq_vec
=
in_seq
.
getSequenceId
s
().
vector
<
int
,
Device
>
();
const
auto
seq_vec
=
in_seq
.
getSequenceId
().
vector
<
int
,
Device
>
();
const
auto
out_grad_mat
=
in_seq
.
matrix
<
Device
>
();
auto
in_grad_mat
=
!
out_seq
.
data
()
?
typename
Tensor
<
real
,
Device
>::
Matrix
(
nullptr
,
0
,
0
)
...
...
@@ -312,10 +311,10 @@ public:
const
auto
in_seq
=
dynamic_cast
<
const
SequenceArg
&>
(
inputs
[
0
]);
const
auto
out_seq
=
dynamic_cast
<
const
SequenceArg
&>
(
outputs
[
0
]);
CHECK
(
in_seq
.
data
()
&&
out_seq
.
data
()
&&
in_seq
.
getSequenceId
s
().
data
());
CHECK
(
in_seq
.
data
()
&&
out_seq
.
data
()
&&
in_seq
.
getSequenceId
().
data
());
CHECK_EQ
(
static_cast
<
int
>
(
out_seq
.
shape
().
ndims
()),
2
);
CHECK_EQ
(
static_cast
<
int
>
(
in_seq
.
shape
().
ndims
()),
2
);
CHECK_EQ
(
static_cast
<
int
>
(
in_seq
.
getSequenceId
s
().
shape
().
ndims
()),
1
);
CHECK_EQ
(
static_cast
<
int
>
(
in_seq
.
getSequenceId
().
shape
().
ndims
()),
1
);
/// output layer grad dim == input layer grad dim * context_length_
CHECK_EQ
(
in_seq
.
shape
().
ndims
(),
out_seq
.
shape
().
ndims
()
*
context_length_
);
/// input and output has the same batch_size
...
...
@@ -323,7 +322,7 @@ public:
CHECK_EQ
(
outputs
[
0
].
getArgType
(),
ASSIGN_TO
);
const
auto
out_grad_mat
=
in_seq
.
matrix
<
Device
>
();
const
auto
seq_vec
=
in_seq
.
getSequenceId
s
().
vector
<
int
,
Device
>
();
const
auto
seq_vec
=
in_seq
.
getSequenceId
().
vector
<
int
,
Device
>
();
auto
in_grad_mat
=
out_seq
.
matrix
<
Device
>
();
ContextProjectionBackwardData
<
Device
>
(
...
...
@@ -360,16 +359,16 @@ public:
CHECK_EQ
(
1
,
static_cast
<
int
>
(
outputs
.
size
()));
CHECK
(
inputs
[
0
].
isSequenceArg
())
<<
"SequenceArg required here"
;
const
auto
in_seq
=
dynamic_cast
<
const
SequenceArg
&>
(
inputs
[
0
]);
CHECK
(
in_seq
.
data
()
&&
in_seq
.
getSequenceId
s
().
data
()
&&
outputs
[
0
].
data
());
CHECK
(
in_seq
.
data
()
&&
in_seq
.
getSequenceId
().
data
()
&&
outputs
[
0
].
data
());
CHECK_EQ
(
static_cast
<
int
>
(
outputs
[
0
].
shape
().
ndims
()),
2
);
CHECK_EQ
(
static_cast
<
int
>
(
in_seq
.
shape
().
ndims
()),
2
);
CHECK_EQ
(
static_cast
<
int
>
(
in_seq
.
getSequenceId
s
().
shape
().
ndims
()),
1
);
CHECK_EQ
(
static_cast
<
int
>
(
in_seq
.
getSequenceId
().
shape
().
ndims
()),
1
);
CHECK_EQ
(
in_seq
.
shape
()[
0
],
outputs
[
0
].
shape
()[
0
]);
/// output layer grad dim == weight dim * context_length_
CHECK_EQ
(
in_seq
.
shape
()[
1
],
outputs
[
0
].
shape
()[
1
]
*
context_length_
);
CHECK_EQ
(
outputs
[
0
].
getArgType
(),
ADD_TO
);
const
auto
seq_vec
=
in_seq
.
getSequenceId
s
().
vector
<
int
,
Device
>
();
const
auto
seq_vec
=
in_seq
.
getSequenceId
().
vector
<
int
,
Device
>
();
const
auto
out_grad_mat
=
in_seq
.
matrix
<
Device
>
();
auto
w_grad_mat
=
outputs
[
0
].
matrix
<
Device
>
();
ContextProjectionBackwardWeight
<
Device
>
(
out_grad_mat
,
...
...
paddle/function/CrossMapNormalOp.cpp
浏览文件 @
297f06c6
...
...
@@ -188,8 +188,13 @@ public:
CHECK
(
inputs
[
0
].
shape
()
==
inputs
[
3
].
shape
());
CHECK
(
inputs
[
0
].
shape
()
==
outputs
[
0
].
shape
());
// TODO(hedaoyuan): need support ASSIGN_TO mode.
CHECK_EQ
(
outputs
[
0
].
getArgType
(),
ADD_TO
);
if
(
outputs
[
0
].
getArgType
()
!=
ADD_TO
)
{
// Currently, some algorithm implementations are ASSIGN_TO mode,
// if need to support the ADD_TO calculation, need to clear the output.
typename
Tensor
<
real
,
Device
>::
Vector
tmp
(
outputs
[
0
].
shape
().
getElements
(),
outputs
[
0
].
data
<
real
>
());
tmp
.
zero
();
}
size_t
samples
=
inputs
[
0
].
shape
()[
0
];
size_t
channels
=
inputs
[
0
].
shape
()[
1
];
...
...
paddle/function/CrossMapNormalOpTest.cpp
浏览文件 @
297f06c6
...
...
@@ -27,15 +27,19 @@ TEST(CrossMapNormal, real) {
<<
" imgSizeH="
<<
imgSizeH
<<
" imgSizeW="
<<
imgSizeW
<<
" size="
<<
size
;
FunctionCompare
compare
(
"CrossMapNormal"
,
// init Test object
FunctionCompare
test
(
"CrossMapNormal"
,
FuncConfig
()
.
set
(
"size"
,
size
)
.
set
(
"scale"
,
(
real
)
1.5
)
.
set
(
"pow"
,
(
real
)
0.5
));
Dims
dims
{
numSamples
,
channels
,
imgSizeH
,
imgSizeW
};
compare
.
cmpWithArg
({
Tensor
(
nullptr
,
dims
)},
{
Tensor
(
nullptr
,
dims
),
Tensor
(
nullptr
,
dims
)},
{});
// prepare input arguments
TensorShape
shape
{
numSamples
,
channels
,
imgSizeH
,
imgSizeW
};
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
shape
));
test
.
addOutputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
shape
));
test
.
addOutputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
shape
));
// run Function
test
.
run
();
}
}
}
...
...
@@ -53,18 +57,19 @@ TEST(CrossMapNormalGrad, real) {
<<
" imgSizeH="
<<
imgSizeH
<<
" imgSizeW="
<<
imgSizeW
<<
" size="
<<
size
;
FunctionCompare
compare
(
"CrossMapNormalGrad"
,
FunctionCompare
test
(
"CrossMapNormalGrad"
,
FuncConfig
()
.
set
(
"size"
,
size
)
.
set
(
"scale"
,
(
real
)
1.5
)
.
set
(
"pow"
,
(
real
)
0.5
));
Dims
dims
{
numSamples
,
channels
,
imgSizeH
,
imgSizeW
};
compare
.
cmpWithArg
({
Tensor
(
nullptr
,
dims
),
Tensor
(
nullptr
,
dims
),
Tensor
(
nullptr
,
dims
),
Tensor
(
nullptr
,
dims
)},
{
Tensor
(
nullptr
,
dims
)},
{});
TensorShape
shape
{
numSamples
,
channels
,
imgSizeH
,
imgSizeW
};
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
shape
));
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
shape
));
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
shape
));
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
shape
));
test
.
addOutputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
shape
));
// run Function
test
.
run
();
}
}
}
...
...
paddle/function/Function.cpp
浏览文件 @
297f06c6
...
...
@@ -79,21 +79,25 @@ FuncConfig& FuncConfig::set<bool>(const std::string& key, bool v) {
void
BufferArgs
::
addArg
(
const
Matrix
&
arg
,
const
TensorShape
&
shape
,
ArgType
argType
)
{
args_
.
push_back
(
std
::
make_shared
<
BufferArg
>
(
arg
,
shape
,
argType
));
_args_
.
push_back
(
new
BufferArg
(
arg
,
shape
,
argType
));
addArg
(
*
_args_
.
back
());
}
void
BufferArgs
::
addArg
(
const
CpuSparseMatrix
&
arg
,
ArgType
argType
)
{
args_
.
push_back
(
std
::
make_shared
<
SparseMatrixArg
>
(
arg
,
argType
));
_args_
.
push_back
(
new
SparseMatrixArg
(
arg
,
argType
));
addArg
(
*
_args_
.
back
());
}
void
BufferArgs
::
addArg
(
const
GpuSparseMatrix
&
arg
,
ArgType
argType
)
{
args_
.
push_back
(
std
::
make_shared
<
SparseMatrixArg
>
(
arg
,
argType
));
_args_
.
push_back
(
new
SparseMatrixArg
(
arg
,
argType
));
addArg
(
*
_args_
.
back
());
}
void
BufferArgs
::
addArg
(
const
Matrix
&
matrix
,
const
IVector
&
vector
,
ArgType
argType
)
{
args_
.
push_back
(
std
::
make_shared
<
SequenceArg
>
(
matrix
,
vector
,
argType
));
_args_
.
push_back
(
new
SequenceArg
(
matrix
,
vector
,
argType
));
addArg
(
*
_args_
.
back
());
}
ClassRegistrar
<
FunctionBase
>
FunctionBase
::
funcRegistrar_
;
...
...
paddle/function/Function.h
浏览文件 @
297f06c6
...
...
@@ -50,19 +50,44 @@ protected:
* Argument type for Function::calc().
* A BufferArgs contains a set of BufferArg,
* because Function can have multiple inputs and outputs.
*
* addArg() with Matix object used to adapt Layer Argument.
* Will create a BufferArg object in addArg(),
* and free in destructor of BufferArgs.
*
* addArg() with BufferArg object, just save BufferArg object address,
* and the caller needs to guarantee the validity of the BufferArg object
* in the BufferArgs life time.
*/
class
BufferArgs
{
public:
BufferArgs
()
{}
~
BufferArgs
()
{
for
(
auto
arg
:
_args_
)
{
delete
arg
;
}
}
size_t
size
()
const
{
return
args_
.
size
();
}
// add argument into BufferArgs
// Tensor can be Matrix, Vector, IVector.
// For inputs, do not need argType.
// For outputs, the argType needs to be specified as ASSIGN_TO or ADD_TO.
template
<
typename
Tensor
>
void
addArg
(
const
Tensor
&
arg
,
ArgType
argType
=
UNSPECIFIED
)
{
args_
.
push_back
(
std
::
make_shared
<
BufferArg
>
(
arg
,
argType
));
void
addArg
(
const
Matrix
&
arg
,
ArgType
argType
=
UNSPECIFIED
)
{
_args_
.
push_back
(
new
BufferArg
(
arg
,
argType
));
addArg
(
*
_args_
.
back
());
}
void
addArg
(
const
Vector
&
arg
,
ArgType
argType
=
UNSPECIFIED
)
{
_args_
.
push_back
(
new
BufferArg
(
arg
,
argType
));
addArg
(
*
_args_
.
back
());
}
void
addArg
(
const
IVector
&
arg
,
ArgType
argType
=
UNSPECIFIED
)
{
_args_
.
push_back
(
new
BufferArg
(
arg
,
argType
));
addArg
(
*
_args_
.
back
());
}
// Add arg into BufferArgs and reshape the arg.
...
...
@@ -87,14 +112,27 @@ public:
return
*
args_
[
num
];
}
void
addArg
(
BufferArg
&
arg
)
{
args_
.
push_back
(
&
arg
);
}
void
addArg
(
SequenceIdArg
&
arg
)
{
args_
.
push_back
(
&
arg
);
}
void
addArg
(
SequenceArg
&
arg
)
{
args_
.
push_back
(
&
arg
);
}
void
addArg
(
SparseMatrixArg
&
arg
)
{
args_
.
push_back
(
&
arg
);
}
private:
std
::
vector
<
BufferArgPtr
>
args_
;
std
::
vector
<
BufferArg
*>
args_
;
// The BufferArg object is constructed and freed by BufferArgs.
std
::
vector
<
BufferArg
*>
_args_
;
};
/**
* \brief Base class for Function.
* The basic Function implementation requires override init and calc interfaces.
*
* The caller needs to ensure the validity of the arguments
* during Function execution.
*
* Function inputs are readonly, Function outputs have two modes: ASSIGN_TO
* and ADD_TO.
* If output.getArgType() == ASSIGN_TO, this is assign mode, and the calculation
...
...
paddle/function/FunctionTest.cpp
浏览文件 @
297f06c6
...
...
@@ -14,6 +14,7 @@ limitations under the License. */
#include "Function.h"
#include <gtest/gtest.h>
#include "paddle/math/SparseMatrix.h"
namespace
paddle
{
...
...
@@ -56,4 +57,110 @@ TEST(Function, BufferArgs) {
Function
<
DEVICE_TYPE_GPU
>
(
gpuArgments
);
}
/**
* Some tests case are used to check the consistency between the BufferArg type
* argument received by Function and the original type argument.
*
* Use Case:
* TEST() {
* Matrix matrix(...);
* CheckBufferArg lambda = [=](const BufferArg& arg) {
* // check matrix and arg are equivalent
* EXPECT_EQ(matrix, arg);
* }
*
* BufferArgs argments{matrix...};
* std::vector<CheckBufferArg> checkFunc{lambda...};
* testBufferArgs(argments, checkFunc);
* }
*/
typedef
std
::
function
<
void
(
const
BufferArg
&
)
>
CheckBufferArg
;
void
testBufferArgs
(
const
BufferArgs
&
inputs
,
const
std
::
vector
<
CheckBufferArg
>&
check
)
{
EXPECT_EQ
(
inputs
.
size
(),
check
.
size
());
for
(
size_t
i
=
0
;
i
<
inputs
.
size
();
i
++
)
{
check
[
i
](
inputs
[
i
]);
}
}
void
testBufferArgs
(
const
BufferArgs
&
inputs
,
const
CheckBufferArg
&
check
)
{
EXPECT_EQ
(
inputs
.
size
(),
1
);
check
(
inputs
[
0
]);
}
TEST
(
Arguments
,
Matrix
)
{
MatrixPtr
matrix
=
Matrix
::
create
(
100
,
200
);
CheckBufferArg
check
=
[
=
](
const
BufferArg
&
arg
)
{
EXPECT_EQ
(
arg
.
shape
().
ndims
(),
2
);
EXPECT_EQ
(
arg
.
shape
()[
0
],
100
);
EXPECT_EQ
(
arg
.
shape
()[
1
],
200
);
EXPECT_EQ
(
arg
.
data
(),
matrix
->
getData
());
EXPECT_EQ
(
arg
.
matrix
<
DEVICE_TYPE_CPU
>
().
getHeight
(),
matrix
->
getHeight
());
EXPECT_EQ
(
arg
.
matrix
<
DEVICE_TYPE_CPU
>
().
getWidth
(),
matrix
->
getWidth
());
EXPECT_EQ
(
arg
.
matrix
<
DEVICE_TYPE_CPU
>
().
getData
(),
matrix
->
getData
());
};
BufferArgs
argments
;
argments
.
addArg
(
*
matrix
);
std
::
vector
<
CheckBufferArg
>
checkFunc
;
checkFunc
.
push_back
(
check
);
testBufferArgs
(
argments
,
checkFunc
);
}
TEST
(
Arguments
,
Vector
)
{
VectorPtr
vector
=
Vector
::
create
(
100
,
false
);
CheckBufferArg
check
=
[
=
](
const
BufferArg
&
arg
)
{
EXPECT_EQ
(
arg
.
shape
().
ndims
(),
1
);
EXPECT_EQ
(
arg
.
shape
()[
0
],
100
);
EXPECT_EQ
(
arg
.
data
(),
vector
->
getData
());
CpuVector
inVector
=
arg
.
vector
<
real
,
DEVICE_TYPE_CPU
>
();
EXPECT_EQ
(
inVector
.
getSize
(),
vector
->
getSize
());
EXPECT_EQ
(
inVector
.
getData
(),
vector
->
getData
());
};
BufferArgs
argments
;
argments
.
addArg
(
*
vector
);
std
::
vector
<
CheckBufferArg
>
checkFunc
;
checkFunc
.
push_back
(
check
);
testBufferArgs
(
argments
,
checkFunc
);
}
TEST
(
Arguments
,
CpuSparseMatrix
)
{
CpuSparseMatrix
sparse
(
200
,
300
,
50
);
CheckBufferArg
check
=
[
=
](
const
BufferArg
&
arg
)
{
EXPECT_EQ
(
arg
.
shape
().
ndims
(),
2
);
EXPECT_EQ
(
arg
.
shape
()[
0
],
200
);
EXPECT_EQ
(
arg
.
shape
()[
1
],
300
);
EXPECT_EQ
(
arg
.
data
(),
sparse
.
getData
());
// CHECK_EQ(arg.sparse().nnz(), 50);
// CHECK_EQ(arg.sparse().dataFormat(), SPARSE_CSR_FORMAT);
// CHECK_EQ(arg.sparse().dataType(), SPARSE_FLOAT_VALUE);
EXPECT_EQ
(
arg
.
sparse
().
getRowBuf
(),
sparse
.
getRows
());
EXPECT_EQ
(
arg
.
sparse
().
getColBuf
(),
sparse
.
getCols
());
};
BufferArgs
argments
;
argments
.
addArg
(
sparse
);
std
::
vector
<
CheckBufferArg
>
checkFunc
;
checkFunc
.
push_back
(
check
);
testBufferArgs
(
argments
,
checkFunc
);
}
TEST
(
Arguments
,
BufferArg
)
{
BufferArg
arg
(
nullptr
,
VALUE_TYPE_FLOAT
,
{
1
,
2
,
3
});
CheckBufferArg
check
=
[
=
](
const
BufferArg
&
arg
)
{
EXPECT_EQ
(
arg
.
shape
().
ndims
(),
3
);
EXPECT_EQ
(
arg
.
shape
()[
0
],
1
);
EXPECT_EQ
(
arg
.
shape
()[
1
],
2
);
EXPECT_EQ
(
arg
.
shape
()[
2
],
3
);
};
BufferArgs
argments
;
argments
.
addArg
(
arg
);
testBufferArgs
(
argments
,
check
);
}
}
// namespace paddle
paddle/function/FunctionTest.h
浏览文件 @
297f06c6
...
...
@@ -15,57 +15,186 @@ limitations under the License. */
#include "Function.h"
#include "paddle/math/Vector.h"
#include "paddle/math/tests/TensorCheck.h"
#include "paddle/testing/TestUtil.h"
namespace
paddle
{
typedef
std
::
shared_ptr
<
BufferArg
>
BufferArgPtr
;
/**
* \brief A class for comparing CPU and GPU implementations of Function.
*
*
* Use case:
* // Initializes a test object, the corresponding cpu and gpu Function
* // are constructed according to FunctionName and FuncConfig.
* FunctionCompare test(FunctionName, FuncConfig);
* // Prepare inputs and outputs arguments.
* // Here the input and output can not contain real data,
* // only contains the argument type and shape.
* test.addInputs(input1);
* test.addInputs(input2);
* test.addOutputs(output1);
* test.addOutputs(output2);
* // Run.
* // Will according to the type and shape of arguments(inputs_/outputs_),
* // automatic initialization cpu and gpu function required arguments
* // (cpuInputs_/cpuOutputs_/gpuInputs_/gpuOutputs_).
* // Call the CPU and GPU Function calculation results.
* // Compares CPU and GPU calculation results for consistency.
* test.run();
*/
class
FunctionCompare
{
public:
FunctionCompare
(
const
std
::
string
&
name
,
const
FuncConfig
&
config
)
:
cpu
(
FunctionBase
::
funcRegistrar_
.
createByType
(
name
+
"-CPU"
)),
gpu
(
FunctionBase
::
funcRegistrar_
.
createByType
(
name
+
"-GPU"
))
{
cpu
->
init
(
config
);
gpu
->
init
(
config
);
:
cpu
Func_
(
FunctionBase
::
funcRegistrar_
.
createByType
(
name
+
"-CPU"
)),
gpu
Func_
(
FunctionBase
::
funcRegistrar_
.
createByType
(
name
+
"-GPU"
))
{
cpu
Func_
->
init
(
config
);
gpu
Func_
->
init
(
config
);
}
void
cmpWithArg
(
const
BufferArgs
&
inputs
,
const
BufferArgs
&
outputs
,
const
BufferArgs
&
inouts
)
{
// init cpu and gpu arguments
auto
initArgs
=
[
=
](
BufferArgs
&
cpuArgs
,
BufferArgs
&
gpuArgs
,
const
BufferArgs
&
inArgs
)
{
/// leave it empty to pass the compile of ContextProjectionTest
/// Daoyuan is working on FunctionTest
/// and I will further merge with it
};
initArgs
(
cpuInputs
,
gpuInputs
,
inputs
);
initArgs
(
cpuOutputs
,
gpuOutputs
,
outputs
);
~
FunctionCompare
()
{}
// input need only contains shape, do not contains data.
void
addInputs
(
const
BufferArg
&
input
)
{
size_t
size
=
input
.
shape
().
getElements
()
*
sizeOfValuType
(
input
.
valueType
());
cpuMemory_
.
emplace_back
(
std
::
make_shared
<
CpuMemoryHandle
>
(
size
));
gpuMemory_
.
emplace_back
(
std
::
make_shared
<
GpuMemoryHandle
>
(
size
));
cpuInputs_
.
emplace_back
(
std
::
make_shared
<
BufferArg
>
(
cpuMemory_
.
back
()
->
getBuf
(),
input
.
valueType
(),
input
.
shape
()));
gpuInputs_
.
emplace_back
(
std
::
make_shared
<
BufferArg
>
(
gpuMemory_
.
back
()
->
getBuf
(),
input
.
valueType
(),
input
.
shape
()));
}
// output need only contains shape, do not contains data.
void
addOutputs
(
const
BufferArg
&
output
)
{
size_t
size
=
output
.
shape
().
getElements
()
*
sizeOfValuType
(
output
.
valueType
());
cpuMemory_
.
emplace_back
(
std
::
make_shared
<
CpuMemoryHandle
>
(
size
));
gpuMemory_
.
emplace_back
(
std
::
make_shared
<
GpuMemoryHandle
>
(
size
));
cpuOutputs_
.
emplace_back
(
std
::
make_shared
<
BufferArg
>
(
cpuMemory_
.
back
()
->
getBuf
(),
output
.
valueType
(),
output
.
shape
(),
ASSIGN_TO
));
gpuOutputs_
.
emplace_back
(
std
::
make_shared
<
BufferArg
>
(
gpuMemory_
.
back
()
->
getBuf
(),
output
.
valueType
(),
output
.
shape
(),
ASSIGN_TO
));
}
void
addInputs
(
const
SequenceArg
&
input
)
{
size_t
batchSize
=
input
.
shape
()[
0
];
size_t
numSeqs
=
batchSize
/
10
+
1
;
size_t
sizeId
=
(
numSeqs
+
1
)
*
sizeOfValuType
(
VALUE_TYPE_INT32
);
cpuMemory_
.
emplace_back
(
std
::
make_shared
<
CpuMemoryHandle
>
(
sizeId
));
gpuMemory_
.
emplace_back
(
std
::
make_shared
<
GpuMemoryHandle
>
(
sizeId
));
TensorShape
seqsId
({
numSeqs
+
1
});
// void* cpuBuffer = cpuMemory_.back()->getBuf();
// void* gpuBuffer = gpuMemory_.back()->getBuf();
size_t
size
=
input
.
shape
().
getElements
()
*
sizeOfValuType
(
input
.
valueType
());
cpuMemory_
.
emplace_back
(
std
::
make_shared
<
CpuMemoryHandle
>
(
size
));
gpuMemory_
.
emplace_back
(
std
::
make_shared
<
GpuMemoryHandle
>
(
size
));
// TODO: need be implemented.
}
void
run
()
{
// prepare cpu/gpu arguments
initInputs
();
// function calculate
cpu
->
calc
(
cpuInputs
,
cpuOutputs
);
gpu
->
calc
(
gpuInputs
,
gpuOutputs
);
auto
callFunction
=
[](
FunctionBase
*
function
,
std
::
vector
<
BufferArgPtr
>&
inputs
,
std
::
vector
<
BufferArgPtr
>&
outputs
)
{
BufferArgs
inArgs
;
BufferArgs
outArgs
;
for
(
auto
arg
:
inputs
)
{
inArgs
.
addArg
(
*
arg
);
}
for
(
auto
arg
:
outputs
)
{
outArgs
.
addArg
(
*
arg
);
}
function
->
calc
(
inArgs
,
outArgs
);
};
callFunction
(
cpuFunc_
.
get
(),
cpuInputs_
,
cpuOutputs_
);
callFunction
(
gpuFunc_
.
get
(),
gpuInputs_
,
gpuOutputs_
);
// check outputs and inouts
auto
checkArgs
=
[
=
](
const
BufferArgs
&
cpuArgs
,
const
BufferArgs
&
gpuArgs
)
{
/// leave it open
};
checkArgs
(
cpuOutputs
,
gpuOutputs
);
compareOutputs
();
}
std
::
shared_ptr
<
FunctionBase
>
getCpuFunction
()
const
{
return
cpu
;
}
std
::
shared_ptr
<
FunctionBase
>
getCpuFunction
()
const
{
return
cpuFunc_
;
}
std
::
shared_ptr
<
FunctionBase
>
getGpuFunction
()
const
{
return
gpuFunc_
;
}
protected:
void
initInputs
()
{
for
(
size_t
i
=
0
;
i
<
cpuInputs_
.
size
();
i
++
)
{
initArg
(
*
cpuInputs_
[
i
]);
// TODO: Need a BufferCopy used to copy from one BufferArg to another.
CpuVector
cpuVector
(
cpuInputs_
[
i
]
->
shape
().
getElements
(),
(
real
*
)
cpuInputs_
[
i
]
->
data
());
GpuVector
gpuVector
(
gpuInputs_
[
i
]
->
shape
().
getElements
(),
(
real
*
)
gpuInputs_
[
i
]
->
data
());
gpuVector
.
copyFrom
(
cpuVector
);
}
}
std
::
shared_ptr
<
FunctionBase
>
getGpuFunction
()
const
{
return
gpu
;
}
void
compareOutputs
()
{
for
(
size_t
i
=
0
;
i
<
cpuOutputs_
.
size
();
i
++
)
{
// TODO, Need a BufferCheck used to compare the two buffers.
auto
cpu
=
cpuOutputs_
[
i
];
auto
gpu
=
gpuOutputs_
[
i
];
CpuVector
cpuVector
(
cpu
->
shape
().
getElements
(),
(
real
*
)
cpu
->
data
());
GpuVector
gpuVector
(
cpu
->
shape
().
getElements
(),
(
real
*
)
gpu
->
data
());
autotest
::
TensorCheckErr
(
cpuVector
,
gpuVector
);
}
}
// only init cpu argument, gpu argument copy from cpu argument.
void
initArg
(
BufferArg
&
arg
)
{
CpuVector
vector
(
arg
.
shape
().
getElements
(),
(
real
*
)
arg
.
data
());
vector
.
uniform
(
0.001
,
1
);
}
void
initArg
(
SequenceIdArg
&
arg
,
size_t
batchSize
)
{
size_t
numSeqs
=
arg
.
numSeqs
();
int
*
buf
=
reinterpret_cast
<
int
*>
(
arg
.
data
());
int
pos
=
0
;
size_t
maxLen
=
2
*
batchSize
/
numSeqs
;
for
(
int
i
=
0
;
i
<
(
int
)
numSeqs
;
++
i
)
{
int
len
=
uniformRandom
(
std
::
min
<
int64_t
>
(
maxLen
,
batchSize
-
pos
-
numSeqs
+
i
))
+
1
;
buf
[
i
]
=
pos
;
pos
+=
len
;
VLOG
(
1
)
<<
" len="
<<
len
;
}
buf
[
numSeqs
]
=
batchSize
;
}
protected:
std
::
shared_ptr
<
FunctionBase
>
cpu
;
std
::
shared_ptr
<
FunctionBase
>
gpu
;
std
::
vector
<
CpuMemHandlePtr
>
cpuMemory
;
std
::
vector
<
GpuMemHandlePtr
>
gpuMemory
;
BufferArgs
cpuInputs
;
BufferArgs
cpuOutputs
;
BufferArgs
cpuInouts
;
BufferArgs
gpuInputs
;
BufferArgs
gpuOutputs
;
BufferArgs
gpuInouts
;
std
::
shared_ptr
<
FunctionBase
>
cpuFunc_
;
std
::
shared_ptr
<
FunctionBase
>
gpuFunc_
;
std
::
vector
<
CpuMemHandlePtr
>
cpuMemory_
;
std
::
vector
<
GpuMemHandlePtr
>
gpuMemory_
;
std
::
vector
<
BufferArgPtr
>
cpuInputs_
;
std
::
vector
<
BufferArgPtr
>
cpuOutputs_
;
std
::
vector
<
BufferArgPtr
>
gpuInputs_
;
std
::
vector
<
BufferArgPtr
>
gpuOutputs_
;
};
}
// namespace paddle
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录