Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
271532eb
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
271532eb
编写于
4月 11, 2019
作者:
H
heqiaozhi
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix doc
test=develop
上级
bc7b3a61
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
7 addition
and
7 deletion
+7
-7
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+7
-7
未找到文件。
python/paddle/fluid/layers/nn.py
浏览文件 @
271532eb
...
@@ -11070,20 +11070,20 @@ def continuous_value_model(input, cvm, use_cvm=True):
...
@@ -11070,20 +11070,20 @@ def continuous_value_model(input, cvm, use_cvm=True):
**continuous_value_model layers**
**continuous_value_model layers**
continuous value mode
d(cvm). now, it only consider show and click value in ctr
project.
continuous value mode
l(cvm). Now, it only considers show and click value in CTR
project.
We assume that input is a embedding vector with cvm_feature, wh
ich shape is [N * D] (D is 2 + embedding dim)
We assume that input is a embedding vector with cvm_feature, wh
ose shape is [N * D] (D is 2 + embedding dim).
if use_cvm is True,
we
will log(cvm_feature), and output shape is [N * D].
if use_cvm is True,
it
will log(cvm_feature), and output shape is [N * D].
if use_cvm is False,
we
will remove cvm_feature from input, and output shape is [N * (D - 2)].
if use_cvm is False,
it
will remove cvm_feature from input, and output shape is [N * (D - 2)].
This layer accepts a tensor named input which is ID after embedded
and lod level is 1
, cvm is a show_click info.
This layer accepts a tensor named input which is ID after embedded
(lod level is 1)
, cvm is a show_click info.
Args:
Args:
input (Variable): a 2-D LodTensor with shape [N x D], where N is the batch size, D is 2 + the embedding dim. lod level = 1.
input (Variable): a 2-D LodTensor with shape [N x D], where N is the batch size, D is 2 + the embedding dim. lod level = 1.
cvm (Variable): a 2-D Tensor with shape [N x 2], where N is the batch size, 2 is show and click.
cvm (Variable): a 2-D Tensor with shape [N x 2], where N is the batch size, 2 is show and click.
use_cvm (bool): use cvm or not. if use cvm, the output dim is the same as input
use_cvm (bool): use cvm or not. if use cvm, the output dim is the same as input
if don't use cvm, the output dim is input dim - 2(remove show and click)
.
if don't use cvm, the output dim is input dim - 2(remove show and click)
(cvm op is a customized op, which input is a sequence ha
d embedd_with_cvm default, so we need a
op named cvm to decided whever use it or not.)
(cvm op is a customized op, which input is a sequence ha
s embedd_with_cvm default, so we need an
op named cvm to decided whever use it or not.)
Returns:
Returns:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录