diff --git a/configs/rotate/README.md b/configs/rotate/README.md
index 72d52014f066fd7456906b7345d22f87a3b882f4..db3a6b0ddc12e50627f8d42805ede3b1817b2c46 100644
--- a/configs/rotate/README.md
+++ b/configs/rotate/README.md
@@ -15,11 +15,12 @@
| 模型 | mAP | 学习率策略 | 角度表示 | 数据增广 | GPU数目 | 每GPU图片数目 | 模型下载 | 配置文件 |
|:---:|:----:|:---------:|:-----:|:--------:|:-----:|:------------:|:-------:|:------:|
-| [S2ANet](./s2anet/README.md) | 74.0 | 2x | le135 | - | 4 | 2 | [model](https://paddledet.bj.bcebos.com/models/s2anet_alignconv_2x_dota.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/dota/s2anet_alignconv_2x_dota.yml) |
+| [S2ANet](./s2anet/README.md) | 73.84 | 2x | le135 | - | 4 | 2 | [model](https://paddledet.bj.bcebos.com/models/s2anet_alignconv_2x_dota.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/rotate/s2anet/s2anet_alignconv_2x_dota.yml) |
**注意:**
- 如果**GPU卡数**或者**batch size**发生了改变,你需要按照公式 **lrnew = lrdefault * (batch_sizenew * GPU_numbernew) / (batch_sizedefault * GPU_numberdefault)** 调整学习率。
+- 模型库中的模型默认使用单尺度训练单尺度测试。如果数据增广一栏标明MS,意味着使用多尺度训练和多尺度测试。如果数据增广一栏标明RR,意味着使用RandomRotate数据增广进行训练。
## 数据准备
### DOTA数据准备
@@ -36,8 +37,15 @@ ${DOTA_ROOT}
└── labelTxt
```
-DOTA数据集分辨率较高,因此一般在训练和测试之前对图像进行切图,使用单尺度进行切图可以使用以下命令:
+对于有标注的数据,每一张图片会对应一个同名的txt文件,文件中每一行为一个旋转框的标注,其格式如下:
```
+x1 y1 x2 y2 x3 y3 x4 y4 class_name difficult
+```
+
+### 单尺度切图
+DOTA数据集分辨率较高,因此一般在训练和测试之前对图像进行离线切图,使用单尺度进行切图可以使用以下命令:
+``` bash
+# 对于有标注的数据进行切图
python configs/rotate/tools/prepare_data.py \
--input_dirs ${DOTA_ROOT}/train/ ${DOTA_ROOT}/val/ \
--output_dir ${OUTPUT_DIR}/trainval1024/ \
@@ -45,26 +53,39 @@ python configs/rotate/tools/prepare_data.py \
--subsize 1024 \
--gap 200 \
--rates 1.0
+
+# 对于无标注的数据进行切图需要设置--image_only
+python configs/rotate/tools/prepare_data.py \
+ --input_dirs ${DOTA_ROOT}/test/ \
+ --output_dir ${OUTPUT_DIR}/test1024/ \
+ --coco_json_file DOTA_test1024.json \
+ --subsize 1024 \
+ --gap 200 \
+ --rates 1.0 \
+ --image_only
+
```
+
+### 多尺度切图
使用多尺度进行切图可以使用以下命令:
-```
+``` bash
+# 对于有标注的数据进行切图
python configs/rotate/tools/prepare_data.py \
--input_dirs ${DOTA_ROOT}/train/ ${DOTA_ROOT}/val/ \
--output_dir ${OUTPUT_DIR}/trainval/ \
--coco_json_file DOTA_trainval1024.json \
--subsize 1024 \
--gap 500 \
- --rates 0.5 1.0 1.5 \
-```
-对于无标注的数据可以设置`--image_only`进行切图,如下所示:
-```
+ --rates 0.5 1.0 1.5
+
+# 对于无标注的数据进行切图需要设置--image_only
python configs/rotate/tools/prepare_data.py \
--input_dirs ${DOTA_ROOT}/test/ \
--output_dir ${OUTPUT_DIR}/test1024/ \
--coco_json_file DOTA_test1024.json \
--subsize 1024 \
- --gap 200 \
- --rates 1.0 \
+ --gap 500 \
+ --rates 0.5 1.0 1.5 \
--image_only
```
diff --git a/configs/rotate/README_en.md b/configs/rotate/README_en.md
index a91f66a9d61c576070b954b312676aea54a2d4ec..03c4d2cee3ff61dc1001c8adcd81864a597935d2 100644
--- a/configs/rotate/README_en.md
+++ b/configs/rotate/README_en.md
@@ -14,11 +14,12 @@ Rotated object detection is used to detect rectangular bounding boxes with angle
## Model Zoo
| Model | mAP | Lr Scheduler | Angle | Aug | GPU Number | images/GPU | download | config |
|:---:|:----:|:---------:|:-----:|:--------:|:-----:|:------------:|:-------:|:------:|
-| [S2ANet](./s2anet/README.md) | 74.0 | 2x | le135 | - | 4 | 2 | [model](https://paddledet.bj.bcebos.com/models/s2anet_alignconv_2x_dota.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/dota/s2anet_alignconv_2x_dota.yml) |
+| [S2ANet](./s2anet/README_en.md) | 73.84 | 2x | le135 | - | 4 | 2 | [model](https://paddledet.bj.bcebos.com/models/s2anet_alignconv_2x_dota.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/rotate/s2anet/s2anet_alignconv_2x_dota.yml) |
**Notes:**
- if **GPU number** or **mini-batch size** is changed, **learning rate** should be adjusted according to the formula **lrnew = lrdefault * (batch_sizenew * GPU_numbernew) / (batch_sizedefault * GPU_numberdefault)**.
+- Models in model zoo is trained and tested with single scale by default. If `MS` is indicated in the data augmentation column, it means that multi-scale training and multi-scale testing are used. If `RR` is indicated in the data augmentation column, it means that RandomRotate data augmentation is used for training.
## Data Preparation
### DOTA Dataset preparation
@@ -35,8 +36,16 @@ ${DOTA_ROOT}
└── labelTxt
```
-The image resolution of DOTA dataset is relatively high, so we usually slice the images before training and testing. To slice the images with a single scale, you can use the command below
+For labeled data, each image corresponds to a txt file with the same name, and each row in the txt file represent a rotated bouding box. The format is as follows:
+
+```
+x1 y1 x2 y2 x3 y3 x4 y4 class_name difficult
```
+
+### Slicing data with single scale
+The image resolution of DOTA dataset is relatively high, so we usually slice the images before training and testing. To slice the images with a single scale, you can use the command below
+``` bash
+# slicing labeled data
python configs/rotate/tools/prepare_data.py \
--input_dirs ${DOTA_ROOT}/train/ ${DOTA_ROOT}/val/ \
--output_dir ${OUTPUT_DIR}/trainval1024/ \
@@ -44,26 +53,37 @@ python configs/rotate/tools/prepare_data.py \
--subsize 1024 \
--gap 200 \
--rates 1.0
+# slicing unlabeled data by setting --image_only
+python configs/rotate/tools/prepare_data.py \
+ --input_dirs ${DOTA_ROOT}/test/ \
+ --output_dir ${OUTPUT_DIR}/test1024/ \
+ --coco_json_file DOTA_test1024.json \
+ --subsize 1024 \
+ --gap 200 \
+ --rates 1.0 \
+ --image_only
+
```
+
+### Slicing data with multi scale
To slice the images with multiple scales, you can use the command below
-```
+``` bash
+# slicing labeled data
python configs/rotate/tools/prepare_data.py \
--input_dirs ${DOTA_ROOT}/train/ ${DOTA_ROOT}/val/ \
--output_dir ${OUTPUT_DIR}/trainval/ \
--coco_json_file DOTA_trainval1024.json \
--subsize 1024 \
--gap 500 \
- --rates 0.5 1.0 1.5 \
-```
-For data without annotations, you should set `--image_only` as follows
-```
+ --rates 0.5 1.0 1.5
+# slicing unlabeled data by setting --image_only
python configs/rotate/tools/prepare_data.py \
--input_dirs ${DOTA_ROOT}/test/ \
--output_dir ${OUTPUT_DIR}/test1024/ \
--coco_json_file DOTA_test1024.json \
--subsize 1024 \
- --gap 200 \
- --rates 1.0 \
+ --gap 500 \
+ --rates 0.5 1.0 1.5 \
--image_only
```
diff --git a/configs/rotate/s2anet/README.md b/configs/rotate/s2anet/README.md
index c76364d8e2b8158638bdca393f4f4a8864759c2b..faabe96b2319fc42615a9e257681209ffb731abd 100644
--- a/configs/rotate/s2anet/README.md
+++ b/configs/rotate/s2anet/README.md
@@ -1,16 +1,35 @@
-# S2ANet模型
+简体中文 | [English](README_en.md)
+
+# S2ANet
## 内容
- [简介](#简介)
-- [开始训练](#开始训练)
- [模型库](#模型库)
+- [使用说明](#使用说明)
- [预测部署](#预测部署)
+- [引用](#引用)
## 简介
-[S2ANet](https://arxiv.org/pdf/2008.09397.pdf)是用于检测旋转框的模型,在DOTA 1.0数据集上单尺度训练能达到74.0的mAP.
+[S2ANet](https://arxiv.org/pdf/2008.09397.pdf)是用于检测旋转框的模型.
+
+## 模型库
+
+| 模型 | Conv类型 | mAP | 学习率策略 | 角度表示 | 数据增广 | GPU数目 | 每GPU图片数目 | 模型下载 | 配置文件 |
+|:---:|:------:|:----:|:---------:|:-----:|:--------:|:-----:|:------------:|:-------:|:------:|
+| S2ANet | Conv | 71.45 | 2x | le135 | - | 4 | 2 | [model](https://paddledet.bj.bcebos.com/models/s2anet_conv_2x_dota.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/rotate/s2anet/s2anet_conv_2x_dota.yml) |
+| S2ANet | AlignConv | 73.84 | 2x | le135 | - | 4 | 2 | [model](https://paddledet.bj.bcebos.com/models/s2anet_alignconv_2x_dota.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/rotate/s2anet/s2anet_alignconv_2x_dota.yml) |
+
+**注意:**
+
+- 如果**GPU卡数**或者**batch size**发生了改变,你需要按照公式 **lrnew = lrdefault * (batch_sizenew * GPU_numbernew) / (batch_sizedefault * GPU_numberdefault)** 调整学习率。
+- 模型库中的模型默认使用单尺度训练单尺度测试。如果数据增广一栏标明MS,意味着使用多尺度训练和多尺度测试。如果数据增广一栏标明RR,意味着使用RandomRotate数据增广进行训练。
+- 这里使用`multiclass_nms`,与原作者使用nms略有不同。
+
+
+## 使用说明
-## 开始训练
+参考[数据准备](../README.md#数据准备)准备数据。
### 1. 训练
@@ -22,13 +41,13 @@ python tools/train.py -c configs/rotate/s2anet/s2anet_1x_spine.yml
GPU多卡训练
```bash
-export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
-python -m paddle.distributed.launch --gpus 0,1,2,3,4,5,6,7 tools/train.py -c configs/rotate/s2anet/s2anet_1x_spine.yml
+export CUDA_VISIBLE_DEVICES=0,1,2,3
+python -m paddle.distributed.launch --gpus 0,1,2,3 tools/train.py -c configs/rotate/s2anet/s2anet_1x_spine.yml
```
可以通过`--eval`开启边训练边测试。
-### 3. 评估
+### 2. 评估
```bash
python tools/eval.py -c configs/rotate/s2anet/s2anet_1x_spine.yml -o weights=output/s2anet_1x_spine/model_final.pdparams
@@ -36,7 +55,7 @@ python tools/eval.py -c configs/rotate/s2anet/s2anet_1x_spine.yml -o weights=out
python tools/eval.py -c configs/rotate/s2anet/s2anet_1x_spine.yml -o weights=https://paddledet.bj.bcebos.com/models/s2anet_1x_spine.pdparams
```
-### 4. 预测
+### 3. 预测
执行如下命令,会将图像预测结果保存到`output`文件夹下。
```bash
python tools/infer.py -c configs/rotate/s2anet/s2anet_1x_spine.yml -o weights=output/s2anet_1x_spine/model_final.pdparams --infer_img=demo/39006.jpg --draw_threshold=0.3
@@ -46,37 +65,26 @@ python tools/infer.py -c configs/rotate/s2anet/s2anet_1x_spine.yml -o weights=ou
python tools/infer.py -c configs/rotate/s2anet/s2anet_1x_spine.yml -o weights=https://paddledet.bj.bcebos.com/models/s2anet_1x_spine.pdparams --infer_img=demo/39006.jpg --draw_threshold=0.3
```
-### 5. DOTA数据评估
+### 4. DOTA数据评估
执行如下命令,会在`output`文件夹下将每个图像预测结果保存到同文件夹名的txt文本中。
```
-python tools/infer.py -c configs/rotate/s2anet/s2anet_alignconv_2x_dota.yml -o weights=./weights/s2anet_alignconv_2x_dota.pdparams --infer_dir=/path/to/test/images --output_dir=output --visualize=False --save_results=True
+python tools/infer.py -c configs/rotate/s2anet/s2anet_alignconv_2x_dota.yml -o weights=https://paddledet.bj.bcebos.com/models/s2anet_alignconv_2x_dota.pdparams --infer_dir=/path/to/test/images --output_dir=output --visualize=False --save_results=True
```
参考[DOTA Task](https://captain-whu.github.io/DOTA/tasks.html), 评估DOTA数据集需要生成一个包含所有检测结果的zip文件,每一类的检测结果储存在一个txt文件中,txt文件中每行格式为:`image_name score x1 y1 x2 y2 x3 y3 x4 y4`。将生成的zip文件提交到[DOTA Evaluation](https://captain-whu.github.io/DOTA/evaluation.html)的Task1进行评估。你可以执行以下命令生成评估文件
```
python configs/rotate/tools/generate_result.py --pred_txt_dir=output/ --output_dir=submit/ --data_type=dota10
+
zip -r submit.zip submit
```
-## 模型库
-
-### S2ANet模型
-
-| 模型 | Conv类型 | mAP | 模型下载 | 配置文件 |
-|:-----------:|:----------:|:--------:| :----------:| :---------: |
-| S2ANet | Conv | 71.42 | [model](https://paddledet.bj.bcebos.com/models/s2anet_conv_2x_dota.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/rotate/s2anet/s2anet_conv_2x_dota.yml) |
-| S2ANet | AlignConv | 74.0 | [model](https://paddledet.bj.bcebos.com/models/s2anet_alignconv_2x_dota.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/rotate/s2anet/s2anet_alignconv_2x_dota.yml) |
-
-**注意:** 这里使用`multiclass_nms`,与原作者使用nms略有不同。
-
-
## 预测部署
Paddle中`multiclass_nms`算子的输入支持四边形输入,因此部署时可以不需要依赖旋转框IOU计算算子。
-部署教程请参考[预测部署](../../deploy/README.md)
+部署教程请参考[预测部署](../../../deploy/README.md)
-## Citations
+## 引用
```
@article{han2021align,
author={J. {Han} and J. {Ding} and J. {Li} and G. -S. {Xia}},
diff --git a/configs/rotate/s2anet/README_en.md b/configs/rotate/s2anet/README_en.md
index 70da7660b8b4aca16cdce5f9f8acc1ab4bc1f17b..9ec48753a445e6eba2223a80d69b0860d379c2ef 100644
--- a/configs/rotate/s2anet/README_en.md
+++ b/configs/rotate/s2anet/README_en.md
@@ -1,26 +1,34 @@
-# S2ANet Model
+English | [简体中文](README.md)
+
+# S2ANet
## Content
-- [S2ANet Model](#s2anet-model)
- - [Content](#content)
- - [Introduction](#introduction)
- - [Start Training](#start-training)
- - [1. Train](#1-train)
- - [2. Evaluation](#2-evaluation)
- - [3. Prediction](#3-prediction)
- - [4. DOTA Data evaluation](#4-dota-data-evaluation)
- - [Model Library](#model-library)
- - [S2ANet Model](#s2anet-model-1)
- - [Predict Deployment](#predict-deployment)
- - [Citations](#citations)
+- [Introduction](#Introduction)
+- [Model Zoo](#Model-Zoo)
+- [Getting Start](#Getting-Start)
+- [Deployment](#Deployment)
+- [Citations](#Citations)
## Introduction
-[S2ANet](https://arxiv.org/pdf/2008.09397.pdf) is used to detect rotated objects and acheives 74.0 mAP on DOTA 1.0 dataset.
+[S2ANet](https://arxiv.org/pdf/2008.09397.pdf) is used to detect rotated objects.
+
+## Model Zoo
+| Model | Conv Type | mAP | Lr Scheduler | Angle | Aug | GPU Number | images/GPU | download | config |
+|:---:|:------:|:----:|:---------:|:-----:|:--------:|:-----:|:------------:|:-------:|:------:|
+| S2ANet | Conv | 71.45 | 2x | le135 | - | 4 | 2 | [model](https://paddledet.bj.bcebos.com/models/s2anet_conv_2x_dota.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/rotate/s2anet/s2anet_conv_2x_dota.yml) |
+| S2ANet | AlignConv | 73.84 | 2x | le135 | - | 4 | 2 | [model](https://paddledet.bj.bcebos.com/models/s2anet_alignconv_2x_dota.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/rotate/s2anet/s2anet_alignconv_2x_dota.yml) |
+
+**Notes:**
+- if **GPU number** or **mini-batch size** is changed, **learning rate** should be adjusted according to the formula **lrnew = lrdefault * (batch_sizenew * GPU_numbernew) / (batch_sizedefault * GPU_numberdefault)**.
+- Models in model zoo is trained and tested with single scale by default. If `MS` is indicated in the data augmentation column, it means that multi-scale training and multi-scale testing are used. If `RR` is indicated in the data augmentation column, it means that RandomRotate data augmentation is used for training.
+- `multiclass_nms` is used here, which is slightly different from the original author's use of NMS.
-## Start Training
+## Getting Start
-### 2. Train
+Refer to [Data-Preparation](../README_en.md#Data-Preparation) to prepare data.
+
+### 1. Train
Single GPU Training
```bash
@@ -30,13 +38,13 @@ python tools/train.py -c configs/rotate/s2anet/s2anet_1x_spine.yml
Multiple GPUs Training
```bash
-export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
-python -m paddle.distributed.launch --gpus 0,1,2,3,4,5,6,7 tools/train.py -c configs/rotate/s2anet/s2anet_1x_spine.yml
+export CUDA_VISIBLE_DEVICES=0,1,2,3
+python -m paddle.distributed.launch --gpus 0,1,2,3 tools/train.py -c configs/rotate/s2anet/s2anet_1x_spine.yml
```
You can use `--eval`to enable train-by-test.
-### 3. Evaluation
+### 2. Evaluation
```bash
python tools/eval.py -c configs/rotate/s2anet/s2anet_1x_spine.yml -o weights=output/s2anet_1x_spine/model_final.pdparams
@@ -44,7 +52,7 @@ python tools/eval.py -c configs/rotate/s2anet/s2anet_1x_spine.yml -o weights=out
python tools/eval.py -c configs/rotate/s2anet/s2anet_1x_spine.yml -o weights=https://paddledet.bj.bcebos.com/models/s2anet_1x_spine.pdparams
```
-### 4. Prediction
+### 3. Prediction
Executing the following command will save the image prediction results to the `output` folder.
```bash
python tools/infer.py -c configs/rotate/s2anet/s2anet_1x_spine.yml -o weights=output/s2anet_1x_spine/model_final.pdparams --infer_img=demo/39006.jpg --draw_threshold=0.3
@@ -54,35 +62,24 @@ Prediction using models that provide training:
python tools/infer.py -c configs/rotate/s2anet/s2anet_1x_spine.yml -o weights=https://paddledet.bj.bcebos.com/models/s2anet_1x_spine.pdparams --infer_img=demo/39006.jpg --draw_threshold=0.3
```
-### 5. DOTA Data evaluation
+### 4. DOTA Data evaluation
Execute the following command, will save each image prediction result in `output` folder txt text with the same folder name.
```
-python tools/infer.py -c configs/rotate/s2anet/s2anet_alignconv_2x_dota.yml -o weights=./weights/s2anet_alignconv_2x_dota.pdparams --infer_dir=/path/to/test/images --output_dir=output --visualize=False --save_results=True
+python tools/infer.py -c configs/rotate/s2anet/s2anet_alignconv_2x_dota.yml -o weights=https://paddledet.bj.bcebos.com/models/s2anet_alignconv_2x_dota.pdparams --infer_dir=/path/to/test/images --output_dir=output --visualize=False --save_results=True
```
Refering to [DOTA Task](https://captain-whu.github.io/DOTA/tasks.html), You need to submit a zip file containing results for all test images for evaluation. The detection results of each category are stored in a txt file, each line of which is in the following format
`image_id score x1 y1 x2 y2 x3 y3 x4 y4`. To evaluate, you should submit the generated zip file to the Task1 of [DOTA Evaluation](https://captain-whu.github.io/DOTA/evaluation.html). You can execute the following command to generate the file
```
python configs/rotate/tools/generate_result.py --pred_txt_dir=output/ --output_dir=submit/ --data_type=dota10
+
zip -r submit.zip submit
```
-## Model Library
-
-### S2ANet Model
-
-| Model | Conv Type | mAP | Model Download | Configuration File |
-|:-----------:|:----------:|:--------:| :----------:| :---------: |
-| S2ANet | Conv | 71.42 | [model](https://paddledet.bj.bcebos.com/models/s2anet_conv_2x_dota.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/rotate/s2anet/s2anet_conv_2x_dota.yml) |
-| S2ANet | AlignConv | 74.0 | [model](https://paddledet.bj.bcebos.com/models/s2anet_alignconv_2x_dota.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/rotate/s2anet/s2anet_alignconv_2x_dota.yml) |
-
-**Attention:** `multiclass_nms` is used here, which is slightly different from the original author's use of NMS.
-
-
-## Predict Deployment
+## Deployment
The inputs of the `multiclass_nms` operator in Paddle support quadrilateral inputs, so deployment can be done without relying on the rotating frame IOU operator.
-Please refer to the deployment tutorial[Predict deployment](../../deploy/README_en.md)
+Please refer to the deployment tutorial[Predict deployment](../../../deploy/README_en.md)
## Citations
diff --git a/configs/rotate/tools/slicebase.py b/configs/rotate/tools/slicebase.py
index 515dd5f8c36d9be3769bcd2050620b976a302840..5514b7e27c7de4047eab750fd6e1e811728a5139 100644
--- a/configs/rotate/tools/slicebase.py
+++ b/configs/rotate/tools/slicebase.py
@@ -222,8 +222,10 @@ class SliceBase(object):
windows = self.get_windows(height, width)
self.slice_image_single(resize_img, windows, output_dir, base_name)
if not self.image_only:
- self.slice_anno_single(info['annotation'], windows, output_dir,
- base_name)
+ annos = info['annotation']
+ for anno in annos:
+ anno['poly'] = list(map(lambda x: rate * x, anno['poly']))
+ self.slice_anno_single(annos, windows, output_dir, base_name)
def check_or_mkdirs(self, path):
if not os.path.exists(path):
diff --git a/test_tipc/configs/dota/s2anet_alignconv_2x_spine.yml b/test_tipc/configs/dota/s2anet_alignconv_2x_spine.yml
index 89f3b5f8aa44be7140f26416b92a7a47b7ec81b7..07a91225ebd9f7663ed4e301ad15b95bd2003ad2 100644
--- a/test_tipc/configs/dota/s2anet_alignconv_2x_spine.yml
+++ b/test_tipc/configs/dota/s2anet_alignconv_2x_spine.yml
@@ -1,9 +1,9 @@
_BASE_: [
'../../../configs/datasets/spine_coco.yml',
'../../../configs/runtime.yml',
- '../../../configs/dota/_base_/s2anet_optimizer_2x.yml',
- '../../../configs/dota/_base_/s2anet.yml',
- '../../../configs/dota/_base_/s2anet_reader.yml',
+ '../../../configs/rotate/s2anet/_base_/s2anet_optimizer_2x.yml',
+ '../../../configs/rotate/s2anet/_base_/s2anet.yml',
+ '../../../configs/rotate/s2anet/_base_/s2anet_reader.yml',
]
pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/ResNet50_vd_ssld_v2_pretrained.pdparams
diff --git a/test_tipc/configs/dota/s2anet_conv_2x_spine.yml b/test_tipc/configs/dota/s2anet_conv_2x_spine.yml
index 746ef0cc90a79e08033c48267f3e3118167fd938..23610b08ab9782f741634597eff28575d3e5dafa 100644
--- a/test_tipc/configs/dota/s2anet_conv_2x_spine.yml
+++ b/test_tipc/configs/dota/s2anet_conv_2x_spine.yml
@@ -1,9 +1,9 @@
_BASE_: [
'../../../configs/datasets/spine_coco.yml',
'../../../configs/runtime.yml',
- '../../../configs/dota/_base_/s2anet_optimizer_2x.yml',
- '../../../configs/dota/_base_/s2anet.yml',
- '../../../configs/dota/_base_/s2anet_reader.yml',
+ '../../../configs/rotate/s2anet/_base_/s2anet_optimizer_2x.yml',
+ '../../../configs/rotate/s2anet/_base_/s2anet.yml',
+ '../../../configs/rotate/s2anet/_base_/s2anet_reader.yml',
]
weights: output/s2anet_conv_1x_dota/model_final
pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/ResNet50_cos_pretrained.pdparams
diff --git a/test_tipc/prepare.sh b/test_tipc/prepare.sh
index adf8d2dbad34d5f6f55cfe4d05e68d56fcc90a23..f006d984e08197e916288f8285940f96f4a07dfd 100644
--- a/test_tipc/prepare.sh
+++ b/test_tipc/prepare.sh
@@ -152,8 +152,8 @@ else
cd ./dataset/wider_face/ && tar -xvf wider_tipc.tar && mv -n wider_tipc/* .
rm -rf wider_tipc/ && cd ../../
# download spine_coco lite data
- wget -nc -P ./dataset/spine_coco/ https://paddledet.bj.bcebos.com/data/tipc/spine_tipc.tar --no-check-certificate
- cd ./dataset/spine_coco/ && tar -xvf spine_tipc.tar && mv -n spine_tipc/* .
+ wget -nc -P ./dataset/spine_coco/ https://paddledet.bj.bcebos.com/data/tipc/spine_coco_tipc.tar --no-check-certificate
+ cd ./dataset/spine_coco/ && tar -xvf spine_coco_tipc.tar && mv -n spine_coco_tipc/* .
rm -rf spine_tipc/ && cd ../../
if [[ ${model_name} =~ "s2anet" ]]; then
cd ./ppdet/ext_op && eval "${python} setup.py install"