From 25fb7c3150808d0608f1ae98b17f04be6ed3600b Mon Sep 17 00:00:00 2001 From: lujun Date: Thu, 13 Jun 2019 10:33:46 +0800 Subject: [PATCH] cherry pick 17904, fix dygraph doc MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit cherry pick pr: 17904, dygraph Layers doc --- python/paddle/fluid/dygraph/nn.py | 241 ++++++++++++++++++++++++++---- 1 file changed, 214 insertions(+), 27 deletions(-) diff --git a/python/paddle/fluid/dygraph/nn.py b/python/paddle/fluid/dygraph/nn.py index 200e2917a..4b86ee9b4 100644 --- a/python/paddle/fluid/dygraph/nn.py +++ b/python/paddle/fluid/dygraph/nn.py @@ -27,8 +27,7 @@ import numpy as np __all__ = [ 'Conv2D', 'Conv3D', 'Pool2D', 'FC', 'BatchNorm', 'Embedding', 'GRUUnit', 'LayerNorm', 'NCE', 'PRelu', 'BilinearTensorProduct', 'Conv2DTranspose', - 'Conv3DTranspose', 'SequenceConv', 'RowConv', 'GroupNorm', 'SpectralNorm', - 'TreeConv' + 'Conv3DTranspose', 'GroupNorm', 'SpectralNorm', 'TreeConv' ] @@ -307,9 +306,6 @@ class Conv3D(layers.Layer): W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1 Args: - input (Variable): The input image with [N, C, D, H, W] format. - num_filters(int): The number of filter. It is as same as the output - image channel. filter_size (int|tuple|None): The filter size. If filter_size is a tuple, it must contain three integers, (filter_size_D, filter_size_H, filter_size_W). Otherwise, the filter will be a square. @@ -355,8 +351,16 @@ class Conv3D(layers.Layer): Examples: .. code-block:: python - data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32') - conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu") + import paddle.fluid as fluid + import numpy + + with fluid.dygraph.guard(): + data = numpy.random.random((5, 3, 12, 32, 32)).astype('float32') + + conv3d = fluid.dygraph.nn.Conv3D( + 'Conv3D', num_filters=2, filter_size=3, act="relu") + ret = conv3d(fluid.dygraph.base.to_variable(data)) + """ def __init__(self, @@ -504,7 +508,6 @@ class Conv3DTranspose(layers.Layer): W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1 Args: - input(Variable): The input image with [N, C, D, H, W] format. num_filters(int): The number of the filter. It is as same as the output image channel. output_size(int|tuple|None): The output image size. If output size is a @@ -555,12 +558,19 @@ class Conv3DTranspose(layers.Layer): Examples: .. code-block:: python - conv3d_transpose = nn.Conv3DTranspose( - 'Conv3DTranspose', - num_filters=12, - filter_size=12, - use_cudnn=False) - transpose_res = conv3d_transpose(base.to_variable(input_array)) + import paddle.fluid as fluid + import numpy + + with fluid.dygraph.guard(): + data = numpy.random.random((5, 3, 12, 32, 32)).astype('float32') + + conv3dTranspose = fluid.dygraph.nn.Conv3DTranspose( + 'Conv3DTranspose', + num_filters=12, + filter_size=12, + use_cudnn=False) + ret = conv3dTranspose(fluid.dygraph.base.to_variable(data)) + """ def __init__(self, @@ -1257,7 +1267,13 @@ class Embedding(layers.Layer): class LayerNorm(layers.Layer): """ - ${comment} + Assume feature vectors exist on dimensions + `begin_norm_axis ... rank(input)` and calculate the moment statistics along these dimensions for each feature + vector `a` with size `H`, then normalize each feature vector using the corresponding + statistics. After that, apply learnable gain and bias on the normalized + tensor to scale and shift if `scale` and `shift` are set. + + Refer to `Layer Normalization `_ The formula is as follows: @@ -1279,7 +1295,7 @@ class LayerNorm(layers.Layer): * :math:`b`: the trainable bias parameter. Args: - input(Variable): The input tensor variable. + name_scope (str): See base class. scale(bool): Whether to learn the adaptive gain :math:`g` after normalization. Default True. shift(bool): Whether to learn the adaptive bias :math:`b` after @@ -1302,13 +1318,21 @@ class LayerNorm(layers.Layer): act(str): Activation to be applied to the output of layer normalizaiton. Default None. Returns: - ${y_comment} + Result after normalization Examples: - >>> data = fluid.layers.data(name='data', shape=[3, 32, 32], - >>> dtype='float32') - >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1) + .. code-block:: python + + import paddle.fluid as fluid + import numpy + + with fluid.dygraph.guard(): + x = numpy.random.random((3, 32, 32)).astype('float32') + layerNorm = fluid.dygraph.nn.LayerNorm( + 'LayerNorm', begin_norm_axis=1) + ret = layerNorm(fluid.dygraph.base.to_variable(x)) + """ def __init__(self, @@ -1837,8 +1861,7 @@ class BilinearTensorProduct(layers.Layer): - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`. Args: - x (Variable): 2-D input tensor with shape [batch_size, M] - y (Variable): 2-D input tensor with shape [batch_size, N] + name_scope (str): See base class. size (int): The dimension of this layer. act (str, default None): Activation to be applied to the output of this layer. name (str, default None): The name of this layer. @@ -1854,7 +1877,16 @@ class BilinearTensorProduct(layers.Layer): Examples: .. code-block:: python - tensor = bilinear_tensor_product(x=layer1, y=layer2, size=1000) + import paddle.fluid as fluid + import numpy + + with fluid.dygraph.guard(): + layer1 = numpy.random.random((5, 5)).astype('float32') + layer2 = numpy.random.random((5, 4)).astype('float32') + bilinearTensorProduct = fluid.dygraph.nn.BilinearTensorProduct( + 'BilinearTensorProduct', size=1000) + ret = bilinearTensorProduct(fluid.dygraph.base.to_variable(layer1), + fluid.dygraph.base.to_variable(layer2)) """ def __init__(self, @@ -1964,7 +1996,7 @@ class Conv2DTranspose(layers.Layer): W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] ) Args: - input(Variable): The input image with [N, C, H, W] format. + name_scope (str): See base class. num_filters(int): The number of the filter. It is as same as the output image channel. output_size(int|tuple|None): The output image size. If output size is a @@ -2017,8 +2049,15 @@ class Conv2DTranspose(layers.Layer): Examples: .. code-block:: python - data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32') - conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3) + import paddle.fluid as fluid + import numpy + + with fluid.dygraph.guard(): + data = numpy.random.random((3, 32, 32)).astype('float32') + conv2DTranspose = fluid.dygraph.nn.Conv2DTranspose( + 'Conv2DTranspose', num_filters=2, filter_size=3) + ret = conv2DTranspose(fluid.dygraph.base.to_variable(data)) + """ def __init__(self, @@ -2130,7 +2169,7 @@ class SequenceConv(layers.Layer): in the input parameters to the function. Args: - input (Variable): ${x_comment} + name_scope (str): See base class. num_filters (int): number of filters. filter_size (int): the filter size (H and W). filter_stride (int): stride of the filter. @@ -2197,6 +2236,49 @@ class SequenceConv(layers.Layer): class RowConv(layers.Layer): + """ + ***Row-convolution operator*** + + The row convolution is called lookahead convolution. This operator was introduced in the following paper for DeepSpeech2: + http://www.cs.cmu.edu/~dyogatam/papers/wang+etal.iclrworkshop2016.pdf + + The main motivation is that a bidirectional RNN, useful in DeepSpeech like speech models, learns representation for a sequence by performing a + forward and a backward pass through the entire sequence. However, unlike + unidirectional RNNs, bidirectional RNNs are challenging to deploy in an online + and low-latency setting. The lookahead convolution incorporates information + from future subsequences in a computationally efficient manner to improve + unidirectional recurrent neural networks. The row convolution operator is + different from the 1D sequence convolution, and is computed as follows: + + Given an input sequence X of length t and input dimension D, and a filter (W) of size context * D. + + More details about row_conv please refer to the design document https://github.com/PaddlePaddle/Paddle/issues/2228#issuecomment-303903645 . + + Args: + name_scope (str): See base class. + future_context_size (int): Future context size. Please note, the shape + of convolution kernel is [future_context_size + 1, D]. + param_attr (ParamAttr): Attributes of parameters, including + name, initializer etc. + act (str): Non-linear activation to be applied to output variable. + + Returns: + the output(Out) is a LodTensor, which supports variable time-length input sequences. The underlying tensor in this LodTensor is a matrix with shape T x N, i.e., the same shape as X. + + Examples: + .. code-block:: python + + import paddle.fluid as fluid + import numpy + + with fluid.dygraph.guard(): + x = numpy.random.random((16)).astype('float32') + rowConv = fluid.dygraph.nn.RowConv( + 'RowConv', future_context_size=2) + ret = rowConv(fluid.dygraph.base.to_variable(x)) + + """ + def __init__(self, name_scope, future_context_size, @@ -2252,6 +2334,16 @@ class GroupNorm(layers.Layer): Returns: Variable: A tensor variable which is the result after applying group normalization on the input. + Examples: + .. code-block:: python + + import paddle.fluid as fluid + import numpy + + with fluid.dygraph.guard(): + x = numpy.random.random((8, 32, 32)).astype('float32') + groupNorm = fluid.dygraph.nn.GroupNorm('GroupNorm', groups=4) + ret = groupNorm(fluid.dygraph.base.to_variable(x)) """ @@ -2319,6 +2411,63 @@ class GroupNorm(layers.Layer): class SpectralNorm(layers.Layer): + """ + **Spectral Normalization Layer** + + This layer calculates the spectral normalization value of weight parameters of + fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D + Parameters. Calculations are showed as follows. + + Step 1: + Generate vector U in shape of [H], and V in shape of [W]. + While H is the :attr:`dim` th dimension of the input weights, + and W is the product result of remaining dimensions. + + Step 2: + :attr:`power_iters` shoule be a positive interger, do following + calculations with U and V for :attr:`power_iters` rounds. + + .. math:: + + \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2} + + \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2} + + Step 3: + Calculate :math:`\sigma(\mathbf{W})` and normalize weight values. + + .. math:: + + \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v} + + \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})} + + + Refer to `Spectral Normalization `_ . + + Args: + name_scope (str): See base class. + dim(int): The index of dimension which should be permuted to the first before reshaping Input(Weight) to matrix, it should be set as 0 if Input(Weight) is the weight of fc layer, and should be set as 1 if Input(Weight) is the weight of conv layer, default 0 + power_iters(int): number of power iterations to calculate spectral norm, default 1 + eps(float): epsilon for numerical stability in calculating norms + name (str): The name of this layer. It is optional. + + Returns: + Variable: A tensor variable of weight parameters after spectral normalization. + + Examples: + .. code-block:: python + + import paddle.fluid as fluid + import numpy + + with fluid.dygraph.guard(): + x = numpy.random.random((2, 8, 32, 32)).astype('float32') + spectralNorm = fluid.dygraph.nn.SpectralNorm('SpectralNorm', dim=1, power_iters=2) + ret = spectralNorm(fluid.dygraph.base.to_variable(x)) + + """ + def __init__(self, name_scope, dim=0, power_iters=1, eps=1e-12, name=None): super(SpectralNorm, self).__init__(name_scope) self._power_iters = power_iters @@ -2362,6 +2511,44 @@ class SpectralNorm(layers.Layer): class TreeConv(layers.Layer): + """ + ***Tree-Based Convolution Operator*** + + Tree-Based Convolution is a kind of convolution based on tree structure. + Tree-Based Convolution is a part of Tree-Based Convolution Neural Network(TBCNN), + which is used to classify tree structures, such as Abstract Syntax Tree. + Tree-Based Convolution proposed a kind of data structure called continuous binary tree, + which regards multiway tree as binary tree. + The paper of Tree-Based Convolution Operator is here: https://arxiv.org/abs/1409.5718v1 + + + Args: + name_scope (str): See base class. + output_size(int): output feature width + num_filters(int): number of filters, Default 1 + max_depth(int): max depth of filters, Default 2 + act(str): activation function, Default tanh + param_attr(ParamAttr): the parameter attribute for the filters, Default None + bias_attr(ParamAttr): the parameter attribute for the bias of this layer, Default None + name(str): a name of this layer(optional). If set None, the layer will be named automatically, Default None + + Returns: + out(Variable): (Tensor) The feature vector of subtrees. The shape of the output tensor is [max_tree_node_size, output_size, num_filters]. The output tensor could be a new feature vector for next tree convolution layers + + Examples: + .. code-block:: python + import paddle.fluid as fluid + import numpy + + with fluid.dygraph.guard(): + nodes_vector = numpy.random.random((1, 10, 5)).astype('float32') + edge_set = numpy.random.random((1, 9, 2)).astype('int32') + treeConv = fluid.dygraph.nn.TreeConv( + 'TreeConv', output_size=6, num_filters=1, max_depth=2) + ret = treeConv(fluid.dygraph.base.to_variable(nodes_vector), fluid.dygraph.base.to_variable(edge_set)) + + """ + def __init__(self, name_scope, output_size, -- GitLab