From 254d7ff4f5e5793d44aecde15ee375ec76d4ea4b Mon Sep 17 00:00:00 2001 From: Yu Yang Date: Fri, 16 Mar 2018 17:23:43 +0800 Subject: [PATCH] Refactor local_scopes --- paddle/fluid/framework/parallel_executor.cc | 76 ++++++++------------- 1 file changed, 28 insertions(+), 48 deletions(-) diff --git a/paddle/fluid/framework/parallel_executor.cc b/paddle/fluid/framework/parallel_executor.cc index d46adf291..edc24cc13 100644 --- a/paddle/fluid/framework/parallel_executor.cc +++ b/paddle/fluid/framework/parallel_executor.cc @@ -151,11 +151,10 @@ class ParallelExecutorPrivate { explicit ParallelExecutorPrivate(size_t num_threads = 12) : pool_(num_threads) {} - std::unordered_map - local_scopes_; - std::vector places_; + std::vector local_scopes_; + #ifdef PADDLE_WITH_CUDA struct NCCLContext { std::unique_ptr ctx_; @@ -260,10 +259,11 @@ struct NCCLAllReduceOpHandle : public OpHandle { platform::dynload::ncclGroupStart(); - for (auto &p : member_->places_) { + for (size_t i = 0; i < member_->local_scopes_.size(); ++i) { + auto &p = member_->places_[i]; + auto *s = member_->local_scopes_[i]; int dev_id = boost::get(p).device; - Scope *s = member_->local_scopes_[p]; auto &lod_tensor = s->FindVar(var_name)->Get(); void *buffer = const_cast(lod_tensor.data()); if (dtype == -1) { @@ -302,8 +302,8 @@ ParallelExecutor::ParallelExecutor( Executor exe(places[0]); exe.Run(startup_program, scope, 0); // Create local scopes - for (auto &place : places) { - member_->local_scopes_[place] = &scope->NewScope(); + for (size_t i = 0; i < member_->places_.size(); ++i) { + member_->local_scopes_.push_back(&scope->NewScope()); } member_->main_place_ = places[0]; @@ -320,9 +320,7 @@ ParallelExecutor::ParallelExecutor( ConstructDependencyGraph(params, main_program, loss_var_name); // Step 3. Create vars in each scope; - for (auto &pair : member_->local_scopes_) { - auto *scope = pair.second; - + for (auto *scope : member_->local_scopes_) { for (auto *var : main_program.Block(0).AllVars()) { if (scope->FindVar(var->Name()) != nullptr) { continue; @@ -353,46 +351,44 @@ void ParallelExecutor::ConstructDependencyGraph( } } - for (auto &pair : member_->local_scopes_) { - member_->ops_.emplace_back( - new ComputationOpHandle(*op, pair.second, pair.first)); + for (size_t i = 0; i < member_->places_.size(); ++i) { + auto &p = member_->places_[i]; + auto *s = member_->local_scopes_[i]; + + member_->ops_.emplace_back(new ComputationOpHandle(*op, s, p)); auto *op_handle = member_->ops_.back().get(); - op_handle->dev_ctx_[pair.first] = const_cast( - platform::DeviceContextPool::Instance().Get(pair.first)); + op_handle->dev_ctx_[p] = const_cast( + platform::DeviceContextPool::Instance().Get(p)); auto var_names = op->InputArgumentNames(); for (auto &each_var_name : var_names) { - auto &place = pair.first; - VarHandle *var = GetVarHandle(each_var_name, place); + VarHandle *var = GetVarHandle(each_var_name, p); op_handle->inputs_.emplace_back(var); var->pending_ops_.emplace_back(op_handle); } var_names = op->OutputArgumentNames(); for (auto &each_var_name : var_names) { - auto &place = pair.first; - GenerateVar(op_handle, each_var_name, place); + GenerateVar(op_handle, each_var_name, p); } if (is_forwarding) { if (var_names.size() == 1 && var_names[0] == loss_var_name) { // Insert ScaleCost OpHandle member_->ops_.emplace_back(new ScaleLossGradOpHandle( - this->member_->local_scopes_.size(), pair.second, pair.first)); + this->member_->local_scopes_.size(), s, p)); op_handle = member_->ops_.back().get(); - op_handle->dev_ctx_[pair.first] = - member_->CommunicationDevCtx(pair.first); + op_handle->dev_ctx_[p] = member_->CommunicationDevCtx(p); - auto &place = pair.first; // FIXME: Currently ScaleLossGradOp only use device_count as scale // factor. So it does not depend on any other operators. // VarHandle *loss = GetVarHandle(loss_var_name, place); // loss->pending_ops_.emplace_back(op_handle); // op_handle->inputs_.emplace_back(loss); - GenerateVar(op_handle, loss_var_name + "@GRAD", place); + GenerateVar(op_handle, loss_var_name + "@GRAD", p); change_forward = true; LOG(INFO) << "Scale Loss " << op_handle->DebugString(); } @@ -411,9 +407,9 @@ void ParallelExecutor::ConstructDependencyGraph( member_->ops_.emplace_back(new NCCLAllReduceOpHandle(member_)); auto *op_handle = member_->ops_.back().get(); - for (auto &pair : member_->local_scopes_) { - auto &place = pair.first; - auto &vars = member_->vars_[place][og]; + for (size_t i = 0; i < member_->places_.size(); ++i) { + auto &p = member_->places_[i]; + auto &vars = member_->vars_[p][og]; if (vars.empty()) { // This device has no data. continue. continue; @@ -422,16 +418,13 @@ void ParallelExecutor::ConstructDependencyGraph( op_handle->inputs_.emplace_back(prev_grad); prev_grad->pending_ops_.emplace_back(op_handle); auto &var = vars[vars.size()]; - var.place_ = place; + var.place_ = p; var.generated_op_ = op_handle; var.name_ = og; var.version_ = vars.size() - 1; op_handle->outputs_.emplace_back(&var); - for (auto &pair : member_->local_scopes_) { - op_handle->dev_ctx_[pair.first] = - member_->CommunicationDevCtx(pair.first); - } + op_handle->dev_ctx_[p] = member_->CommunicationDevCtx(p); } } } @@ -529,7 +522,7 @@ VarHandle *ParallelExecutor::GetVarHandle(const std::string &each_var_name, void ParallelExecutor::BCastParamsToGPUs( const ProgramDesc &startup_program) const { #ifdef PADDLE_WITH_CUDA - auto *main_scope = member_->local_scopes_[member_->main_place_]; + auto *main_scope = member_->local_scopes_[0]; for (auto *var_desc : startup_program.Block(0).AllVars()) { if (var_desc->GetType() == proto::VarType::LOD_TENSOR) { @@ -547,7 +540,7 @@ void ParallelExecutor::BCastParamsToGPUs( if (i == 0) { buffer = const_cast(main_tensor.data()); } else { - auto local_scope = member_->local_scopes_[place]; + auto local_scope = member_->local_scopes_[i]; auto *t = local_scope->Var(var_desc->Name())->GetMutable(); t->Resize(dims); buffer = t->mutable_data(place, main_tensor.type()); @@ -560,18 +553,6 @@ void ParallelExecutor::BCastParamsToGPUs( platform::dynload::ncclGroupEnd(); } } - - // Debug code, bias should be 1.0f. - for (auto &pair : member_->local_scopes_) { - member_->GetNCCLCtx(pair.first).ctx_->Wait(); - - auto &b = pair.second->FindVar("fc_0.b_0")->Get(); - framework::LoDTensor cpu; - framework::TensorCopy(b, platform::CPUPlace(), &cpu); - platform::DeviceContextPool::Instance().Get(b.place())->Wait(); - LOG(INFO) << *cpu.data(); - } - #else PADDLE_THROW("Not compiled with CUDA"); #endif @@ -579,8 +560,7 @@ void ParallelExecutor::BCastParamsToGPUs( void ParallelExecutor::BuildNCCLCommunicator() const { #ifdef PADDLE_WITH_CUDA - for (auto &place_pair : member_->local_scopes_) { - auto place = place_pair.first; + for (auto &place : member_->places_) { int dev_id = boost::get(place).device; member_->communication_streams_.emplace( -- GitLab