Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
21b4d90a
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
21b4d90a
编写于
8月 08, 2018
作者:
L
Luo Tao
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' into anakin_test
上级
cf744732
88e47e1e
变更
13
显示空白变更内容
内联
并排
Showing
13 changed file
with
207 addition
and
32 deletion
+207
-32
CMakeLists.txt
CMakeLists.txt
+1
-0
cmake/generic.cmake
cmake/generic.cmake
+5
-0
paddle/fluid/CMakeLists.txt
paddle/fluid/CMakeLists.txt
+4
-2
paddle/fluid/framework/details/build_strategy.h
paddle/fluid/framework/details/build_strategy.h
+20
-0
paddle/fluid/framework/details/reduce_op_handle.cc
paddle/fluid/framework/details/reduce_op_handle.cc
+29
-3
paddle/fluid/operators/read_op.cc
paddle/fluid/operators/read_op.cc
+7
-0
python/paddle/fluid/__init__.py
python/paddle/fluid/__init__.py
+2
-1
python/paddle/fluid/tests/unittests/dist_se_resnext.py
python/paddle/fluid/tests/unittests/dist_se_resnext.py
+21
-12
python/paddle/fluid/tests/unittests/test_dist_base.py
python/paddle/fluid/tests/unittests/test_dist_base.py
+2
-1
python/paddle/fluid/tests/unittests/test_dist_se_resnext.py
python/paddle/fluid/tests/unittests/test_dist_se_resnext.py
+1
-2
python/paddle/fluid/tests/unittests/test_dist_transpiler.py
python/paddle/fluid/tests/unittests/test_dist_transpiler.py
+105
-0
python/paddle/fluid/tests/unittests/test_parallel_executor_seresnext.py
...fluid/tests/unittests/test_parallel_executor_seresnext.py
+4
-4
python/paddle/fluid/transpiler/distribute_transpiler.py
python/paddle/fluid/transpiler/distribute_transpiler.py
+6
-7
未找到文件。
CMakeLists.txt
浏览文件 @
21b4d90a
...
...
@@ -65,6 +65,7 @@ option(REPLACE_ENFORCE_GLOG "Replace PADDLE_ENFORCE with glog/CHECK for better d
option
(
WITH_ANAKIN
"Compile with Anakin library"
OFF
)
option
(
WITH_GRPC
"Use grpc as the default rpc framework"
${
WITH_DISTRIBUTE
}
)
option
(
WITH_BRPC_RDMA
"Use brpc rdma as the rpc protocal"
OFF
)
option
(
WITH_INFERENCE
"Compile fluid inference library"
ON
)
option
(
WITH_SYSTEM_BLAS
"Use system blas library"
OFF
)
option
(
PY_VERSION
"Compile PaddlePaddle with python3 support"
${
PY_VERSION
}
)
...
...
cmake/generic.cmake
浏览文件 @
21b4d90a
...
...
@@ -264,6 +264,8 @@ function(cc_test TARGET_NAME)
WORKING_DIRECTORY
${
CMAKE_CURRENT_BINARY_DIR
}
)
if
(
${
cc_test_SERIAL
}
)
set_property
(
TEST
${
TARGET_NAME
}
PROPERTY RUN_SERIAL 1
)
set_property
(
TEST
${
TARGET_NAME
}
PROPERTY ENVIRONMENT FLAGS_cpu_deterministic=true
)
set_property
(
TEST
${
TARGET_NAME
}
PROPERTY ENVIRONMENT FLAGS_init_allocated_mem=true
)
set_property
(
TEST
${
TARGET_NAME
}
PROPERTY ENVIRONMENT FLAGS_cudnn_deterministic=true
)
endif
()
...
...
@@ -330,6 +332,8 @@ function(nv_test TARGET_NAME)
add_test
(
${
TARGET_NAME
}
${
TARGET_NAME
}
)
if
(
nv_test_SERIAL
)
set_property
(
TEST
${
TARGET_NAME
}
PROPERTY RUN_SERIAL 1
)
set_property
(
TEST
${
TARGET_NAME
}
PROPERTY ENVIRONMENT FLAGS_cpu_deterministic=true
)
set_property
(
TEST
${
TARGET_NAME
}
PROPERTY ENVIRONMENT FLAGS_init_allocated_mem=true
)
set_property
(
TEST
${
TARGET_NAME
}
PROPERTY ENVIRONMENT FLAGS_cudnn_deterministic=true
)
endif
()
...
...
@@ -580,6 +584,7 @@ function(py_test TARGET_NAME)
cmake_parse_arguments
(
py_test
"
${
options
}
"
"
${
oneValueArgs
}
"
"
${
multiValueArgs
}
"
${
ARGN
}
)
add_test
(
NAME
${
TARGET_NAME
}
COMMAND env FLAGS_init_allocated_mem=true FLAGS_cudnn_deterministic=true
FLAGS_cpu_deterministic=true
PYTHONPATH=
${
PADDLE_BINARY_DIR
}
/python
${
py_test_ENVS
}
${
PYTHON_EXECUTABLE
}
-u
${
py_test_SRCS
}
${
py_test_ARGS
}
WORKING_DIRECTORY
${
CMAKE_CURRENT_BINARY_DIR
}
)
...
...
paddle/fluid/CMakeLists.txt
浏览文件 @
21b4d90a
...
...
@@ -5,5 +5,7 @@ add_subdirectory(operators)
add_subdirectory
(
pybind
)
add_subdirectory
(
string
)
add_subdirectory
(
recordio
)
# NOTE: please add subdirectory inference at last.
add_subdirectory
(
inference
)
if
(
WITH_INFERENCE
)
# NOTE: please add subdirectory inference at last.
add_subdirectory
(
inference
)
endif
()
paddle/fluid/framework/details/build_strategy.h
浏览文件 @
21b4d90a
...
...
@@ -21,6 +21,26 @@ namespace framework {
namespace
details
{
struct
BuildStrategy
{
// ParallelExecutor supports two modes of ReduceStrategy, kAllReduce and
// kReduce, for CPU and GPU. If you use kAllReduce, different threads
// optimize their parameters separately. If you use kReduce, the optimizations
// of parameters are distributed to different threads.
// For example, a model has 100 parameters and is running with four threads,
// if you choose kAllReduce, every thread is to optimize 100 parameters
// separately, if you choose kReduce, every thread is to optimize 25
// parameters.
// Of particular note is, if you use kReduce when using CPU training,
// all the parameters are shared between different threads. This feature will
// save memory.
// FIXME(zcd): The result of the two modes(kAllReduce and kReduce) maybe not
// equal for GPU. Because, the result of the different order of summing maybe
// different, for example, the result of `a+b+c+d` may be different with the
// result of `c+a+b+d`.
// For GPU, the implementation of kAllReduce and kReduce is adopted NCCL,
// so the result of kAllReduce and kReduce maybe not equal.
// For CPU, if you want to fix the order of summing to make the result
// of kAllReduce and kReduce no diff, you can add
// `FLAGS_cpu_deterministic=true` to env.
enum
class
ReduceStrategy
{
kAllReduce
=
0
,
kReduce
=
1
};
enum
class
GradientScaleStrategy
{
...
...
paddle/fluid/framework/details/reduce_op_handle.cc
浏览文件 @
21b4d90a
...
...
@@ -18,6 +18,10 @@
#include "paddle/fluid/framework/details/variable_visitor.h"
#include "paddle/fluid/platform/profiler.h"
DEFINE_bool
(
cpu_deterministic
,
false
,
"Whether to make the result of computation deterministic in CPU side."
);
namespace
paddle
{
namespace
framework
{
namespace
details
{
...
...
@@ -91,11 +95,33 @@ void ReduceOpHandle::RunImpl() {
}
else
{
std
::
vector
<
const
LoDTensor
*>
lod_tensors
=
GetInputValues
<
LoDTensor
>
(
in_var_handles
,
var_scopes
);
if
(
paddle
::
platform
::
is_cpu_place
(
lod_tensors
[
0
]
->
place
()))
{
this
->
RunAndRecordEvent
([
&
]
{
// FIXME(zcd): The order of summing is important,
// especially when the type of data is float or double.
// For example, the result of `a+b+c+d` may be different
// with the result of `c+a+b+d`, so the summing order should be fixed.
if
(
!
FLAGS_cpu_deterministic
)
{
ReduceLoDTensor
func
(
lod_tensors
,
out_var
->
GetMutable
<
framework
::
LoDTensor
>
());
VisitDataType
(
ToDataType
(
lod_tensors
[
0
]
->
type
()),
func
);
}
else
{
// We sum lod_tensors to reduce_sum_trg which is in local_scopes_0
// here, but it doesn't mean reduce_sum_trg must be in local_scopes_0.
auto
&
reduce_sum_trg
=
*
this
->
local_scopes_
[
0
]
->
FindVar
(
kLocalExecScopeName
)
->
Get
<
Scope
*>
()
->
FindVar
(
out_var_handle
->
name_
)
->
GetMutable
<
framework
::
LoDTensor
>
();
ReduceLoDTensor
func
(
lod_tensors
,
&
reduce_sum_trg
);
VisitDataType
(
ToDataType
(
lod_tensors
[
0
]
->
type
()),
func
);
auto
trg
=
out_var
->
GetMutable
<
framework
::
LoDTensor
>
();
if
(
reduce_sum_trg
.
data
<
void
>
()
!=
trg
->
data
<
void
>
())
{
TensorCopy
(
reduce_sum_trg
,
platform
::
CPUPlace
(),
trg
);
}
}
});
}
else
if
(
paddle
::
platform
::
is_gpu_place
(
lod_tensors
[
0
]
->
place
()))
{
#ifdef PADDLE_WITH_CUDA
...
...
paddle/fluid/operators/read_op.cc
浏览文件 @
21b4d90a
...
...
@@ -15,6 +15,7 @@
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/reader.h"
#include "paddle/fluid/operators/detail/safe_ref.h"
#include "paddle/fluid/platform/profiler.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -65,6 +66,12 @@ class ReadOp : public framework::OperatorBase {
.
GetMutable
<
framework
::
ReaderHolder
>
();
std
::
vector
<
std
::
string
>
out_arg_names
=
Outputs
(
"Out"
);
std
::
vector
<
framework
::
LoDTensor
>
ins
;
// For profiling
platform
::
DeviceContextPool
&
pool
=
platform
::
DeviceContextPool
::
Instance
();
auto
&
ctx
=
*
pool
.
Get
(
dev_place
);
platform
::
RecordEvent
record_event
(
Type
(),
&
ctx
);
reader
->
ReadNext
(
&
ins
);
if
(
ins
.
empty
())
{
if
(
Attr
<
bool
>
(
"throw_eof_exp"
))
{
...
...
python/paddle/fluid/__init__.py
浏览文件 @
21b4d90a
...
...
@@ -123,7 +123,8 @@ def __bootstrap__():
read_env_flags
=
[
'use_pinned_memory'
,
'check_nan_inf'
,
'benchmark'
,
'warpctc_dir'
,
'eager_delete_scope'
,
'use_mkldnn'
,
'initial_cpu_memory_in_mb'
,
'init_allocated_mem'
,
'free_idle_memory'
,
'paddle_num_threads'
'init_allocated_mem'
,
'free_idle_memory'
,
'paddle_num_threads'
,
'cpu_deterministic'
]
if
core
.
is_compiled_with_dist
():
read_env_flags
.
append
(
'rpc_deadline'
)
...
...
python/paddle/fluid/tests/unittests/dist_se_resnext.py
浏览文件 @
21b4d90a
...
...
@@ -174,6 +174,9 @@ class SE_ResNeXt():
padding
=
(
filter_size
-
1
)
/
2
,
groups
=
groups
,
act
=
None
,
# avoid pserver CPU init differs from GPU
param_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Constant
()),
bias_attr
=
False
)
return
fluid
.
layers
.
batch_norm
(
input
=
conv
,
act
=
act
)
...
...
@@ -194,10 +197,8 @@ class SE_ResNeXt():
def
get_model
(
batch_size
):
# Input data
image
=
fluid
.
layers
.
fill_constant
(
shape
=
[
batch_size
,
3
,
224
,
224
],
dtype
=
'float32'
,
value
=
0.0
)
label
=
fluid
.
layers
.
fill_constant
(
shape
=
[
batch_size
,
1
],
dtype
=
'int64'
,
value
=
0.0
)
image
=
fluid
.
layers
.
data
(
name
=
"data"
,
shape
=
[
3
,
224
,
224
],
dtype
=
'float32'
)
label
=
fluid
.
layers
.
data
(
name
=
"int64"
,
shape
=
[
1
],
dtype
=
'int64'
)
# Train program
model
=
SE_ResNeXt
(
layers
=
50
)
...
...
@@ -222,8 +223,10 @@ def get_model(batch_size):
lr
=
[
base_lr
*
(
0.1
**
i
)
for
i
in
range
(
len
(
bd
)
+
1
)]
optimizer
=
fluid
.
optimizer
.
Momentum
(
learning_rate
=
fluid
.
layers
.
piecewise_decay
(
boundaries
=
bd
,
values
=
lr
),
# FIXME(typhoonzero): add back LR decay once ParallelExecutor fixed.
#learning_rate=fluid.layers.piecewise_decay(
# boundaries=bd, values=lr),
learning_rate
=
base_lr
,
momentum
=
0.9
,
regularization
=
fluid
.
regularizer
.
L2Decay
(
1e-4
))
optimizer
.
minimize
(
avg_cost
)
...
...
@@ -232,7 +235,7 @@ def get_model(batch_size):
train_reader
=
paddle
.
batch
(
paddle
.
dataset
.
flowers
.
train
(),
batch_size
=
batch_size
)
test_reader
=
paddle
.
batch
(
paddle
.
dataset
.
flowers
.
test
(),
batch_size
=
batch_size
)
paddle
.
dataset
.
flowers
.
test
(
use_xmap
=
False
),
batch_size
=
batch_size
)
return
test_program
,
avg_cost
,
train_reader
,
test_reader
,
acc_top1
,
out
...
...
@@ -256,7 +259,6 @@ class DistSeResneXt2x2:
trainers
)
pserver_prog
=
t
.
get_pserver_program
(
current_endpoint
)
startup_prog
=
t
.
get_startup_program
(
current_endpoint
,
pserver_prog
)
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
startup_prog
)
...
...
@@ -302,12 +304,19 @@ class DistSeResneXt2x2:
]
feeder
=
fluid
.
DataFeeder
(
feed_var_list
,
place
)
reader_generator
=
train_reader
()
first_loss
,
=
exe
.
run
(
fetch_list
=
[
avg_cost
.
name
])
reader_generator
=
test_reader
()
data
=
next
(
reader_generator
)
first_loss
,
=
exe
.
run
(
fetch_list
=
[
avg_cost
.
name
],
feed
=
feeder
.
feed
(
data
))
print
(
first_loss
)
for
i
in
xrange
(
5
):
loss
,
=
exe
.
run
(
fetch_list
=
[
avg_cost
.
name
])
last_loss
,
=
exe
.
run
(
fetch_list
=
[
avg_cost
.
name
])
data
=
next
(
reader_generator
)
loss
,
=
exe
.
run
(
fetch_list
=
[
avg_cost
.
name
],
feed
=
feeder
.
feed
(
data
))
data
=
next
(
reader_generator
)
last_loss
,
=
exe
.
run
(
fetch_list
=
[
avg_cost
.
name
],
feed
=
feeder
.
feed
(
data
))
print
(
last_loss
)
...
...
python/paddle/fluid/tests/unittests/test_dist_base.py
浏览文件 @
21b4d90a
...
...
@@ -63,7 +63,8 @@ class TestDistBase(unittest.TestCase):
"PATH"
:
os
.
getenv
(
"PATH"
),
"PYTHONPATH"
:
os
.
getenv
(
"PYTHONPATH"
),
"LD_LIBRARY_PATH"
:
os
.
getenv
(
"LD_LIBRARY_PATH"
),
"FLAGS_fraction_of_gpu_memory_to_use"
:
"0.15"
"FLAGS_fraction_of_gpu_memory_to_use"
:
"0.15"
,
"FLAGS_cudnn_deterministic"
:
"1"
}
# Run local to get a base line
env_local
=
{
"CUDA_VISIBLE_DEVICES"
:
"0"
}
...
...
python/paddle/fluid/tests/unittests/test_dist_se_resnext.py
浏览文件 @
21b4d90a
...
...
@@ -17,8 +17,7 @@ from test_dist_base import TestDistBase
class
TestDistSeResneXt2x2
(
TestDistBase
):
def
test_se_resnext
(
self
):
# TODO(paddle-dev): Is the delta too large?
self
.
check_with_place
(
"dist_se_resnext.py"
,
delta
=
0.2
)
self
.
check_with_place
(
"dist_se_resnext.py"
)
if
__name__
==
"__main__"
:
...
...
python/paddle/fluid/tests/unittests/test_dist_transpiler.py
浏览文件 @
21b4d90a
...
...
@@ -359,5 +359,110 @@ class TestL2DecayWithPiecewise(TranspilerTest):
[
"sum"
,
"scale"
,
"scale"
,
"elementwise_add"
,
"momentum"
])
class
TestDistLookupTableBase
(
TranspilerTest
):
def
network_with_table
(
self
,
is_sparse
,
is_distributed
):
def
emb_pool
(
ids
):
table_size
=
1000
emb_size
=
64
emb
=
fluid
.
layers
.
embedding
(
input
=
ids
,
size
=
[
table_size
,
emb_size
],
dtype
=
'float32'
,
param_attr
=
'shared_w'
,
# share parameter
is_sparse
=
is_sparse
,
is_distributed
=
is_distributed
)
pool
=
fluid
.
layers
.
sequence_pool
(
input
=
emb
,
pool_type
=
'average'
)
return
pool
title_ids
=
fluid
.
layers
.
data
(
name
=
'title_ids'
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
brand_ids
=
fluid
.
layers
.
data
(
name
=
'brand_ids'
,
shape
=
[
1
],
dtype
=
'int64'
,
lod_level
=
1
)
title_emb
=
emb_pool
(
title_ids
)
brand_emb
=
emb_pool
(
brand_ids
)
fc0
=
fluid
.
layers
.
concat
(
input
=
[
title_emb
,
brand_emb
],
axis
=
1
)
predict
=
fluid
.
layers
.
fc
(
input
=
fc0
,
size
=
2
,
act
=
None
,
param_attr
=
fluid
.
ParamAttr
(
name
=
'fc_w'
),
bias_attr
=
fluid
.
ParamAttr
(
name
=
'fc_b'
))
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
predict
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
cost
)
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
0.003
)
optimizer
.
minimize
(
avg_cost
)
class
TestLocalLookupTable
(
TestDistLookupTableBase
):
def
net_conf
(
self
):
self
.
network_with_table
(
is_sparse
=
True
,
is_distributed
=
False
)
def
transpiler_test_impl
(
self
):
pserver1
,
startup1
=
self
.
get_pserver
(
self
.
pserver1_ep
)
self
.
assertEqual
(
len
(
pserver1
.
blocks
),
3
)
# 0 listen_and_serv
# 1 optimize for fc_w or fc_b adam
self
.
assertEqual
([
op
.
type
for
op
in
pserver1
.
blocks
[
1
].
ops
],
[
"sum"
,
"scale"
,
"adam"
,
"scale"
,
"scale"
])
# 2 optimize for table adam
# NOTE: if param is not selected rows, the grad will scaled to grad / trainer_num
self
.
assertEqual
([
op
.
type
for
op
in
pserver1
.
blocks
[
2
].
ops
],
[
"sum"
,
"adam"
,
"scale"
,
"scale"
])
trainer
=
self
.
get_trainer
()
self
.
assertEqual
(
len
(
trainer
.
blocks
),
1
)
ops
=
[
'lookup_table'
,
'sequence_pool'
,
'lookup_table'
,
'sequence_pool'
,
'concat'
,
'mul'
,
'elementwise_add'
,
'cross_entropy'
,
'mean'
,
'fill_constant'
,
'mean_grad'
,
'cross_entropy_grad'
,
'elementwise_add_grad'
,
'send'
,
'mul_grad'
,
'send'
,
'concat_grad'
,
'sequence_pool_grad'
,
'lookup_table_grad'
,
'sequence_pool_grad'
,
'lookup_table_grad'
,
'sum'
,
'split_selected_rows'
,
'send'
,
'send_barrier'
,
'recv'
,
'recv'
,
'recv'
,
'fetch_barrier'
,
'concat'
]
self
.
assertEqual
([
op
.
type
for
op
in
trainer
.
blocks
[
0
].
ops
],
ops
)
class
TestDistLookupTable
(
TestDistLookupTableBase
):
def
net_conf
(
self
):
self
.
network_with_table
(
is_sparse
=
True
,
is_distributed
=
True
)
def
transpiler_test_impl
(
self
):
pserver1
,
startup1
=
self
.
get_pserver
(
self
.
pserver1_ep
)
self
.
assertEqual
(
len
(
pserver1
.
blocks
),
6
)
# 0 listen_and_serv
# 1 optimize for fc_w or fc_b adam
self
.
assertEqual
([
op
.
type
for
op
in
pserver1
.
blocks
[
1
].
ops
],
[
"sum"
,
"scale"
,
"adam"
,
"scale"
,
"scale"
])
# 2 optimize for table sgd
self
.
assertEqual
([
op
.
type
for
op
in
pserver1
.
blocks
[
2
].
ops
],
[
"sum"
,
"sgd"
])
# 3 prefetch -> lookup_sparse_table for data0
self
.
assertEqual
([
op
.
type
for
op
in
pserver1
.
blocks
[
3
].
ops
],
[
"lookup_sparse_table"
])
# 4 prefetch -> lookup_sparse_table for data1
self
.
assertEqual
([
op
.
type
for
op
in
pserver1
.
blocks
[
4
].
ops
],
[
"lookup_sparse_table"
])
# 5 save table
self
.
assertEqual
([
op
.
type
for
op
in
pserver1
.
blocks
[
5
].
ops
],
[
"save"
])
trainer
=
self
.
get_trainer
()
self
.
assertEqual
(
len
(
trainer
.
blocks
),
1
)
ops
=
[
'split_ids'
,
'prefetch'
,
'merge_ids'
,
'sequence_pool'
,
'split_ids'
,
'prefetch'
,
'merge_ids'
,
'sequence_pool'
,
'concat'
,
'mul'
,
'elementwise_add'
,
'cross_entropy'
,
'mean'
,
'fill_constant'
,
'mean_grad'
,
'cross_entropy_grad'
,
'elementwise_add_grad'
,
'send'
,
'mul_grad'
,
'send'
,
'concat_grad'
,
'sequence_pool_grad'
,
'lookup_table_grad'
,
'sequence_pool_grad'
,
'lookup_table_grad'
,
'sum'
,
'split_ids'
,
'send'
,
'send_barrier'
,
'recv'
,
'recv'
,
'fetch_barrier'
]
self
.
assertEqual
([
op
.
type
for
op
in
trainer
.
blocks
[
0
].
ops
],
ops
)
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_parallel_executor_seresnext.py
浏览文件 @
21b4d90a
...
...
@@ -198,7 +198,7 @@ class TestResnet(TestParallelExecutorBase):
model
,
use_cuda
,
iter
=
20
,
delta2
=
1e-
4
):
delta2
=
1e-
6
):
if
use_cuda
and
not
core
.
is_compiled_with_cuda
():
return
...
...
@@ -276,10 +276,10 @@ class TestResnet(TestParallelExecutorBase):
model
=
SE_ResNeXt50Small
,
use_cuda
=
False
,
iter
=
2
,
delta2
=
1e-3
)
def
test_seresnext_with_new_strategy
(
self
):
# self._compare_reduce_and_allreduce(
# model=SE_ResNeXt50Small, use_cuda=True)
self
.
_compare_reduce_and_allreduce
(
model
=
SE_ResNeXt50Small
,
use_cuda
=
False
,
iter
=
5
,
delta2
=
1e-2
)
model
=
SE_ResNeXt50Small
,
use_cuda
=
True
,
delta2
=
1e-2
)
self
.
_compare_reduce_and_allreduce
(
model
=
SE_ResNeXt50Small
,
use_cuda
=
False
,
iter
=
5
)
if
__name__
==
'__main__'
:
...
...
python/paddle/fluid/transpiler/distribute_transpiler.py
浏览文件 @
21b4d90a
...
...
@@ -896,8 +896,6 @@ class DistributeTranspiler(object):
self
.
table_name
][
0
]
table_opt_block
=
pserver_program
.
create_block
(
pre_block_idx
)
# only support sgd now
assert
table_opt_op
.
type
==
"sgd"
if
self
.
sync_mode
:
# create grad vars in pserver program
...
...
@@ -937,11 +935,12 @@ class DistributeTranspiler(object):
"LearningRate"
:
[
lr_var
]
}
outputs
=
{
"ParamOut"
:
[
param_var
]}
table_opt_block
.
append_op
(
type
=
table_opt_op
.
type
,
inputs
=
inputs
,
outputs
=
outputs
,
attrs
=
table_opt_op
.
attrs
)
# only support sgd now
import
logging
logging
.
warn
(
"distribute lookup table only support sgd optimizer, change it's optimizer to sgd instead of "
+
table_opt_op
.
type
)
table_opt_block
.
append_op
(
type
=
"sgd"
,
inputs
=
inputs
,
outputs
=
outputs
)
# add table parameter gradient and it's block id to grad_to_block_id
grad_to_block_id
.
append
(
grad_var
.
name
+
":"
+
str
(
table_opt_block
.
idx
))
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录