Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
1d867e82
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
1d867e82
编写于
8月 19, 2022
作者:
U
user1018
提交者:
GitHub
8月 19, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Update distill (#6693)
上级
20037620
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
148 addition
and
109 deletion
+148
-109
ppdet/slim/distill.py
ppdet/slim/distill.py
+148
-109
未找到文件。
ppdet/slim/distill.py
浏览文件 @
1d867e82
...
@@ -135,7 +135,13 @@ class FGDDistillModel(nn.Layer):
...
@@ -135,7 +135,13 @@ class FGDDistillModel(nn.Layer):
if
self
.
arch
==
"RetinaNet"
:
if
self
.
arch
==
"RetinaNet"
:
loss
=
self
.
student_model
.
head
(
s_neck_feats
,
inputs
)
loss
=
self
.
student_model
.
head
(
s_neck_feats
,
inputs
)
elif
self
.
arch
==
"PicoDet"
:
elif
self
.
arch
==
"PicoDet"
:
loss
=
self
.
student_model
.
get_loss
()
head_outs
=
self
.
student_model
.
head
(
s_neck_feats
,
self
.
student_model
.
export_post_process
)
loss_gfl
=
self
.
student_model
.
head
.
get_loss
(
head_outs
,
inputs
)
total_loss
=
paddle
.
add_n
(
list
(
loss_gfl
.
values
()))
loss
=
{}
loss
.
update
(
loss_gfl
)
loss
.
update
({
'loss'
:
total_loss
})
else
:
else
:
raise
ValueError
(
f
"Unsupported model
{
self
.
arch
}
"
)
raise
ValueError
(
f
"Unsupported model
{
self
.
arch
}
"
)
for
k
in
loss_dict
:
for
k
in
loss_dict
:
...
@@ -151,7 +157,14 @@ class FGDDistillModel(nn.Layer):
...
@@ -151,7 +157,14 @@ class FGDDistillModel(nn.Layer):
head_outs
,
inputs
[
'im_shape'
],
inputs
[
'scale_factor'
])
head_outs
,
inputs
[
'im_shape'
],
inputs
[
'scale_factor'
])
return
{
'bbox'
:
bbox
,
'bbox_num'
:
bbox_num
}
return
{
'bbox'
:
bbox
,
'bbox_num'
:
bbox_num
}
elif
self
.
arch
==
"PicoDet"
:
elif
self
.
arch
==
"PicoDet"
:
return
self
.
student_model
.
head
.
get_pred
()
head_outs
=
self
.
student_model
.
head
(
neck_feats
,
self
.
student_model
.
export_post_process
)
scale_factor
=
inputs
[
'scale_factor'
]
bboxes
,
bbox_num
=
self
.
student_model
.
head
.
post_process
(
head_outs
,
scale_factor
,
export_nms
=
self
.
student_model
.
export_nms
)
return
{
'bbox'
:
bboxes
,
'bbox_num'
:
bbox_num
}
else
:
else
:
raise
ValueError
(
f
"Unsupported model
{
self
.
arch
}
"
)
raise
ValueError
(
f
"Unsupported model
{
self
.
arch
}
"
)
...
@@ -221,18 +234,21 @@ class FGDFeatureLoss(nn.Layer):
...
@@ -221,18 +234,21 @@ class FGDFeatureLoss(nn.Layer):
Paddle version of `Focal and Global Knowledge Distillation for Detectors`
Paddle version of `Focal and Global Knowledge Distillation for Detectors`
Args:
Args:
student_channels(int): The number of channels in the student's FPN feature map. Default to 256.
student_channels(int): Number of channels in the student's feature map.
teacher_channels(int): The number of channels in the teacher's FPN feature map. Default to 256.
teacher_channels(int): Number of channels in the teacher's feature map.
temp (float, optional): The temperature coefficient. Defaults to 0.5.
temp (float, optional): Temperature coefficient. Defaults to 0.5.
alpha_fgd (float, optional): The weight of fg_loss. Defaults to 0.001
name (str): the loss name of the layer
beta_fgd (float, optional): The weight of bg_loss. Defaults to 0.0005
alpha_fgd (float, optional): Weight of fg_loss. Defaults to 0.001
gamma_fgd (float, optional): The weight of mask_loss. Defaults to 0.001
beta_fgd (float, optional): Weight of bg_loss. Defaults to 0.0005
lambda_fgd (float, optional): The weight of relation_loss. Defaults to 0.000005
gamma_fgd (float, optional): Weight of mask_loss. Defaults to 0.001
lambda_fgd (float, optional): Weight of relation_loss. Defaults to 0.000005
"""
"""
def
__init__
(
self
,
def
__init__
(
student_channels
=
256
,
self
,
teacher_channels
=
256
,
student_channels
,
teacher_channels
,
name
=
None
,
temp
=
0.5
,
temp
=
0.5
,
alpha_fgd
=
0.001
,
alpha_fgd
=
0.001
,
beta_fgd
=
0.0005
,
beta_fgd
=
0.0005
,
...
@@ -256,29 +272,27 @@ class FGDFeatureLoss(nn.Layer):
...
@@ -256,29 +272,27 @@ class FGDFeatureLoss(nn.Layer):
stride
=
1
,
stride
=
1
,
padding
=
0
,
padding
=
0
,
weight_attr
=
kaiming_init
)
weight_attr
=
kaiming_init
)
student_channels
=
teacher_channels
else
:
else
:
self
.
align
=
None
self
.
align
=
None
self
.
conv_mask_s
=
nn
.
Conv2D
(
self
.
conv_mask_s
=
nn
.
Conv2D
(
student
_channels
,
1
,
kernel_size
=
1
,
weight_attr
=
kaiming_init
)
teacher
_channels
,
1
,
kernel_size
=
1
,
weight_attr
=
kaiming_init
)
self
.
conv_mask_t
=
nn
.
Conv2D
(
self
.
conv_mask_t
=
nn
.
Conv2D
(
teacher_channels
,
1
,
kernel_size
=
1
,
weight_attr
=
kaiming_init
)
teacher_channels
,
1
,
kernel_size
=
1
,
weight_attr
=
kaiming_init
)
self
.
channel_add_conv_s
=
nn
.
Sequential
(
self
.
stu_conv_block
=
nn
.
Sequential
(
nn
.
Conv2D
(
nn
.
Conv2D
(
student
_channels
,
teacher
_channels
,
student
_channels
//
2
,
teacher
_channels
//
2
,
kernel_size
=
1
,
kernel_size
=
1
,
weight_attr
=
zeros_init
),
weight_attr
=
zeros_init
),
nn
.
LayerNorm
([
student
_channels
//
2
,
1
,
1
]),
nn
.
LayerNorm
([
teacher
_channels
//
2
,
1
,
1
]),
nn
.
ReLU
(),
nn
.
ReLU
(),
nn
.
Conv2D
(
nn
.
Conv2D
(
student
_channels
//
2
,
teacher
_channels
//
2
,
student
_channels
,
teacher
_channels
,
kernel_size
=
1
,
kernel_size
=
1
,
weight_attr
=
zeros_init
))
weight_attr
=
zeros_init
))
self
.
tea_conv_block
=
nn
.
Sequential
(
self
.
channel_add_conv_t
=
nn
.
Sequential
(
nn
.
Conv2D
(
nn
.
Conv2D
(
teacher_channels
,
teacher_channels
,
teacher_channels
//
2
,
teacher_channels
//
2
,
...
@@ -292,69 +306,72 @@ class FGDFeatureLoss(nn.Layer):
...
@@ -292,69 +306,72 @@ class FGDFeatureLoss(nn.Layer):
kernel_size
=
1
,
kernel_size
=
1
,
weight_attr
=
zeros_init
))
weight_attr
=
zeros_init
))
def
spatial_channel_attention
(
self
,
x
,
t
=
0.5
):
def
gc_block
(
self
,
feature
,
t
=
0.5
):
shape
=
paddle
.
shape
(
x
)
"""
"""
shape
=
paddle
.
shape
(
feature
)
N
,
C
,
H
,
W
=
shape
N
,
C
,
H
,
W
=
shape
_f
=
paddle
.
abs
(
x
)
_f
=
paddle
.
abs
(
feature
)
s
patial
_map
=
paddle
.
reshape
(
s_map
=
paddle
.
reshape
(
paddle
.
mean
(
paddle
.
mean
(
_f
,
axis
=
1
,
keepdim
=
True
)
/
t
,
[
N
,
-
1
])
_f
,
axis
=
1
,
keepdim
=
True
)
/
t
,
[
N
,
-
1
])
s
patial_map
=
F
.
softmax
(
spatial
_map
,
axis
=
1
,
dtype
=
"float32"
)
*
H
*
W
s
_map
=
F
.
softmax
(
s
_map
,
axis
=
1
,
dtype
=
"float32"
)
*
H
*
W
s
patial_att
=
paddle
.
reshape
(
spatial
_map
,
[
N
,
H
,
W
])
s
_attention
=
paddle
.
reshape
(
s
_map
,
[
N
,
H
,
W
])
c
hannel
_map
=
paddle
.
mean
(
c_map
=
paddle
.
mean
(
paddle
.
mean
(
paddle
.
mean
(
_f
,
axis
=
2
,
keepdim
=
False
),
axis
=
2
,
keepdim
=
False
)
_f
,
axis
=
2
,
keepdim
=
False
),
axis
=
2
,
keepdim
=
False
)
c
hannel_att
=
F
.
softmax
(
channel
_map
/
t
,
axis
=
1
,
dtype
=
"float32"
)
*
C
c
_attention
=
F
.
softmax
(
c
_map
/
t
,
axis
=
1
,
dtype
=
"float32"
)
*
C
return
[
spatial_att
,
channel_att
]
return
s_attention
,
c_attention
def
spatial_pool
(
self
,
x
,
mode
=
"teacher"
):
def
spatial_pool
(
self
,
x
,
in_type
):
batch
,
channel
,
width
,
height
=
x
.
shape
batch
,
channel
,
width
,
height
=
x
.
shape
x_copy
=
x
input_x
=
x
x_copy
=
paddle
.
reshape
(
x_copy
,
[
batch
,
channel
,
height
*
width
])
# [N, C, H * W]
x_copy
=
x_copy
.
unsqueeze
(
1
)
input_x
=
paddle
.
reshape
(
input_x
,
[
batch
,
channel
,
height
*
width
])
if
mode
.
lower
()
==
"student"
:
# [N, 1, C, H * W]
input_x
=
input_x
.
unsqueeze
(
1
)
# [N, 1, H, W]
if
in_type
==
0
:
context_mask
=
self
.
conv_mask_s
(
x
)
context_mask
=
self
.
conv_mask_s
(
x
)
else
:
else
:
context_mask
=
self
.
conv_mask_t
(
x
)
context_mask
=
self
.
conv_mask_t
(
x
)
# [N, 1, H * W]
context_mask
=
paddle
.
reshape
(
context_mask
,
[
batch
,
1
,
height
*
width
])
context_mask
=
paddle
.
reshape
(
context_mask
,
[
batch
,
1
,
height
*
width
])
# [N, 1, H * W]
context_mask
=
F
.
softmax
(
context_mask
,
axis
=
2
)
context_mask
=
F
.
softmax
(
context_mask
,
axis
=
2
)
# [N, 1, H * W, 1]
context_mask
=
context_mask
.
unsqueeze
(
-
1
)
context_mask
=
context_mask
.
unsqueeze
(
-
1
)
context
=
paddle
.
matmul
(
x_copy
,
context_mask
)
# [N, 1, C, 1]
context
=
paddle
.
matmul
(
input_x
,
context_mask
)
# [N, C, 1, 1]
context
=
paddle
.
reshape
(
context
,
[
batch
,
channel
,
1
,
1
])
context
=
paddle
.
reshape
(
context
,
[
batch
,
channel
,
1
,
1
])
return
context
return
context
def
mask_loss
(
self
,
stu_channel_att
,
tea_channel_att
,
stu_spatial_att
,
def
get_mask_loss
(
self
,
C_s
,
C_t
,
S_s
,
S_t
):
tea_spatial_att
):
mask_loss
=
paddle
.
sum
(
paddle
.
abs
((
C_s
-
C_t
)))
/
len
(
C_s
)
+
paddle
.
sum
(
def
_func
(
a
,
b
):
paddle
.
abs
((
S_s
-
S_t
)))
/
len
(
S_s
)
return
paddle
.
sum
(
paddle
.
abs
(
a
-
b
))
/
len
(
a
)
mask_loss
=
_func
(
stu_channel_att
,
tea_channel_att
)
+
_func
(
stu_spatial_att
,
tea_spatial_att
)
return
mask_loss
return
mask_loss
def
feature_loss
(
self
,
stu_feature
,
tea_feature
,
Mask_fg
,
Mask_bg
,
def
get_fea_loss
(
self
,
preds_S
,
preds_T
,
Mask_fg
,
Mask_bg
,
C_s
,
C_t
,
S_s
,
tea_channel_att
,
tea_spatial_att
):
S_t
):
Mask_fg
=
Mask_fg
.
unsqueeze
(
axis
=
1
)
Mask_fg
=
Mask_fg
.
unsqueeze
(
axis
=
1
)
Mask_bg
=
Mask_bg
.
unsqueeze
(
axis
=
1
)
Mask_bg
=
Mask_bg
.
unsqueeze
(
axis
=
1
)
tea_channel_att
=
tea_channel_at
t
.
unsqueeze
(
axis
=-
1
)
C_t
=
C_
t
.
unsqueeze
(
axis
=-
1
)
tea_channel_att
=
tea_channel_at
t
.
unsqueeze
(
axis
=-
1
)
C_t
=
C_
t
.
unsqueeze
(
axis
=-
1
)
tea_spatial_att
=
tea_spatial_at
t
.
unsqueeze
(
axis
=
1
)
S_t
=
S_
t
.
unsqueeze
(
axis
=
1
)
fea_t
=
paddle
.
multiply
(
tea_feature
,
paddle
.
sqrt
(
tea_spatial_at
t
))
fea_t
=
paddle
.
multiply
(
preds_T
,
paddle
.
sqrt
(
S_
t
))
fea_t
=
paddle
.
multiply
(
fea_t
,
paddle
.
sqrt
(
tea_channel_at
t
))
fea_t
=
paddle
.
multiply
(
fea_t
,
paddle
.
sqrt
(
C_
t
))
fg_fea_t
=
paddle
.
multiply
(
fea_t
,
paddle
.
sqrt
(
Mask_fg
))
fg_fea_t
=
paddle
.
multiply
(
fea_t
,
paddle
.
sqrt
(
Mask_fg
))
bg_fea_t
=
paddle
.
multiply
(
fea_t
,
paddle
.
sqrt
(
Mask_bg
))
bg_fea_t
=
paddle
.
multiply
(
fea_t
,
paddle
.
sqrt
(
Mask_bg
))
fea_s
=
paddle
.
multiply
(
stu_feature
,
paddle
.
sqrt
(
tea_spatial_at
t
))
fea_s
=
paddle
.
multiply
(
preds_S
,
paddle
.
sqrt
(
S_
t
))
fea_s
=
paddle
.
multiply
(
fea_s
,
paddle
.
sqrt
(
tea_channel_at
t
))
fea_s
=
paddle
.
multiply
(
fea_s
,
paddle
.
sqrt
(
C_
t
))
fg_fea_s
=
paddle
.
multiply
(
fea_s
,
paddle
.
sqrt
(
Mask_fg
))
fg_fea_s
=
paddle
.
multiply
(
fea_s
,
paddle
.
sqrt
(
Mask_fg
))
bg_fea_s
=
paddle
.
multiply
(
fea_s
,
paddle
.
sqrt
(
Mask_bg
))
bg_fea_s
=
paddle
.
multiply
(
fea_s
,
paddle
.
sqrt
(
Mask_bg
))
...
@@ -363,12 +380,18 @@ class FGDFeatureLoss(nn.Layer):
...
@@ -363,12 +380,18 @@ class FGDFeatureLoss(nn.Layer):
return
fg_loss
,
bg_loss
return
fg_loss
,
bg_loss
def
relation_loss
(
self
,
stu_feature
,
tea_feature
):
def
get_rela_loss
(
self
,
preds_S
,
preds_T
):
context_s
=
self
.
spatial_pool
(
stu_feature
,
"student"
)
context_s
=
self
.
spatial_pool
(
preds_S
,
0
)
context_t
=
self
.
spatial_pool
(
tea_feature
,
"teacher"
)
context_t
=
self
.
spatial_pool
(
preds_T
,
1
)
out_s
=
preds_S
out_t
=
preds_T
out_s
=
stu_feature
+
self
.
stu_conv_block
(
context_s
)
channel_add_s
=
self
.
channel_add_conv_s
(
context_s
)
out_t
=
tea_feature
+
self
.
tea_conv_block
(
context_t
)
out_s
=
out_s
+
channel_add_s
channel_add_t
=
self
.
channel_add_conv_t
(
context_t
)
out_t
=
out_t
+
channel_add_t
rela_loss
=
F
.
mse_loss
(
out_s
,
out_t
,
reduction
=
"sum"
)
/
len
(
out_s
)
rela_loss
=
F
.
mse_loss
(
out_s
,
out_t
,
reduction
=
"sum"
)
/
len
(
out_s
)
...
@@ -378,74 +401,90 @@ class FGDFeatureLoss(nn.Layer):
...
@@ -378,74 +401,90 @@ class FGDFeatureLoss(nn.Layer):
mask
[
xl
:
xr
,
yl
:
yr
]
=
paddle
.
maximum
(
mask
[
xl
:
xr
,
yl
:
yr
],
value
)
mask
[
xl
:
xr
,
yl
:
yr
]
=
paddle
.
maximum
(
mask
[
xl
:
xr
,
yl
:
yr
],
value
)
return
mask
return
mask
def
forward
(
self
,
stu_feature
,
tea_feature
,
inputs
):
def
forward
(
self
,
preds_S
,
preds_T
,
inputs
):
"""Forward function.
"""Forward function.
Args:
Args:
stu_feature
(Tensor): Bs*C*H*W, student's feature map
preds_S
(Tensor): Bs*C*H*W, student's feature map
tea_feature
(Tensor): Bs*C*H*W, teacher's feature map
preds_T
(Tensor): Bs*C*H*W, teacher's feature map
inputs: The inputs with gt bbox and input shape info.
inputs: The inputs with gt bbox and input shape info.
"""
"""
assert
stu_feature
.
shape
[
-
2
:]
==
stu_feature
.
shape
[
-
2
:],
\
assert
preds_S
.
shape
[
-
2
:]
==
preds_T
.
shape
[
-
2
:],
\
f
'The shape of Student feature
{
stu_feature
.
shape
}
and Teacher feature
{
tea_feature
.
shape
}
should be the same.'
f
'The shape of Student feature
{
preds_S
.
shape
}
and Teacher feature
{
preds_T
.
shape
}
should be the same.'
assert
"gt_bbox"
in
inputs
.
keys
()
and
"im_shape"
in
inputs
.
keys
(
),
"ERROR! FGDFeatureLoss need gt_bbox and im_shape as inputs."
gt_bboxes
=
inputs
[
'gt_bbox'
]
gt_bboxes
=
inputs
[
'gt_bbox'
]
ins_shape
=
[
assert
len
(
gt_bboxes
)
==
preds_S
.
shape
[
0
],
"error"
inputs
[
'im_shape'
][
i
]
for
i
in
range
(
inputs
[
'im_shape'
].
shape
[
0
])
]
# select index
index_gt
=
[]
for
i
in
range
(
len
(
gt_bboxes
)):
if
gt_bboxes
[
i
].
size
>
2
:
index_gt
.
append
(
i
)
index_gt_t
=
paddle
.
to_tensor
(
index_gt
)
# to tensor
preds_S
=
paddle
.
index_select
(
preds_S
,
index_gt_t
)
preds_T
=
paddle
.
index_select
(
preds_T
,
index_gt_t
)
assert
preds_S
.
shape
==
preds_T
.
shape
,
"error"
img_metas_tmp
=
[{
'img_shape'
:
inputs
[
'im_shape'
][
i
]
}
for
i
in
range
(
inputs
[
'im_shape'
].
shape
[
0
])]
img_metas
=
[
img_metas_tmp
[
c
]
for
c
in
index_gt
]
gt_bboxes
=
[
gt_bboxes
[
c
]
for
c
in
index_gt
]
assert
len
(
gt_bboxes
)
==
len
(
img_metas
),
"error"
assert
len
(
gt_bboxes
)
==
preds_T
.
shape
[
0
],
"error"
if
self
.
align
is
not
None
:
if
self
.
align
is
not
None
:
stu_feature
=
self
.
align
(
stu_feature
)
preds_S
=
self
.
align
(
preds_S
)
N
,
C
,
H
,
W
=
stu_feature
.
shape
N
,
C
,
H
,
W
=
preds_S
.
shape
tea_spatial_att
,
tea_channel_att
=
self
.
spatial_channel_attention
(
S_attention_t
,
C_attention_t
=
self
.
gc_block
(
preds_T
,
self
.
temp
)
tea_feature
,
self
.
temp
)
S_attention_s
,
C_attention_s
=
self
.
gc_block
(
preds_S
,
self
.
temp
)
stu_spatial_att
,
stu_channel_att
=
self
.
spatial_channel_attention
(
stu_feature
,
self
.
temp
)
Mask_fg
=
paddle
.
zeros
(
tea_spatial_at
t
.
shape
)
Mask_fg
=
paddle
.
zeros
(
S_attention_
t
.
shape
)
Mask_bg
=
paddle
.
ones_like
(
tea_spatial_at
t
)
Mask_bg
=
paddle
.
ones_like
(
S_attention_
t
)
one_tmp
=
paddle
.
ones
([
*
tea_spatial_at
t
.
shape
[
1
:]])
one_tmp
=
paddle
.
ones
([
*
S_attention_
t
.
shape
[
1
:]])
zero_tmp
=
paddle
.
zeros
([
*
tea_spatial_at
t
.
shape
[
1
:]])
zero_tmp
=
paddle
.
zeros
([
*
S_attention_
t
.
shape
[
1
:]])
wmin
,
wmax
,
hmin
,
hmax
,
area
=
[],
[],
[],
[],
[]
wmin
,
wmax
,
hmin
,
hmax
,
area
=
[],
[],
[],
[],
[]
for
i
in
range
(
N
):
for
i
in
range
(
N
):
tmp_box
=
paddle
.
ones_like
(
gt_bboxes
[
i
])
new_boxxes
=
paddle
.
ones_like
(
gt_bboxes
[
i
])
tmp_box
[:,
0
]
=
gt_bboxes
[
i
][:,
0
]
/
ins_shape
[
i
][
1
]
*
W
new_boxxes
[:,
0
]
=
gt_bboxes
[
i
][:,
0
]
/
img_metas
[
i
][
'img_shape'
][
tmp_box
[:,
2
]
=
gt_bboxes
[
i
][:,
2
]
/
ins_shape
[
i
][
1
]
*
W
1
]
*
W
tmp_box
[:,
1
]
=
gt_bboxes
[
i
][:,
1
]
/
ins_shape
[
i
][
0
]
*
H
new_boxxes
[:,
2
]
=
gt_bboxes
[
i
][:,
2
]
/
img_metas
[
i
][
'img_shape'
][
tmp_box
[:,
3
]
=
gt_bboxes
[
i
][:,
3
]
/
ins_shape
[
i
][
0
]
*
H
1
]
*
W
new_boxxes
[:,
1
]
=
gt_bboxes
[
i
][:,
1
]
/
img_metas
[
i
][
'img_shape'
][
zero
=
paddle
.
zeros_like
(
tmp_box
[:,
0
],
dtype
=
"int32"
)
0
]
*
H
ones
=
paddle
.
ones_like
(
tmp_box
[:,
2
],
dtype
=
"int32"
)
new_boxxes
[:,
3
]
=
gt_bboxes
[
i
][:,
3
]
/
img_metas
[
i
][
'img_shape'
][
0
]
*
H
zero
=
paddle
.
zeros_like
(
new_boxxes
[:,
0
],
dtype
=
"int32"
)
ones
=
paddle
.
ones_like
(
new_boxxes
[:,
2
],
dtype
=
"int32"
)
wmin
.
append
(
wmin
.
append
(
paddle
.
cast
(
paddle
.
floor
(
tmp_box
[:,
0
]),
"int32"
).
maximum
(
zero
))
paddle
.
cast
(
paddle
.
floor
(
new_boxxes
[:,
0
]),
"int32"
).
maximum
(
wmax
.
append
(
paddle
.
cast
(
paddle
.
ceil
(
tmp_box
[:,
2
]),
"int32"
))
zero
))
wmax
.
append
(
paddle
.
cast
(
paddle
.
ceil
(
new_boxxes
[:,
2
]),
"int32"
))
hmin
.
append
(
hmin
.
append
(
paddle
.
cast
(
paddle
.
floor
(
tmp_box
[:,
1
]),
"int32"
).
maximum
(
zero
))
paddle
.
cast
(
paddle
.
floor
(
new_boxxes
[:,
1
]),
"int32"
).
maximum
(
hmax
.
append
(
paddle
.
cast
(
paddle
.
ceil
(
tmp_box
[:,
3
]),
"int32"
))
zero
))
hmax
.
append
(
paddle
.
cast
(
paddle
.
ceil
(
new_boxxes
[:,
3
]),
"int32"
))
area
_recip
=
1.0
/
(
area
=
1.0
/
(
hmax
[
i
].
reshape
([
1
,
-
1
])
+
1
-
hmin
[
i
].
reshape
([
1
,
-
1
]))
/
(
hmax
[
i
].
reshape
([
1
,
-
1
])
+
1
-
hmin
[
i
].
reshape
([
1
,
-
1
]))
/
(
wmax
[
i
].
reshape
([
1
,
-
1
])
+
1
-
wmin
[
i
].
reshape
([
1
,
-
1
]))
wmax
[
i
].
reshape
([
1
,
-
1
])
+
1
-
wmin
[
i
].
reshape
([
1
,
-
1
]))
for
j
in
range
(
len
(
gt_bboxes
[
i
])):
for
j
in
range
(
len
(
gt_bboxes
[
i
])):
Mask_fg
[
i
]
=
self
.
mask_value
(
Mask_fg
[
i
],
hmin
[
i
][
j
],
Mask_fg
[
i
]
=
self
.
mask_value
(
Mask_fg
[
i
],
hmin
[
i
][
j
],
hmax
[
i
][
j
]
+
1
,
wmin
[
i
][
j
],
hmax
[
i
][
j
]
+
1
,
wmin
[
i
][
j
],
wmax
[
i
][
j
]
+
1
,
area_recip
[
0
][
j
])
wmax
[
i
][
j
]
+
1
,
area
[
0
][
j
])
Mask_bg
[
i
]
=
paddle
.
where
(
Mask_fg
[
i
]
>
zero_tmp
,
zero_tmp
,
one_tmp
)
Mask_bg
[
i
]
=
paddle
.
where
(
Mask_fg
[
i
]
>
zero_tmp
,
zero_tmp
,
one_tmp
)
if
paddle
.
sum
(
Mask_bg
[
i
]):
if
paddle
.
sum
(
Mask_bg
[
i
]):
Mask_bg
[
i
]
/=
paddle
.
sum
(
Mask_bg
[
i
])
Mask_bg
[
i
]
/=
paddle
.
sum
(
Mask_bg
[
i
])
fg_loss
,
bg_loss
=
self
.
feature_loss
(
stu_feature
,
tea_feature
,
Mask_fg
,
fg_loss
,
bg_loss
=
self
.
get_fea_loss
(
preds_S
,
preds_T
,
Mask_fg
,
Mask_bg
,
Mask_bg
,
tea_channel_att
,
C_attention_s
,
C_attention_t
,
tea_spatial_att
)
S_attention_s
,
S_attention_t
)
mask_loss
=
self
.
mask_loss
(
stu_channel_att
,
tea_channel_att
,
mask_loss
=
self
.
get_mask_loss
(
C_attention_s
,
C_attention_t
,
stu_spatial_att
,
tea_spatial_att
)
S_attention_s
,
S_attention_t
)
rela_loss
=
self
.
relation_loss
(
stu_feature
,
tea_feature
)
rela_loss
=
self
.
get_rela_loss
(
preds_S
,
preds_T
)
loss
=
self
.
alpha_fgd
*
fg_loss
+
self
.
beta_fgd
*
bg_loss
\
loss
=
self
.
alpha_fgd
*
fg_loss
+
self
.
beta_fgd
*
bg_loss
\
+
self
.
gamma_fgd
*
mask_loss
+
self
.
lambda_fgd
*
rela_loss
+
self
.
gamma_fgd
*
mask_loss
+
self
.
lambda_fgd
*
rela_loss
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录