提交 1b2374ad 编写于 作者: Z zchen0211

new prelu with functor

上级 c7dfec11
...@@ -27,13 +27,14 @@ class PReluOp : public framework::OperatorWithKernel { ...@@ -27,13 +27,14 @@ class PReluOp : public framework::OperatorWithKernel {
protected: protected:
void InferShape(const framework::InferShapeContext &ctx) const override { void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) should not be null");
auto *in = ctx.Input<framework::Tensor>("X"); auto *in = ctx.Input<framework::Tensor>("X");
auto *out = ctx.Output<framework::LoDTensor>("Out"); auto *out = ctx.Output<framework::LoDTensor>("Out");
out->Resize(in->dims()); out->Resize(in->dims());
} }
}; };
// template <typename AttrType> template <typename AttrType>
class PReluOpMaker : public framework::OpProtoAndCheckerMaker { class PReluOpMaker : public framework::OpProtoAndCheckerMaker {
public: public:
PReluOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) PReluOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
...@@ -43,10 +44,12 @@ class PReluOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -43,10 +44,12 @@ class PReluOpMaker : public framework::OpProtoAndCheckerMaker {
AddComment(R"DOC(PRelu operator AddComment(R"DOC(PRelu operator
The equation is: The equation is:
f(x) = alpha * x , for x < 0
f(x) = x , for x >= 0 f(x) = alpha * x , for x < 0
f(x) = x , for x >= 0
)DOC"); )DOC");
AddAttr<float>("alpha", "The scaling factor alpha of prelu.") AddAttr<AttrType>("alpha", "The scaling factor alpha of prelu.")
.SetDefault(0.0); .SetDefault(0.0);
} }
}; };
...@@ -59,6 +62,8 @@ class PReluGradOp : public framework::OperatorWithKernel { ...@@ -59,6 +62,8 @@ class PReluGradOp : public framework::OperatorWithKernel {
protected: protected:
void InferShape(const framework::InferShapeContext &ctx) const override { void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) must not be null."); PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) must not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Out")),
"Input(Out@GRAD) should not be null");
auto *X_grad = auto *X_grad =
ctx.Output<framework::LoDTensor>(framework::GradVarName("X")); ctx.Output<framework::LoDTensor>(framework::GradVarName("X"));
auto *X = ctx.Input<framework::Tensor>("X"); auto *X = ctx.Input<framework::Tensor>("X");
...@@ -72,7 +77,7 @@ class PReluGradOp : public framework::OperatorWithKernel { ...@@ -72,7 +77,7 @@ class PReluGradOp : public framework::OperatorWithKernel {
namespace ops = paddle::operators; namespace ops = paddle::operators;
REGISTER_OP(prelu, ops::PReluOp, ops::PReluOpMaker, prelu_grad, REGISTER_OP(prelu, ops::PReluOp, ops::PReluOpMaker<float>, prelu_grad,
ops::PReluGradOp); ops::PReluGradOp);
REGISTER_OP_CPU_KERNEL(prelu, REGISTER_OP_CPU_KERNEL(prelu,
ops::PReluKernel<paddle::platform::CPUPlace, float>); ops::PReluKernel<paddle::platform::CPUPlace, float>);
......
...@@ -15,6 +15,7 @@ limitations under the License. */ ...@@ -15,6 +15,7 @@ limitations under the License. */
#pragma once #pragma once
#include "paddle/framework/eigen.h" #include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h" #include "paddle/framework/op_registry.h"
#include "paddle/platform/transform.h"
namespace paddle { namespace paddle {
namespace operators { namespace operators {
...@@ -23,28 +24,60 @@ using Tensor = framework::Tensor; ...@@ -23,28 +24,60 @@ using Tensor = framework::Tensor;
template <typename T, int MajorType = Eigen::RowMajor, template <typename T, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex> typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>; using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
using platform::Transform;
template <typename Place, typename T> template <typename T>
class Prelu_functor {
public:
explicit Prelu_functor(const T& alpha) : alpha_(alpha) {}
HOSTDEVICE T operator()(const T& X) const {
if (X > 0)
return X;
else
return X * alpha_;
}
private:
T alpha_;
};
template <typename Place, typename T, typename AttrType = T>
class PReluKernel : public framework::OpKernel { class PReluKernel : public framework::OpKernel {
public: public:
void Compute(const framework::ExecutionContext& context) const override { void Compute(const framework::ExecutionContext& context) const override {
auto* X = context.Input<Tensor>("X"); auto* X = context.Input<Tensor>("X");
auto* Out = context.Output<Tensor>("Out"); auto* Out = context.Output<Tensor>("Out");
Out->mutable_data<T>(context.GetPlace()); const T* X_ptr = X->data<T>();
T* O_ptr = Out->mutable_data<T>(context.GetPlace());
auto alpha = static_cast<T>(context.Attr<float>("alpha")); auto alpha = static_cast<T>(context.Attr<AttrType>("alpha"));
auto X_vec = EigenVector<T>::Flatten(*X); int numel = X->numel();
auto Out_vec = EigenVector<T>::Flatten(*Out);
// auto place = context.GetEigenDevice<Place>(); auto place = context.GetPlace();
// Out_vec.device(place) Transform(place, X_ptr, X_ptr + numel, O_ptr, Prelu_functor<T>(alpha));
Out_vec = X_vec.cwiseMax(0.f) + X_vec.cwiseMin(0.f) * alpha;
} }
}; };
template <typename Place, typename T> template <typename T>
class Prelu_Grad_functor {
public:
explicit Prelu_Grad_functor(const T& alpha) : alpha_(alpha) {}
HOSTDEVICE T operator()(const T& Out, const T& dOut) const {
if (Out > 0)
return dOut;
else
return dOut * alpha_;
}
private:
T alpha_;
};
template <typename Place, typename T, typename AttrType = T>
class PReluGradKernel : public framework::OpKernel { class PReluGradKernel : public framework::OpKernel {
public: public:
void Compute(const framework::ExecutionContext& context) const override { void Compute(const framework::ExecutionContext& context) const override {
...@@ -53,16 +86,16 @@ class PReluGradKernel : public framework::OpKernel { ...@@ -53,16 +86,16 @@ class PReluGradKernel : public framework::OpKernel {
auto* Out = context.Input<Tensor>("Out"); auto* Out = context.Input<Tensor>("Out");
auto alpha = static_cast<T>(context.Attr<float>("alpha")); auto alpha = static_cast<T>(context.Attr<AttrType>("alpha"));
dX->mutable_data<T>(context.GetPlace()); T* dX_ptr = dX->mutable_data<T>(context.GetPlace());
for (int i = 0; i < dX->numel(); ++i) { const T* dO_ptr = dO->data<T>();
if (Out->data<T>()[i] > 0) { const T* O_ptr = Out->data<T>();
dX->data<T>()[i] = dO->data<T>()[i]; int numel = dX->numel();
} else {
dX->data<T>()[i] = dO->data<T>()[i] * alpha; auto place = context.GetPlace();
} Transform(place, O_ptr, O_ptr + numel, dO_ptr, dX_ptr,
} Prelu_Grad_functor<T>(alpha));
} }
}; };
......
...@@ -6,7 +6,7 @@ from op_test import OpTest ...@@ -6,7 +6,7 @@ from op_test import OpTest
class PreluTest(OpTest): class PreluTest(OpTest):
def setUp(self): def setUp(self):
self.op_type = "prelu" self.op_type = "prelu"
self.inputs = {'X': np.random.normal(size=(3, 5)).astype("float32")} self.inputs = {'X': np.random.normal(size=(10, 10)).astype("float32")}
self.attrs = {'alpha': 0.1} self.attrs = {'alpha': 0.1}
out_np = np.maximum(self.inputs['X'], 0.) out_np = np.maximum(self.inputs['X'], 0.)
out_np = out_np + np.minimum(self.inputs['X'], 0.) * self.attrs['alpha'] out_np = out_np + np.minimum(self.inputs['X'], 0.) * self.attrs['alpha']
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册