From 192cc5dd3260bede2ff9cadd90f9249d853f0cf0 Mon Sep 17 00:00:00 2001 From: Tomasz Patejko Date: Tue, 13 Mar 2018 11:07:08 -0400 Subject: [PATCH] Implementation of MKLDNN LRN --- paddle/fluid/operators/lrn_mkldnn_op.cc | 189 ++++++++++++++++++ paddle/fluid/operators/lrn_op.cc | 55 ++++- .../fluid/tests/unittests/test_lrn_op.py | 10 + 3 files changed, 253 insertions(+), 1 deletion(-) create mode 100644 paddle/fluid/operators/lrn_mkldnn_op.cc diff --git a/paddle/fluid/operators/lrn_mkldnn_op.cc b/paddle/fluid/operators/lrn_mkldnn_op.cc new file mode 100644 index 000000000..334597ab0 --- /dev/null +++ b/paddle/fluid/operators/lrn_mkldnn_op.cc @@ -0,0 +1,189 @@ +/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/fluid/framework/tensor.h" +#include "paddle/fluid/operators/lrn_op.h" +#include "paddle/fluid/platform/mkldnn_helper.h" + +namespace paddle { +namespace operators { + +using paddle::framework::Tensor; +using paddle::platform::MKLDNNDeviceContext; + +namespace { +mkldnn::algorithm LRNAlgorithm(const paddle::framework::ExecutionContext& ctx) { + mkldnn::algorithm algorithm = mkldnn::lrn_across_channels; + + std::string algorithm_str = ctx.Attr("algorithm"); + if (algorithm_str == "WITHIN_CHANNEL") { + algorithm = mkldnn::lrn_within_channel; + } + return algorithm; +} +} // namespace + +template +class LRNMKLDNNOpKernel : public paddle::framework::OpKernel { + public: + void Compute(const paddle::framework::ExecutionContext& ctx) const override { + PADDLE_ENFORCE(std::is_same::value, + "MKLDNN LRN must use float data."); + PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()), + "MKLDNN LRN must use CPUPlace."); + + auto& dev_ctx = ctx.template device_context(); + const auto& mkldnn_engine = dev_ctx.GetEngine(); + + auto x = ctx.Input("X"); + auto out = ctx.Output("Out"); + auto mid = ctx.Output("MidOut"); + + auto input_data = x->data(); + auto output_data = out->mutable_data(ctx.GetPlace()); + mid->mutable_data(ctx.GetPlace()); + + const std::string key = ctx.op().Output("Out"); + const std::string key_src_memory = key + "@lrn_src_memory"; + const std::string key_pd = key + "@lrn_pd"; + const std::string key_workspace_memory = key + "@lrn_workspace_memory"; + + const int n = ctx.Attr("n"); + const float alpha = ctx.Attr("alpha"); + const float beta = ctx.Attr("beta"); + const float k = ctx.Attr("k"); + + auto algorithm = LRNAlgorithm(ctx); + + auto e_mid = framework::EigenTensor::From(*mid); + e_mid = e_mid.constant(k); + + auto dims = paddle::framework::vectorize2int(x->dims()); + + auto src_md = paddle::platform::MKLDNNMemDesc( + dims, mkldnn::memory::data_type::f32, mkldnn::memory::format::nchw); + + auto dst_md = paddle::platform::MKLDNNMemDesc( + dims, mkldnn::memory::data_type::f32, mkldnn::memory::format::nchw); + + auto forward_desc = mkldnn::lrn_forward::desc{ + mkldnn::prop_kind::forward, algorithm, src_md, n, alpha, beta, k}; + + auto forward_pd = std::make_shared( + forward_desc, mkldnn_engine); + + dev_ctx.SetBlob(key_pd, forward_pd); + + auto src_memory_pd = mkldnn::memory::primitive_desc{src_md, mkldnn_engine}; + auto src_memory = std::make_shared( + src_memory_pd, static_cast(const_cast(input_data))); + + dev_ctx.SetBlob(key_src_memory, src_memory); + auto dst_memory = mkldnn::memory{{dst_md, mkldnn_engine}, + static_cast(output_data)}; + + auto workspace_md = forward_pd->workspace_primitive_desc(); + auto workspace_memory = std::make_shared(workspace_md); + + dev_ctx.SetBlob(key_workspace_memory, workspace_memory); + + auto forward_op = mkldnn::lrn_forward{*forward_pd, *src_memory, + *workspace_memory, dst_memory}; + + std::vector pipeline = {forward_op}; + mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait(); + } +}; + +template +class LRNMKLDNNGradOpKernel : public paddle::framework::OpKernel { + public: + void Compute(const paddle::framework::ExecutionContext& ctx) const override { + PADDLE_ENFORCE(std::is_same::value, + "MKLDNN LRN must use float data."); + PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()), + "MKLDNN LRN must use CPUPlace."); + + auto x = ctx.Input("X"); + + auto out_grad = ctx.Input(framework::GradVarName("Out")); + auto x_grad = ctx.Output(framework::GradVarName("X")); + + const std::string key = ctx.op().Input("Out"); + const std::string key_src_memory = key + "@lrn_src_memory"; + const std::string key_pd = key + "@lrn_pd"; + const std::string key_workspace_memory = key + "@lrn_workspace_memory"; + + const int n = ctx.Attr("n"); + const float alpha = ctx.Attr("alpha"); + const float beta = ctx.Attr("beta"); + const float k = ctx.Attr("k"); + + auto& dev_ctx = ctx.template device_context(); + const auto& mkldnn_engine = dev_ctx.GetEngine(); + + auto x_grad_data = x_grad->mutable_data(ctx.GetPlace()); + auto out_grad_data = out_grad->data(); + + auto dims = paddle::framework::vectorize2int(x->dims()); + + auto src_md = paddle::platform::MKLDNNMemDesc( + dims, mkldnn::memory::data_type::f32, mkldnn::memory::format::nchw); + + auto diff_src_md = paddle::platform::MKLDNNMemDesc( + dims, mkldnn::memory::data_type::f32, mkldnn::memory::format::nchw); + + auto diff_dst_md = paddle::platform::MKLDNNMemDesc( + dims, mkldnn::memory::data_type::f32, mkldnn::memory::format::nchw); + + auto diff_dst_memory = + mkldnn::memory{{diff_dst_md, mkldnn_engine}, + static_cast(const_cast(out_grad_data))}; + + auto diff_src_memory = mkldnn::memory{{diff_src_md, mkldnn_engine}, + static_cast(x_grad_data)}; + + auto algorithm = LRNAlgorithm(ctx); + + auto backward_desc = mkldnn::lrn_backward::desc{ + algorithm, src_md, diff_src_md, n, alpha, beta, k}; + + auto forward_pd = dev_ctx.GetBlob(key_pd); + + auto backward_pd = mkldnn::lrn_backward::primitive_desc{ + backward_desc, mkldnn_engine, + *static_cast(forward_pd.get())}; + + std::shared_ptr workspace_memory = + dev_ctx.GetBlob(key_workspace_memory); + + auto src_memory = dev_ctx.GetBlob(key_src_memory); + auto backward_op = mkldnn::lrn_backward{ + backward_pd, *static_cast(src_memory.get()), + diff_dst_memory, *static_cast(workspace_memory.get()), + diff_src_memory}; + + std::vector pipeline = {backward_op}; + mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait(); + } +}; +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; + +REGISTER_OP_KERNEL(lrn, MKLDNN, paddle::platform::CPUPlace, + ops::LRNMKLDNNOpKernel); +REGISTER_OP_KERNEL(lrn_grad, MKLDNN, paddle::platform::CPUPlace, + ops::LRNMKLDNNGradOpKernel); diff --git a/paddle/fluid/operators/lrn_op.cc b/paddle/fluid/operators/lrn_op.cc index 692e85dcf..6bd451a11 100644 --- a/paddle/fluid/operators/lrn_op.cc +++ b/paddle/fluid/operators/lrn_op.cc @@ -13,6 +13,9 @@ See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/operators/lrn_op.h" +#ifdef PADDLE_WITH_MKLDNN +#include "paddle/fluid/platform/mkldnn_helper.h" +#endif namespace paddle { namespace operators { @@ -135,6 +138,24 @@ class LRNOp : public framework::OperatorWithKernel { ctx->SetOutputDim("MidOut", x_dim); ctx->ShareLoD("X", /*->*/ "Out"); } + + framework::OpKernelType GetExpectedKernelType( + const framework::ExecutionContext& ctx) const { + framework::LibraryType library_{framework::LibraryType::kPlain}; +#ifdef PADDLE_WITH_MKLDNN + if (library_ == framework::LibraryType::kPlain && + platform::CanMKLDNNBeUsed(ctx)) { + library_ = framework::LibraryType::kMKLDNN; + } +#endif + + std::string data_format = ctx.Attr("data_format"); + // TODO(pzelazko-intel): enable MKLDNN layout when it's ready + framework::DataLayout layout_ = framework::StringToDataLayout(data_format); + return framework::OpKernelType( + framework::ToDataType(ctx.Input("X")->type()), ctx.GetPlace(), + layout_, library_); + } }; template @@ -176,6 +197,21 @@ class LRNOpMaker : public framework::OpProtoAndCheckerMaker { "beta is the power number.") .SetDefault(0.75) .GreaterThan(0.0); + AddAttr("use_mkldnn", + "(bool, default false) Only used in mkldnn kernel") + .SetDefault(false); + AddAttr( + "data_format", + "(string, default NCHW) Only used in " + "An optional string from: \"NHWC\", \"NCHW\". " + "Defaults to \"NHWC\". Specify the data format of the output data, " + "the input will be transformed automatically. ") + .SetDefault("AnyLayout"); + AddAttr("algorithm", + "(string default ACROSS_CHANNELS" + "An optional string: \"ACROSS_CHANNELS\", " + "\"WITHIN_CHANNEL\". Used by MKLDNN library") + .SetDefault("ACROSS_CHANNELS"); AddComment(R"DOC( Local Response Normalization Operator. @@ -223,8 +259,25 @@ class LRNOpGrad : public framework::OperatorWithKernel { auto x_dims = ctx->GetInputDim("X"); ctx->SetOutputDim(framework::GradVarName("X"), x_dims); } -}; + framework::OpKernelType GetExpectedKernelType( + const framework::ExecutionContext& ctx) const { + framework::LibraryType library_{framework::LibraryType::kPlain}; +#ifdef PADDLE_WITH_MKLDNN + if (library_ == framework::LibraryType::kPlain && + platform::CanMKLDNNBeUsed(ctx)) { + library_ = framework::LibraryType::kMKLDNN; + } +#endif + + std::string data_format = ctx.Attr("data_format"); + // TODO(pzelazko-intel): enable MKLDNN layout when it's ready + framework::DataLayout layout_ = framework::StringToDataLayout(data_format); + return framework::OpKernelType( + framework::ToDataType(ctx.Input("X")->type()), ctx.GetPlace(), + layout_, library_); + } +}; } // namespace operators } // namespace paddle diff --git a/python/paddle/fluid/tests/unittests/test_lrn_op.py b/python/paddle/fluid/tests/unittests/test_lrn_op.py index eaff45cbb..2268eafdb 100644 --- a/python/paddle/fluid/tests/unittests/test_lrn_op.py +++ b/python/paddle/fluid/tests/unittests/test_lrn_op.py @@ -87,5 +87,15 @@ class TestLRNOp(OpTest): self.check_grad(['X'], 'Out', max_relative_error=0.01) +class TestLRNMKLDNNOp(TestLRNOp): + def get_attrs(self): + attrs = TestLRNOp.get_attrs(self) + attrs['use_mkldnn'] = True + return attrs + + def test_check_output(self): + self.check_output(atol=0.002) + + if __name__ == "__main__": unittest.main() -- GitLab