Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
18d16b7a
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
18d16b7a
编写于
3月 29, 2022
作者:
Y
YixinKristy
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Update README_cn.md
上级
a28c5eae
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
14 addition
and
14 deletion
+14
-14
README_cn.md
README_cn.md
+14
-14
未找到文件。
README_cn.md
浏览文件 @
18d16b7a
...
@@ -14,7 +14,7 @@
...
@@ -14,7 +14,7 @@
</div>
</div>
##
产品动态 <img src="https://user-images.githubusercontent.com/48054808/157793354-6e7f381a-0aa6-4bb7-845c-9acf2ecc05c3.png" width="30"/>
##
<img src="https://user-images.githubusercontent.com/48054808/157793354-6e7f381a-0aa6-4bb7-845c-9acf2ecc05c3.png" width="20"/> 产品动态
-
🔥
**2022.3.24:PaddleDetection发布[release/2.4版本](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4)**
-
🔥
**2022.3.24:PaddleDetection发布[release/2.4版本](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4)**
...
@@ -43,7 +43,7 @@
...
@@ -43,7 +43,7 @@
-
新增
[
多目标跟踪
](
configs/mot
)
能力,模型包括DeepSORT,JDE,FairMOT。
-
新增
[
多目标跟踪
](
configs/mot
)
能力,模型包括DeepSORT,JDE,FairMOT。
-
发布PPYOLO系列模型压缩模型,新增
[
ONNX模型导出教程
](
deploy/EXPORT_ONNX_MODEL.md
)
。
-
发布PPYOLO系列模型压缩模型,新增
[
ONNX模型导出教程
](
deploy/EXPORT_ONNX_MODEL.md
)
。
##
简介 <img title="" src="https://user-images.githubusercontent.com/48054808/157795569-9fc77c85-732f-4870-9be0-99a7fe2cff27.png" alt="" width="30">
##
<img title="" src="https://user-images.githubusercontent.com/48054808/157795569-9fc77c85-732f-4870-9be0-99a7fe2cff27.png" alt="" width="20"> 简介
**PaddleDetection**
为基于飞桨PaddlePaddle的端到端目标检测套件,内置
**190+主流目标检测、实例分割、跟踪、关键点检测**
算法,其中包括
**服务器端和移动端高精度、轻量级**
产业级SOTA模型、冠军方案和学术前沿算法,并提供配置化的网络模块组件、十余种数据增强策略和损失函数等高阶优化支持和多种部署方案,在打通数据处理、模型开发、训练、压缩、部署全流程的基础上,提供丰富的案例及教程,加速算法产业落地应用。
**PaddleDetection**
为基于飞桨PaddlePaddle的端到端目标检测套件,内置
**190+主流目标检测、实例分割、跟踪、关键点检测**
算法,其中包括
**服务器端和移动端高精度、轻量级**
产业级SOTA模型、冠军方案和学术前沿算法,并提供配置化的网络模块组件、十余种数据增强策略和损失函数等高阶优化支持和多种部署方案,在打通数据处理、模型开发、训练、压缩、部署全流程的基础上,提供丰富的案例及教程,加速算法产业落地应用。
...
@@ -59,14 +59,14 @@
...
@@ -59,14 +59,14 @@
<img
src=
"https://user-images.githubusercontent.com/48054808/157826886-2e101a71-25a2-42f5-bf5e-30a97be28f46.gif"
width=
"800"
/>
<img
src=
"https://user-images.githubusercontent.com/48054808/157826886-2e101a71-25a2-42f5-bf5e-30a97be28f46.gif"
width=
"800"
/>
</div>
</div>
##
特性 <img src="https://user-images.githubusercontent.com/48054808/157799599-e6a66855-bac6-4e75-b9c0-96e13cb9612f.png" width="30"/>
##
<img src="https://user-images.githubusercontent.com/48054808/157799599-e6a66855-bac6-4e75-b9c0-96e13cb9612f.png" width="20"/> 特性
-
**模型丰富**
: 包含
**目标检测**
、
**实例分割**
、
**人脸检测**
、
****
关键点检测
****
、
**多目标跟踪**
等
**250+个预训练模型**
,涵盖多种
**全球竞赛冠军**
方案。
-
**模型丰富**
: 包含
**目标检测**
、
**实例分割**
、
**人脸检测**
、
****
关键点检测
****
、
**多目标跟踪**
等
**250+个预训练模型**
,涵盖多种
**全球竞赛冠军**
方案。
-
**使用简洁**
:模块化设计,解耦各个网络组件,开发者轻松搭建、试用各种检测模型及优化策略,快速得到高性能、定制化的算法。
-
**使用简洁**
:模块化设计,解耦各个网络组件,开发者轻松搭建、试用各种检测模型及优化策略,快速得到高性能、定制化的算法。
-
**端到端打通**
: 从数据增强、组网、训练、压缩、部署端到端打通,并完备支持
**云端**
/
**边缘端**
多架构、多设备部署。
-
**端到端打通**
: 从数据增强、组网、训练、压缩、部署端到端打通,并完备支持
**云端**
/
**边缘端**
多架构、多设备部署。
-
**高性能**
: 基于飞桨的高性能内核,模型训练速度及显存占用优势明显。支持FP16训练, 支持多机训练。
-
**高性能**
: 基于飞桨的高性能内核,模型训练速度及显存占用优势明显。支持FP16训练, 支持多机训练。
##
技术交流 <img title="" src="https://user-images.githubusercontent.com/48054808/157800467-2a9946ad-30d1-49a9-b9db-ba33413d9c90.png" alt="" width="30">
##
<img title="" src="https://user-images.githubusercontent.com/48054808/157800467-2a9946ad-30d1-49a9-b9db-ba33413d9c90.png" alt="" width="20"> 技术交流
-
如果你发现任何PaddleDetection存在的问题或者是建议, 欢迎通过
[
GitHub Issues
](
https://github.com/PaddlePaddle/PaddleDetection/issues
)
给我们提issues。
-
如果你发现任何PaddleDetection存在的问题或者是建议, 欢迎通过
[
GitHub Issues
](
https://github.com/PaddlePaddle/PaddleDetection/issues
)
给我们提issues。
...
@@ -77,7 +77,7 @@
...
@@ -77,7 +77,7 @@
<img
src=
"https://user-images.githubusercontent.com/48054808/160531099-9811bbe6-cfbb-47d5-8bdb-c2b40684d7dd.png"
width =
"200"
/>
<img
src=
"https://user-images.githubusercontent.com/48054808/160531099-9811bbe6-cfbb-47d5-8bdb-c2b40684d7dd.png"
width =
"200"
/>
</div>
</div>
##
套件结构概览 <img src="https://user-images.githubusercontent.com/48054808/157827140-03ffaff7-7d14-48b4-9440-c38986ea378c.png" width="30"/>
##
<img src="https://user-images.githubusercontent.com/48054808/157827140-03ffaff7-7d14-48b4-9440-c38986ea378c.png" width="20"/> 套件结构概览
<table
align=
"center"
>
<table
align=
"center"
>
<tbody>
<tbody>
...
@@ -230,7 +230,7 @@
...
@@ -230,7 +230,7 @@
</tbody>
</tbody>
</table>
</table>
##
模型性能概览 <img src="https://user-images.githubusercontent.com/48054808/157801371-9a9a8c65-1690-4123-985a-e0559a7f9494.png" width="30"/>
##
<img src="https://user-images.githubusercontent.com/48054808/157801371-9a9a8c65-1690-4123-985a-e0559a7f9494.png" width="20"/> 模型性能概览
各模型结构和骨干网络的代表模型在COCO数据集上精度mAP和单卡Tesla V100上预测速度(FPS)对比图。
各模型结构和骨干网络的代表模型在COCO数据集上精度mAP和单卡Tesla V100上预测速度(FPS)对比图。
...
@@ -257,7 +257,7 @@
...
@@ -257,7 +257,7 @@
-
测试数据均使用高通骁龙865(4
\*
A77 + 4
\*
A55)处理器batch size为1, 开启4线程测试,测试使用NCNN预测库,测试脚本见
[
MobileDetBenchmark
](
https://github.com/JiweiMaster/MobileDetBenchmark
)
-
测试数据均使用高通骁龙865(4
\*
A77 + 4
\*
A55)处理器batch size为1, 开启4线程测试,测试使用NCNN预测库,测试脚本见
[
MobileDetBenchmark
](
https://github.com/JiweiMaster/MobileDetBenchmark
)
-
[
PP-PicoDet
](
configs/picodet
)
及
[
PP-YOLO-Tiny
](
configs/ppyolo
)
为PaddleDetection自研模型,其余模型PaddleDetection暂未提供
-
[
PP-PicoDet
](
configs/picodet
)
及
[
PP-YOLO-Tiny
](
configs/ppyolo
)
为PaddleDetection自研模型,其余模型PaddleDetection暂未提供
##
文档教程 <img src="https://user-images.githubusercontent.com/48054808/157828296-d5eb0ccb-23ea-40f5-9957-29853d7d13a9.png" width="30"/>
##
<img src="https://user-images.githubusercontent.com/48054808/157828296-d5eb0ccb-23ea-40f5-9957-29853d7d13a9.png" width="20"/> 文档教程
### 入门教程
### 入门教程
...
@@ -293,7 +293,7 @@
...
@@ -293,7 +293,7 @@
-
[
数据处理模块
](
docs/advanced_tutorials/READER.md
)
-
[
数据处理模块
](
docs/advanced_tutorials/READER.md
)
-
[
新增检测模型
](
docs/advanced_tutorials/MODEL_TECHNICAL.md
)
-
[
新增检测模型
](
docs/advanced_tutorials/MODEL_TECHNICAL.md
)
##
模型库 <img src="https://user-images.githubusercontent.com/48054808/157829890-a535b8a6-631c-4c87-b861-64d4b32b2d6a.png" width="30"/>
##
<img src="https://user-images.githubusercontent.com/48054808/157829890-a535b8a6-631c-4c87-b861-64d4b32b2d6a.png" width="20"/> 模型库
-
通用目标检测:
-
通用目标检测:
-
[
模型库
](
docs/MODEL_ZOO_cn.md
)
-
[
模型库
](
docs/MODEL_ZOO_cn.md
)
...
@@ -328,12 +328,12 @@
...
@@ -328,12 +328,12 @@
-
[
Objects365 2019 Challenge夺冠模型
](
static/docs/featured_model/champion_model/CACascadeRCNN.md
)
-
[
Objects365 2019 Challenge夺冠模型
](
static/docs/featured_model/champion_model/CACascadeRCNN.md
)
-
[
Open Images 2019-Object Detction比赛最佳单模型
](
static/docs/featured_model/champion_model/OIDV5_BASELINE_MODEL.md
)
-
[
Open Images 2019-Object Detction比赛最佳单模型
](
static/docs/featured_model/champion_model/OIDV5_BASELINE_MODEL.md
)
##
应用案例 <img title="" src="https://user-images.githubusercontent.com/48054808/157836473-1cf451fa-f01f-4148-ba68-b6d06d5da2f9.png" alt="" width="30">
##
<img title="" src="https://user-images.githubusercontent.com/48054808/157836473-1cf451fa-f01f-4148-ba68-b6d06d5da2f9.png" alt="" width="20"> 应用案例
-
[
人像圣诞特效自动生成工具
](
static/application/christmas
)
-
[
人像圣诞特效自动生成工具
](
static/application/christmas
)
-
[
安卓健身APP
](
https://github.com/zhiboniu/pose_demo_android
)
-
[
安卓健身APP
](
https://github.com/zhiboniu/pose_demo_android
)
##
第三方教程推荐 <img src="https://user-images.githubusercontent.com/48054808/157828296-d5eb0ccb-23ea-40f5-9957-29853d7d13a9.png" width="30"/>
##
<img src="https://user-images.githubusercontent.com/48054808/160552806-496dc3ba-beb6-4623-8e26-44416b5848bf.png" width="25"/> 第三方教程推荐
-
[
PaddleDetection在Windows下的部署(一)
](
https://zhuanlan.zhihu.com/p/268657833
)
-
[
PaddleDetection在Windows下的部署(一)
](
https://zhuanlan.zhihu.com/p/268657833
)
-
[
PaddleDetection在Windows下的部署(二)
](
https://zhuanlan.zhihu.com/p/280206376
)
-
[
PaddleDetection在Windows下的部署(二)
](
https://zhuanlan.zhihu.com/p/280206376
)
...
@@ -341,15 +341,15 @@
...
@@ -341,15 +341,15 @@
-
[
安全帽检测YOLOv3模型在树莓派上的部署
](
https://github.com/PaddleCV-FAQ/PaddleDetection-FAQ/blob/main/Lite%E9%83%A8%E7%BD%B2/yolov3_for_raspi.md
)
-
[
安全帽检测YOLOv3模型在树莓派上的部署
](
https://github.com/PaddleCV-FAQ/PaddleDetection-FAQ/blob/main/Lite%E9%83%A8%E7%BD%B2/yolov3_for_raspi.md
)
-
[
使用SSD-MobileNetv1完成一个项目--准备数据集到完成树莓派部署
](
https://github.com/PaddleCV-FAQ/PaddleDetection-FAQ/blob/main/Lite%E9%83%A8%E7%BD%B2/ssd_mobilenet_v1_for_raspi.md
)
-
[
使用SSD-MobileNetv1完成一个项目--准备数据集到完成树莓派部署
](
https://github.com/PaddleCV-FAQ/PaddleDetection-FAQ/blob/main/Lite%E9%83%A8%E7%BD%B2/ssd_mobilenet_v1_for_raspi.md
)
##
版本更新 <img src="https://user-images.githubusercontent.com/48054808/157835981-ef6057b4-6347-4768-8fcc-cd07fcc3d8b0.png" width="30"/>
##
<img src="https://user-images.githubusercontent.com/48054808/157835981-ef6057b4-6347-4768-8fcc-cd07fcc3d8b0.png" width="20"/> 版本更新
版本更新内容请参考
[
版本更新文档
](
docs/CHANGELOG.md
)
版本更新内容请参考
[
版本更新文档
](
docs/CHANGELOG.md
)
##
许可证书 <img title="" src="https://user-images.githubusercontent.com/48054808/157835345-f5d24128-abaf-4813-b793-d2e5bdc70e5a.png" alt="" width="30">
##
<img title="" src="https://user-images.githubusercontent.com/48054808/157835345-f5d24128-abaf-4813-b793-d2e5bdc70e5a.png" alt="" width="20"> 许可证书
本项目的发布受
[
Apache 2.0 license
](
LICENSE
)
许可认证。
本项目的发布受
[
Apache 2.0 license
](
LICENSE
)
许可认证。
##
贡献代码 <img src="https://user-images.githubusercontent.com/48054808/157835796-08d4ffbc-87d9-4622-89d8-cf11a44260fc.png" width="30"/>
##
<img src="https://user-images.githubusercontent.com/48054808/157835796-08d4ffbc-87d9-4622-89d8-cf11a44260fc.png" width="20"/> 贡献代码
我们非常欢迎你可以为PaddleDetection提供代码,也十分感谢你的反馈。
我们非常欢迎你可以为PaddleDetection提供代码,也十分感谢你的反馈。
...
@@ -359,7 +359,7 @@
...
@@ -359,7 +359,7 @@
-
感谢
[
yangyudong
](
https://github.com/yangyudong2020
)
,
[
hchhtc123
](
https://github.com/hchhtc123
)
开发PP-Tracking GUI界面
-
感谢
[
yangyudong
](
https://github.com/yangyudong2020
)
,
[
hchhtc123
](
https://github.com/hchhtc123
)
开发PP-Tracking GUI界面
-
感谢
[
Shigure19
](
https://github.com/Shigure19
)
开发PP-TinyPose健身APP
-
感谢
[
Shigure19
](
https://github.com/Shigure19
)
开发PP-TinyPose健身APP
##
引用 <img src="https://user-images.githubusercontent.com/48054808/157835276-9aab9d1c-1c46-446b-bdd4-5ab75c5cfa48.png" width="30"/>
##
<img src="https://user-images.githubusercontent.com/48054808/157835276-9aab9d1c-1c46-446b-bdd4-5ab75c5cfa48.png" width="20"/> 引用
```
```
@misc{ppdet2019,
@misc{ppdet2019,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录