提交 0ec53f98 编写于 作者: M minqiyang

Support imperative learning rate decay in optimizer

上级 fd286f35
...@@ -28,6 +28,7 @@ from . import ops ...@@ -28,6 +28,7 @@ from . import ops
from . import tensor from . import tensor
from ..initializer import init_on_cpu from ..initializer import init_on_cpu
from ..framework import default_main_program, Parameter, unique_name, name_scope from ..framework import default_main_program, Parameter, unique_name, name_scope
from ..imperative import base as imperative_base
__all__ = [ __all__ = [
'exponential_decay', 'natural_exp_decay', 'inverse_time_decay', 'exponential_decay', 'natural_exp_decay', 'inverse_time_decay',
...@@ -277,6 +278,10 @@ def piecewise_decay(boundaries, values): ...@@ -277,6 +278,10 @@ def piecewise_decay(boundaries, values):
if len(values) - len(boundaries) != 1: if len(values) - len(boundaries) != 1:
raise ValueError("len(values) - len(boundaries) should be 1") raise ValueError("len(values) - len(boundaries) should be 1")
if imperative_base.enabled():
decay = imperative.PiecewiseDecay(boundaries, values, 0)
return decay
else:
global_step = _decay_step_counter() global_step = _decay_step_counter()
lr = tensor.create_global_var( lr = tensor.create_global_var(
......
...@@ -72,11 +72,30 @@ class Optimizer(object): ...@@ -72,11 +72,30 @@ class Optimizer(object):
self.helper = None self.helper = None
def _create_global_learning_rate(self): def _create_global_learning_rate(self):
if imperative_base.enabled():
# create learning rate Variable
if isinstance(self._learning_rate, float):
self._learning_rate_map[framework.default_main_program(
)] = layers.create_global_var(
name=unique_name.generate("learning_rate"),
shape=[1],
value=float(self._learning_rate),
dtype='float32' if self._dtype is None else self._dtype,
persistable=True)
# get learning rate Variable from LearningRateDecay
elif isinstance(self._learning_rate, imperative.LearningRateDecay):
self._learning_rate_map[framework.default_main_program(
)] = self._learning_rate()
else:
raise TypeError(
"optimizer's learning rate must be float or LearningRateDecay"
)
else:
lr = self._global_learning_rate() lr = self._global_learning_rate()
if isinstance(lr, framework.Variable): if isinstance(lr, framework.Variable):
return return
else:
if not isinstance(self._learning_rate, float): if not isinstance(self._learning_rate, float):
raise TypeError( raise TypeError(
"learning rate variable is create outside optimizer," "learning rate variable is create outside optimizer,"
......
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import contextlib
import unittest
import numpy as np
import six
import paddle
import paddle.fluid as fluid
from paddle.fluid import core
from paddle.fluid.optimizer import SGDOptimizer
from paddle.fluid.imperative.nn import Conv2D, Pool2D, FC
from paddle.fluid.imperative.base import to_variable
from test_imperative_base import new_program_scope
class SimpleImgConvPool(fluid.imperative.Layer):
def __init__(self,
num_channels,
num_filters,
filter_size,
pool_size,
pool_stride,
pool_padding=0,
pool_type='max',
global_pooling=False,
conv_stride=1,
conv_padding=0,
conv_dilation=1,
conv_groups=1,
act=None,
use_cudnn=False,
param_attr=None,
bias_attr=None):
super(SimpleImgConvPool, self).__init__()
self._conv2d = Conv2D(
num_channels=num_channels,
num_filters=num_filters,
filter_size=filter_size,
stride=conv_stride,
padding=conv_padding,
dilation=conv_dilation,
groups=conv_groups,
param_attr=None,
bias_attr=None,
use_cudnn=use_cudnn)
self._pool2d = Pool2D(
pool_size=pool_size,
pool_type=pool_type,
pool_stride=pool_stride,
pool_padding=pool_padding,
global_pooling=global_pooling,
use_cudnn=use_cudnn)
def forward(self, inputs):
x = self._conv2d(inputs)
x = self._pool2d(x)
return x
class MNIST(fluid.imperative.Layer):
def __init__(self, param_attr=None, bias_attr=None):
super(MNIST, self).__init__()
self._simple_img_conv_pool_1 = SimpleImgConvPool(
1, 20, 5, 2, 2, act="relu")
self._simple_img_conv_pool_2 = SimpleImgConvPool(
20, 50, 5, 2, 2, act="relu")
pool_2_shape = 50 * 8 * 8
SIZE = 10
scale = (2.0 / (pool_2_shape**2 * SIZE))**0.5
self._fc = FC(10,
param_attr=fluid.param_attr.ParamAttr(
initializer=fluid.initializer.NormalInitializer(
loc=0.0, scale=scale)))
def forward(self, inputs):
x = self._simple_img_conv_pool_1(inputs)
x = self._simple_img_conv_pool_2(x)
x = self._fc(x)
return x
class TestImperativeMnist(unittest.TestCase):
def test_mnist_cpu_float32(self):
seed = 90
with fluid.imperative.guard():
fluid.default_startup_program().random_seed = seed
fluid.default_main_program().random_seed = seed
mnist = MNIST()
sgd = SGDOptimizer(learning_rate=1e-3)
train_reader = paddle.batch(
paddle.dataset.mnist.train(), batch_size=128)
dy_param_init_value = {}
for batch_id, data in enumerate(train_reader()):
if batch_id >= 2:
break
x_data = np.array(
[x[0].reshape(1, 28, 28) for x in data]).astype('float32')
y_data = np.array([x[1] for x in data]).astype('int64').reshape(
128, 1)
img = to_variable(x_data)
label = to_variable(y_data)
label._stop_gradient = True
cost = mnist(img)
loss = fluid.layers.cross_entropy(cost, label)
avg_loss = fluid.layers.mean(loss)
dy_out = avg_loss._numpy()
if batch_id == 0:
for param in fluid.default_main_program().global_block(
).all_parameters():
dy_param_init_value[param.name] = param._numpy()
avg_loss._backward()
sgd.minimize(avg_loss)
dy_param_value = {}
for param in fluid.default_main_program().global_block(
).all_parameters():
dy_param_value[param.name] = param._numpy()
with new_program_scope():
fluid.default_startup_program().random_seed = seed
fluid.default_main_program().random_seed = seed
exe = fluid.Executor(fluid.CPUPlace(
) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
mnist = MNIST()
sgd = SGDOptimizer(learning_rate=1e-3)
train_reader = paddle.batch(
paddle.dataset.mnist.train(), batch_size=128)
img = fluid.layers.data(
name='pixel', shape=[1, 28, 28], dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
cost = mnist(img)
loss = fluid.layers.cross_entropy(cost, label)
avg_loss = fluid.layers.mean(loss)
sgd.minimize(avg_loss)
# initialize params and fetch them
static_param_init_value = {}
static_param_name_list = []
for param in fluid.default_startup_program().global_block(
).all_parameters():
static_param_name_list.append(param.name)
out = exe.run(fluid.default_startup_program(),
fetch_list=static_param_name_list)
for i in range(len(static_param_name_list)):
static_param_init_value[static_param_name_list[i]] = out[i]
for batch_id, data in enumerate(train_reader()):
if batch_id >= 2:
break
x_data = np.array(
[x[0].reshape(1, 28, 28) for x in data]).astype('float32')
y_data = np.array([x[1] for x in data]).astype('int64').reshape(
[128, 1])
fetch_list = [avg_loss.name]
fetch_list.extend(static_param_name_list)
out = exe.run(fluid.default_main_program(),
feed={"pixel": x_data,
"label": y_data},
fetch_list=fetch_list)
static_param_value = {}
static_out = out[0]
for i in range(1, len(out)):
static_param_value[static_param_name_list[i - 1]] = out[i]
for key, value in six.iteritems(static_param_init_value):
self.assertTrue(
np.allclose(value.all(), dy_param_init_value[key].all()))
self.assertTrue(np.allclose(static_out.all(), dy_out.all()))
for key, value in six.iteritems(static_param_value):
self.assertTrue(np.allclose(value.all(), dy_param_value[key].all()))
if __name__ == '__main__':
unittest.main()
...@@ -21,98 +21,44 @@ import paddle ...@@ -21,98 +21,44 @@ import paddle
import paddle.fluid as fluid import paddle.fluid as fluid
from paddle.fluid import core from paddle.fluid import core
from paddle.fluid.optimizer import SGDOptimizer from paddle.fluid.optimizer import SGDOptimizer
from paddle.fluid.imperative.nn import Conv2D, Pool2D, FC from paddle.fluid.imperative.nn import FC
from paddle.fluid.imperative.base import to_variable from paddle.fluid.imperative.base import to_variable
from test_imperative_base import new_program_scope from test_imperative_base import new_program_scope
class SimpleImgConvPool(fluid.imperative.Layer): class MLP(fluid.imperative.Layer):
def __init__(self,
num_channels,
num_filters,
filter_size,
pool_size,
pool_stride,
pool_padding=0,
pool_type='max',
global_pooling=False,
conv_stride=1,
conv_padding=0,
conv_dilation=1,
conv_groups=1,
act=None,
use_cudnn=False,
param_attr=None,
bias_attr=None):
super(SimpleImgConvPool, self).__init__()
self._conv2d = Conv2D(
num_channels=num_channels,
num_filters=num_filters,
filter_size=filter_size,
stride=conv_stride,
padding=conv_padding,
dilation=conv_dilation,
groups=conv_groups,
param_attr=None,
bias_attr=None,
use_cudnn=use_cudnn)
self._pool2d = Pool2D(
pool_size=pool_size,
pool_type=pool_type,
pool_stride=pool_stride,
pool_padding=pool_padding,
global_pooling=global_pooling,
use_cudnn=use_cudnn)
def forward(self, inputs):
x = self._conv2d(inputs)
x = self._pool2d(x)
return x
class MNIST(fluid.imperative.Layer):
def __init__(self, param_attr=None, bias_attr=None): def __init__(self, param_attr=None, bias_attr=None):
super(MNIST, self).__init__() self._fc1 = FC(10)
self._fc2 = FC(10)
self._simple_img_conv_pool_1 = SimpleImgConvPool(
1, 20, 5, 2, 2, act="relu")
self._simple_img_conv_pool_2 = SimpleImgConvPool( def forward(self, inputs):
20, 50, 5, 2, 2, act="relu") y = self._fc1(inputs)
y = self._fc2(y)
return y
pool_2_shape = 50 * 8 * 8
SIZE = 10
scale = (2.0 / (pool_2_shape**2 * SIZE))**0.5
self._fc = FC(10,
param_attr=fluid.param_attr.ParamAttr(
initializer=fluid.initializer.NormalInitializer(
loc=0.0, scale=scale)))
def forward(self, inputs): class TestImperativeOptimizerBase(unittest.TestCase):
x = self._simple_img_conv_pool_1(inputs) def setUp(self):
x = self._simple_img_conv_pool_2(x) self.batch_num = 2
x = self._fc(x)
return x
def get_optimizer(self):
self.optimizer = SGDOptimizer(learning_rate=1e-3)
class TestImperativeMnist(unittest.TestCase): def test_optimizer_float32(self):
def test_mnist_cpu_float32(self):
seed = 90 seed = 90
with fluid.imperative.guard(): with fluid.imperative.guard():
fluid.default_startup_program().random_seed = seed fluid.default_startup_program().random_seed = seed
fluid.default_main_program().random_seed = seed fluid.default_main_program().random_seed = seed
mnist = MNIST() mlp = MLP()
sgd = SGDOptimizer(learning_rate=1e-3) self.get_optimizer()
train_reader = paddle.batch( train_reader = paddle.batch(
paddle.dataset.mnist.train(), batch_size=128) paddle.dataset.mnist.train(), batch_size=128)
dy_param_init_value = {} dy_param_init_value = {}
for batch_id, data in enumerate(train_reader()): for batch_id, data in enumerate(train_reader()):
if batch_id >= 2: if batch_id >= self.batch_num:
break break
x_data = np.array( x_data = np.array(
...@@ -124,9 +70,8 @@ class TestImperativeMnist(unittest.TestCase): ...@@ -124,9 +70,8 @@ class TestImperativeMnist(unittest.TestCase):
label = to_variable(y_data) label = to_variable(y_data)
label._stop_gradient = True label._stop_gradient = True
cost = mnist(img) cost = mlp(img)
loss = fluid.layers.cross_entropy(cost, label) avg_loss = fluid.layers.reduce_mean(cost)
avg_loss = fluid.layers.mean(loss)
dy_out = avg_loss._numpy() dy_out = avg_loss._numpy()
if batch_id == 0: if batch_id == 0:
...@@ -135,7 +80,8 @@ class TestImperativeMnist(unittest.TestCase): ...@@ -135,7 +80,8 @@ class TestImperativeMnist(unittest.TestCase):
dy_param_init_value[param.name] = param._numpy() dy_param_init_value[param.name] = param._numpy()
avg_loss._backward() avg_loss._backward()
sgd.minimize(avg_loss) self.optimizer.minimize(avg_loss)
dy_param_value = {} dy_param_value = {}
for param in fluid.default_main_program().global_block( for param in fluid.default_main_program().global_block(
).all_parameters(): ).all_parameters():
...@@ -149,7 +95,7 @@ class TestImperativeMnist(unittest.TestCase): ...@@ -149,7 +95,7 @@ class TestImperativeMnist(unittest.TestCase):
) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0)) ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
mnist = MNIST() mnist = MNIST()
sgd = SGDOptimizer(learning_rate=1e-3) self.get_optimizer()
train_reader = paddle.batch( train_reader = paddle.batch(
paddle.dataset.mnist.train(), batch_size=128) paddle.dataset.mnist.train(), batch_size=128)
...@@ -157,9 +103,8 @@ class TestImperativeMnist(unittest.TestCase): ...@@ -157,9 +103,8 @@ class TestImperativeMnist(unittest.TestCase):
name='pixel', shape=[1, 28, 28], dtype='float32') name='pixel', shape=[1, 28, 28], dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int64') label = fluid.layers.data(name='label', shape=[1], dtype='int64')
cost = mnist(img) cost = mnist(img)
loss = fluid.layers.cross_entropy(cost, label) avg_loss = fluid.layers.reduce_mean(cost)
avg_loss = fluid.layers.mean(loss) self.optimizer.minimize(avg_loss)
sgd.minimize(avg_loss)
# initialize params and fetch them # initialize params and fetch them
static_param_init_value = {} static_param_init_value = {}
...@@ -175,7 +120,7 @@ class TestImperativeMnist(unittest.TestCase): ...@@ -175,7 +120,7 @@ class TestImperativeMnist(unittest.TestCase):
static_param_init_value[static_param_name_list[i]] = out[i] static_param_init_value[static_param_name_list[i]] = out[i]
for batch_id, data in enumerate(train_reader()): for batch_id, data in enumerate(train_reader()):
if batch_id >= 2: if batch_id >= self.batch_num:
break break
x_data = np.array( x_data = np.array(
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册