Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
s920243400
PaddleDetection
提交
0e2deaa5
P
PaddleDetection
项目概览
s920243400
/
PaddleDetection
与 Fork 源项目一致
Fork自
PaddlePaddle / PaddleDetection
通知
2
Star
0
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
0e2deaa5
编写于
2月 11, 2018
作者:
Y
Yang Yang
浏览文件
操作
浏览文件
下载
差异文件
Merge remote-tracking branch 'pr/8364' into backward_on_parallel_do
上级
3067114f
190119bb
变更
4
显示空白变更内容
内联
并排
Showing
4 changed file
with
44 addition
and
23 deletion
+44
-23
paddle/fluid/framework/mixed_vector.h
paddle/fluid/framework/mixed_vector.h
+9
-4
paddle/fluid/framework/mixed_vector_test.cu
paddle/fluid/framework/mixed_vector_test.cu
+11
-4
paddle/fluid/operators/multiclass_nms_op.cc
paddle/fluid/operators/multiclass_nms_op.cc
+19
-10
python/paddle/v2/fluid/tests/test_multiclass_nms_op.py
python/paddle/v2/fluid/tests/test_multiclass_nms_op.py
+5
-5
未找到文件。
paddle/fluid/framework/mixed_vector.h
浏览文件 @
0e2deaa5
...
...
@@ -37,9 +37,8 @@ class Vector {
// Fill vector with value. The vector size is `count`.
explicit
Vector
(
size_t
count
,
const
T
&
value
=
T
())
{
if
(
count
==
0
)
{
InitEmpty
();
}
else
{
if
(
count
!=
0
)
{
resize
(
count
);
T
*
ptr
=
begin
();
for
(
size_t
i
=
0
;
i
<
count
;
++
i
)
{
...
...
@@ -122,6 +121,10 @@ class Vector {
const
T
*
begin
()
const
{
return
&
this
->
operator
[](
0
);
}
const
T
*
end
()
const
{
return
&
this
->
operator
[](
size
());
}
const
T
*
cbegin
()
const
{
return
begin
();
}
const
T
*
cend
()
const
{
return
end
();
}
const
T
&
back
()
const
{
auto
it
=
end
();
--
it
;
...
...
@@ -244,7 +247,9 @@ class Vector {
bool
operator
==
(
const
Vector
<
T
>&
other
)
const
{
if
(
size
()
!=
other
.
size
())
return
false
;
for
(
auto
it1
=
begin
(),
it2
=
other
.
begin
();
it1
<
end
();
++
it1
,
++
it2
)
{
auto
it1
=
cbegin
();
auto
it2
=
other
.
cbegin
();
for
(;
it1
<
cend
();
++
it1
,
++
it2
)
{
if
(
*
it1
!=
*
it2
)
{
return
false
;
}
...
...
paddle/fluid/framework/mixed_vector_test.cu
浏览文件 @
0e2deaa5
...
...
@@ -26,10 +26,10 @@ TEST(mixed_vector, CPU_VECTOR) {
for
(
int
i
=
0
;
i
<
10
;
++
i
)
{
tmp
.
push_back
(
i
);
}
ASSERT_EQ
(
tmp
.
size
(),
10
);
ASSERT_EQ
(
tmp
.
size
(),
10
UL
);
vec
<
int
>
tmp2
;
tmp2
=
tmp
;
ASSERT_EQ
(
tmp2
.
size
(),
10
);
ASSERT_EQ
(
tmp2
.
size
(),
10
UL
);
for
(
int
i
=
0
;
i
<
10
;
++
i
)
{
ASSERT_EQ
(
tmp2
[
i
],
i
);
ASSERT_EQ
(
tmp2
[
i
],
tmp
[
i
]);
...
...
@@ -58,7 +58,7 @@ TEST(mixed_vector, GPU_VECTOR) {
for
(
int
i
=
0
;
i
<
10
;
++
i
)
{
tmp
.
push_back
(
i
);
}
ASSERT_EQ
(
tmp
.
size
(),
10
);
ASSERT_EQ
(
tmp
.
size
(),
10
UL
);
paddle
::
platform
::
CUDAPlace
gpu
(
0
);
multiply_10
<<<
1
,
1
,
0
,
GetCUDAStream
(
gpu
)
>>>
(
tmp
.
MutableData
(
gpu
));
...
...
@@ -79,7 +79,7 @@ TEST(mixed_vector, MultiGPU) {
for
(
int
i
=
0
;
i
<
10
;
++
i
)
{
tmp
.
push_back
(
i
);
}
ASSERT_EQ
(
tmp
.
size
(),
10
);
ASSERT_EQ
(
tmp
.
size
(),
10
UL
);
paddle
::
platform
::
CUDAPlace
gpu0
(
0
);
paddle
::
platform
::
SetDeviceId
(
0
);
multiply_10
<<<
1
,
1
,
0
,
GetCUDAStream
(
gpu0
)
>>>
(
tmp
.
MutableData
(
gpu0
));
...
...
@@ -91,3 +91,10 @@ TEST(mixed_vector, MultiGPU) {
ASSERT_EQ
(
tmp
[
i
],
i
*
100
);
}
}
TEST
(
mixed_vector
,
InitWithCount
)
{
paddle
::
framework
::
Vector
<
int
>
vec
(
10
,
10
);
for
(
int
i
=
0
;
i
<
10
;
++
i
)
{
ASSERT_EQ
(
vec
[
i
],
10
);
}
}
paddle/fluid/operators/multiclass_nms_op.cc
浏览文件 @
0e2deaa5
...
...
@@ -38,22 +38,22 @@ class MultiClassNMSOp : public framework::OperatorWithKernel {
auto
box_dims
=
ctx
->
GetInputDim
(
"BBoxes"
);
auto
score_dims
=
ctx
->
GetInputDim
(
"Scores"
);
PADDLE_ENFORCE_EQ
(
box_dims
.
size
(),
2
,
"The rank of Input(BBoxes) must be
2
."
);
PADDLE_ENFORCE_EQ
(
box_dims
.
size
(),
3
,
"The rank of Input(BBoxes) must be
3
."
);
PADDLE_ENFORCE_EQ
(
score_dims
.
size
(),
3
,
"The rank of Input(Scores) must be 3."
);
PADDLE_ENFORCE_EQ
(
box_dims
[
1
],
4
,
PADDLE_ENFORCE_EQ
(
box_dims
[
2
],
4
,
"The 2nd dimension of Input(BBoxes) must be 4, "
"represents the layout of coordinate "
"[xmin, ymin, xmax, ymax]"
);
PADDLE_ENFORCE_EQ
(
box_dims
[
0
],
score_dims
[
2
],
PADDLE_ENFORCE_EQ
(
box_dims
[
1
],
score_dims
[
2
],
"The 1st dimensiong of Input(BBoxes) must be equal to "
"3rd dimension of Input(Scores), which represents the "
"predicted bboxes."
);
// Here the box_dims[0] is not the real dimension of output.
// It will be rewritten in the computing kernel.
ctx
->
SetOutputDim
(
"Out"
,
{
box_dims
[
0
],
6
});
ctx
->
SetOutputDim
(
"Out"
,
{
box_dims
[
1
],
6
});
}
protected:
...
...
@@ -260,15 +260,20 @@ class MultiClassNMSKernel : public framework::OpKernel<T> {
int64_t
batch_size
=
score_dims
[
0
];
int64_t
class_num
=
score_dims
[
1
];
int64_t
predict_dim
=
score_dims
[
2
];
int64_t
box_dim
=
boxes
->
dims
()[
2
];
std
::
vector
<
std
::
map
<
int
,
std
::
vector
<
int
>>>
all_indices
;
std
::
vector
<
size_t
>
batch_starts
=
{
0
};
for
(
int64_t
i
=
0
;
i
<
batch_size
;
++
i
)
{
Tensor
ins_score
=
scores
->
Slice
(
i
,
i
+
1
);
ins_score
.
Resize
({
class_num
,
predict_dim
});
Tensor
ins_boxes
=
boxes
->
Slice
(
i
,
i
+
1
);
ins_boxes
.
Resize
({
predict_dim
,
box_dim
});
std
::
map
<
int
,
std
::
vector
<
int
>>
indices
;
int
num_nmsed_out
=
0
;
MultiClassNMS
(
ctx
,
ins_score
,
*
boxes
,
indices
,
num_nmsed_out
);
MultiClassNMS
(
ctx
,
ins_score
,
ins_
boxes
,
indices
,
num_nmsed_out
);
all_indices
.
push_back
(
indices
);
batch_starts
.
push_back
(
batch_starts
.
back
()
+
num_nmsed_out
);
}
...
...
@@ -282,11 +287,15 @@ class MultiClassNMSKernel : public framework::OpKernel<T> {
for
(
int64_t
i
=
0
;
i
<
batch_size
;
++
i
)
{
Tensor
ins_score
=
scores
->
Slice
(
i
,
i
+
1
);
ins_score
.
Resize
({
class_num
,
predict_dim
});
Tensor
ins_boxes
=
boxes
->
Slice
(
i
,
i
+
1
);
ins_boxes
.
Resize
({
predict_dim
,
box_dim
});
int64_t
s
=
batch_starts
[
i
];
int64_t
e
=
batch_starts
[
i
+
1
];
if
(
e
>
s
)
{
Tensor
out
=
outs
->
Slice
(
s
,
e
);
MultiClassOutput
(
ins_score
,
*
boxes
,
all_indices
[
i
],
&
out
);
MultiClassOutput
(
ins_score
,
ins_
boxes
,
all_indices
[
i
],
&
out
);
}
}
}
...
...
@@ -303,9 +312,9 @@ class MultiClassNMSOpMaker : public framework::OpProtoAndCheckerMaker {
MultiClassNMSOpMaker
(
OpProto
*
proto
,
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"BBoxes"
,
"(Tensor) A
2-D Tensor with shape [
M, 4] represents the "
"predicted locations of M bounding bboxes
. Each bounding box
"
"has four coordinate values and the layout is "
"(Tensor) A
3-D Tensor with shape [N,
M, 4] represents the "
"predicted locations of M bounding bboxes
, N is the batch size.
"
"
Each bounding box
has four coordinate values and the layout is "
"[xmin, ymin, xmax, ymax]."
);
AddInput
(
"Scores"
,
"(Tensor) A 3-D Tensor with shape [N, C, M] represents the "
...
...
python/paddle/v2/fluid/tests/test_multiclass_nms_op.py
浏览文件 @
0e2deaa5
...
...
@@ -137,7 +137,7 @@ def batched_multiclass_nms(boxes, scores, background, score_threshold,
det_outs
=
[]
lod
=
[
0
]
for
n
in
range
(
batch_size
):
nmsed_outs
,
nmsed_num
=
multiclass_nms
(
boxes
,
scores
[
n
],
background
,
nmsed_outs
,
nmsed_num
=
multiclass_nms
(
boxes
[
n
]
,
scores
[
n
],
background
,
score_threshold
,
nms_threshold
,
nms_top_k
,
keep_top_k
)
lod
.
append
(
lod
[
-
1
]
+
nmsed_num
)
...
...
@@ -145,7 +145,7 @@ def batched_multiclass_nms(boxes, scores, background, score_threshold,
for
c
,
indices
in
nmsed_outs
.
iteritems
():
for
idx
in
indices
:
xmin
,
ymin
,
xmax
,
ymax
=
boxes
[
idx
][:]
xmin
,
ymin
,
xmax
,
ymax
=
boxes
[
n
][
idx
][:]
det_outs
.
append
([
c
,
scores
[
n
][
c
][
idx
],
xmin
,
ymin
,
xmax
,
ymax
])
return
det_outs
,
lod
...
...
@@ -179,9 +179,9 @@ class TestMulticlassNMSOp(OpTest):
scores
=
np
.
reshape
(
scores
,
(
N
,
M
,
C
))
scores
=
np
.
transpose
(
scores
,
(
0
,
2
,
1
))
boxes
=
np
.
random
.
random
((
M
,
BOX_SIZE
)).
astype
(
'float32'
)
boxes
[:,
0
:
2
]
=
boxes
[
:,
0
:
2
]
*
0.5
boxes
[:,
2
:
4
]
=
boxes
[
:,
2
:
4
]
*
0.5
+
0.5
boxes
=
np
.
random
.
random
((
N
,
M
,
BOX_SIZE
)).
astype
(
'float32'
)
boxes
[:,
:,
0
:
2
]
=
boxes
[:,
:,
0
:
2
]
*
0.5
boxes
[:,
:,
2
:
4
]
=
boxes
[:,
:,
2
:
4
]
*
0.5
+
0.5
nmsed_outs
,
lod
=
batched_multiclass_nms
(
boxes
,
scores
,
background
,
score_threshold
,
nms_threshold
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录